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1. INTRODUCTION 

Survey statisticians concerned with inference in regres- 

sion models are faced with the difficult task of selecting the 

most appropriate statistical model and parameters. A variety 

of models and interpretations have been suggested, e.g., 

Konijn (1962), Godambe and Thompson {1971), Royall (1971), 

Kish and Frankel {1974), Fuller {1974), and Folsom {1974). 

However, in this paper, the discussion will be limited to an 

approach proposed by Kish and Frankel {1974), Fuller (1974), 

and Folsom (1974). The approach involves estimating regres- 

sion coefficients 

b = (x'wx)- lx'wy, (1.1) 

where x'wx and x'wy are weighted sums of squares and cross 

products, w is the diagonal matrix of weights, x is the matrix 

of independent variables, and y is the vector of values of the 

dependent variable. An application of Wald's theorem {1943) 

for testing hypotheses requires a consistent estimator of the 

variance-covariance matrix of the estimator b. Further,  the 

text requires inverting the matrix V(b). If the two matrices 

x'wx and V(b) are nonsingular and "well-conditioned" (Stewart 

1973), then there are no problems. However, if either of the 

matrices x'wx or V(b) is singular or "ill-conditioned," the usual 

weighted least squares approach involving matrix inversions 

is not possible. The problem arises in practice when the 

number of dependent variables is moderately large (10 to 50) 

and the number of PSU's {primary sampling units} or number 

of pseudo-replications is not large ( < 50). 

The objective of this paper is to review some alternative 

approaches to deal with singularity (or near-singularity) of 

x'wx or V(b) and to provide some suggestions for improve- 

ments in software for regression models from sample survey 

data. 

2. THE MODEL AND THE NOTATION 

The most popular model for infinite populations is assumed 

to be 

Y = XB + e (2.1) 

where e represents random errors, B is a vector of parameters 

of interest, Y and X consist of observable variates for each 

individual in a population. For finite populations, the param- 

eter of interest B is defined as 

B = (X'X)- 1X'y, (2.2) 

where the Y vector and X matrix are population quantities. 

This study is restricted to inferences about linear functions of 

B. The parameter B is a function of the second-order moments 

of the finite population of interest. If the X'X and X'Y 

matrices are replaced by second-order moments of a multi- 

variate normal distribution, then the vector B will be equal to 

the population coefficients for regression of Y on X. 

For the purpose of this paper, a stratified, two-stage sam- 

ple design is considered. For this class of design, the popula- 

tion is divided into h = 1 . . . . .  H strata by various geographic, 

demographic, and socioeconomic characterist ics.  For 

stratum-h, n(h) primary sampling units are selected with un- 

equal probabilities without replacement. The second-stage 

observations consist of row vectors X(hij) consisting of the 

independent variable values for the second-stage unit (SSU) j 

from PSU i and stratum h, plus the corresponding scalar 

responses Y(hij). If the second-stage units are selected with 

equal probabilities without replacement and P(hij) represents 

the overall (PSU × SSU) selection probability for unit hij, and 

w(hij) is the weight defined as the reciprocal of P(hij), then the 

unbiased Horvitz-Thompson estimators for X'X and X'Y are 

x'wx and x'wy, respectively, where 

H n(h) n(hi) 
x'wx = E Z; Z; x'(hij)x(hij)w(hij) {2.3) 

h=l i=l  j= l  

H n(h) n(hi) 
x'wy = Z; ~ Z; x'(hij)y(hij)w(hij) (2.4) 

h=l i=l  j= l  

These estimates can be utilized to provide an estimate of B, 

namely 

b = (x'wx)- l(x'wy). (2.5) 

As shown by Shah (1981), for probability samples from 

finite populations if the order of sample selection is ignored, 

then the Horvitz-Thompson (1952) estimator is the maximum 

likelihood estimate of the population parameter. Since b is a 

function of the Horvitz-Thompson estimators x'wx and x'wy, b 

is a maximum likelihood estimator of B. The application of 

Wald's theorem to test hypotheses about b requires a consist- 

ent estimator for V(b). The two most commonly used 

approaches for computing V(b) are (a) balanced repeated 

replications (BRR), and (b) Taylor series linearization (TSL). 

The test statistic for the hypothesis HB = 0 is: 

t = b'H' {HV(b)H'} - 1Hb/r(H), (2.6) 

where r(H) is the rank of the matrix H. The t is approximately 

distributed as Hotelling's T 2 statistic. The formulas for esti- 

mating V(b) are as follows: 

Z(hij) = (x'wx)- 1 [x'(hij){y(hij)- x(hij)b } ]w(hij) 

n(hi) 
Z(hi) = E Z(hij) 

j= l  
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n(h) 
ZZ'(h) = E Z(hi)Z'(hi) 

i= l  
(2.7) 

n(h) 
Z(h) = E Z(hi) 

i=1 

H 
V(b) = E {n(h)ZZ'(h)- Z(h)Z'(h)} / {n(h)- 1}, 

h=l  

The available software works well in all cases in which 

x'wx and V(b) are nonsingular and well-conditioned. In a 

balanced repeated replication approach, the rank of V is less 

than the number of pseudo-replications. For the Taylor series 

linearization, if the mean square between PSU's within stra- 

tum is used to estimate variances, then the rank of V(b) is less 

than or equal to the number of PSU's minus the number of 

strata. 

The primary cause of singularity in x'wx is the 

overspecification of the model, which produces some inde- 

pendent  variables that  are linear functions of the other inde- 

pendent variables. The near singularity or ill-conditioning 

occurs when the number of independent variables is many and 

the sample values do not exhibit sufficient spread over the 

range of the variables. 

In the next section, we present  the approach taken in the 

SURREGR program developed at the Research Triangle Insti- 

tute. In the subsequent sections, we present  some suggestions 

for improvement  in the software. It is hoped that  this paper 

will initiate some discussion of these suggestions leading to 

improved software in the future. 

3. SURREGR APPROACH 

The basic approach for testing the hypothesis HB = 0 in 

the SURREGR program is as follows: 

(a) Find a matrix Hlsuch that  (1) the space spanned by the 

columns of H 1 is a subspace of the space spanned by the 

columns of H, and (2) HIB is estimable. 

(b) Find a matrix H 2 such that  (1) H 2 is in the same space 
! 

as spanned by the columns of H 1, and (2) H2V(b)H 2 is 
positive definite. 

(c) Perform a test  of the hypothesis H2B = 0 that  satisfies 

(a) and (b) and has the maximum possible rank. 

(d) If no such H 2 exists, then report  the hypothesis as "not 

testable." 

The computational details are as follows. 

In order to solve for the regression coefficients, b, it is 

necessary to compute the inverse of x'wx. In the procedure 

SURREGR, an algorithm based on the Cholesky decomposi- 

tion (Stewart 1973} is used when x is of full column rank. For 

the singular case, a generalized inverse, A - ,  is computed that  

satisfies the following conditions: 

(i) A = A A A 

(ii) A = A A A . 

(3.1) 

The maximum relative difference between the matrices on 

either side of these equations is reported to the user. Thus, 

the user is warned of any numerical inaccuracies due to the ill- 

conditioning of x'wx. 

To test  the hypothesis HB = 0, it is first necessary to find 

a linear function H 1 of H such that  H1B is estimable. Using the 

appropriate inverse of x'wx defined above, a matrix M is 

found that  satisfies 

MH{I - (x'wx)- l(x'wx) } = 0. (3.2) 

(If x'wx is nonsingular, then M = I and no subspace need be 

used.) If we let H 1 = MH, then clearly the columns of H 1 form 

a subspace of the column space of H, and HIB is estimable. In 

addition, the columns of M are eigenvectors of H { I -  (x'wx)- 1 

(x'wx)}. Therefore, the singular value decomposition can be 

applied to obtain M. If no such M can be found {i.e., there  is no 

estimable subspace of HB), then the program reports  that  the 

hypothesis is "not testable." 

Assuming that  a solution M has been obtained, the 

hypothesis now being tested is 

H1B = MHB = 0. {3.3) 

Due to previous numerical inaccuracy or ill-conditioning of the 

problem, the variance-covariance matrix of the estimates may 

be nonpositive definite. In this case, it is necessary to find 

H 2 = LH 1 such that  Var(H2b) = H2Var(b)H 2 is positive defi- 
! 

nite. By applying the Cholesky decomposition to HiVar(b)H 1, 

H 2 can be obtained with maximum possible rank. 

The Wald statistic defined in the previous section for 

testing H2B = 0 is then computed. A test  of the hypothesis 

follows from the well-known asymptotic properties of Wald 

statistics (Wald 1943). If there is no linear function, H 2 of H I 

such that  Var(H2b) is positive definite, then the program 

reports  that  the hypothesis is "not testable." 

4. ESTIMABILITY 

The general approach in SURREGR produces some 

unpleasant side effects. For example, if one tries to test  the 

hypothesis regarding the main effects of A in the presence of 

the interaction AB; then no H 2 is available and hence the main 

effect of A is not testable. An extensive discussion of what 

al ternate hypotheses can be tested in such a case is given by 

Speed et al. {1978). There is no easy solution but some facilities 

for the user can be provided for specifying: (a) what linear 

functions are to be tested, or (b) what linear restrictions on the 

parameters  are acceptable. Alternatively, the output data set 

may contain the quantities x'wx and V(b), so that  the user may 

perform further analysis using other tools such as IMSL, 

PROC MATRIX, and GENCAT. 
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5. V A R I A N C E  E S T I M A T O R  

In computing the estimated variance of a nonlinear 

statistic, the most common simplifying assumption is that the 

PSU's were selected with replacement within each stratum. 

This is true for the SURREGR procedure. This assumption is 

implicitly inherent in BRR techniques. This approach pro- 

duces acceptable results when the rank of x is small; but 

results are unacceptable if the rank of x is large, especially 

when the rank of x is greater than the number of PSU's. 

One alternative will be to use the formula appropriate to 

"without replacement" sampling. The general formula is com- 

plex. If the units within PSU's were selected with equal prob- 

ability and the PSU's within strata were selected with un- 

equal probabilities, then the appropriate equation {using TSL 

approach) for an approximate estimator of the variance 

covariance matrix of b is 

H n(h) 
V(b) = ~ ~ 7riTrj7rij 1 

h = l i c j  
-1){(Zhi -  Zhj)(Zhi- Zjh) (5.1) 

- f 2 h i W h i -  f2hjWhj} + EEf2hiWhi 

where 

f2hi = {1 - m(hi)/M(hi) } (5.2) 

Whi = {mhiZZ'(hi) - Z(hi)Z'(hi) }/{m(hi) - 1} 

(5.3) 

ZZ'(hi) = 
re(hi) 

E Z(hij)Z'(hij), 
j= l  

and 7r i, 7qj are probabilities for selection of the PSU(i), for the 

joint selection of PSU's i and j. This formula reduces to a 

simple form if the number of PSU's per stratum is 2. 

Another simple expression results if the PSU's are 

selected with equal probability; the corresponding formula is 

H 
V(b) = E [{1 - n(h)/N(h)}B 

h=l  

n(h) 
+ n(h)/N(h) E {1 - m(hi)M(hi)}W] 

i=1 

where 

B __ 

H 
E 

h=l 
{n(h)ZZ'(h)- Z(h)Z'(h)}/{n(h)- 1}. 

W ~_ 

N n(h) 
E 

h=l  i=1 
{ m(hi)ZZ'(hi) - Z(hi)Z'(hi) } / {m(hi) - 1 }. 

This approach is not readily applicable to BRR. Some 

techniques for estimating within PSU variance components 

have been suggested by Bean and Schnack (1977), and 

Schindler and Kulpinski (1981); however, it is not clear how to 

combine these to form an estimator of the variance under the 

assumption of "without replacement" sampling. 

6. COMMENTS ON A C C U R A C Y  

The singular value decomposition technique (SVDT) may 

produce unreliable results when the matrix is ill-conditioned. 

It is sufficient here to quote from LINPACK by Dongarra et 

al. {1979): 

"Finally, suppression of singular values below the error 

level will stabilize least squares solutions only if the significant 

singular values are well above the error level. What to do with 

small but significant singular values is a difficult and unsolved 

problem." 

It may be preferable to avoid SVDT whenever x'wx and 

V(b) happen to be of full rank and well-conditioned. There is a 

need to include better diagnostics in regression programs (see 

Belsey et al., 1980). If approaches could be developed to inform 

the user about the group of parameters that contain either ill- 

conditioning or singularities, as well as the rank of x, the user 

could then input "acceptable" restrictions on the parameters 

{see Gallant and Gerig, 1980) to resolve the singularities. The 

final computations could then be made through the Cholesky 

decomposition or a similar algorithm with a more stable per- 

formance compared to the SVDT. 

In conclusion, until improved software becomes available, 

the user must exercise care in dealing with regression prob- 

lems involving near-singularities. 
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