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ABSTRACT 

Several statistical strategies can be applied 
in the assessment of the extent of observer agree- 
ment for health status data resulting from a 
hierarchical measurement process. Specifically, 
kappa-type measures of agreement can be used to 
investigate the extent of agreement for two deter- 
minations at two time points for each of the 
diagnostic procedures applied to a single subject. 
Interest may also lie in the extent of agreement 
between diagnostic procedures as it varies be- 
tween two time points, and the extent of agree- 
ment of the two time points for each individual 
procedure. Weighted least squares methods are 
appropriate for characterizing the variation in 
those measures of agreement for sources of varia- 
tion of interest, including those defined by time 
point as well as those defined by procedure. 

This paper concerns itself with such analyses 
for data collected in a randomized trial involv- 
ing subjects from several sites. 

i. Introduction 

A standard and an experimental procedure were 
performed on each subject simultaneously. There 
were seven experimental procedures, corresponding 
to the different types of devices under study. At, 
two follow-up visits, referred to as Time 1 and 
Time 2 here, each of two observers classified the 
standard and test results as either positive or 
negative. Restated in the context of this design, 
the questions of interest here are: 

i. Is the pattern of agreement different from 
one time point to another? 

2. Does the pattern of agreement vary from 
one device to another? 

3. To what extent do the two observers agree 
in the assessment of the tests? 

EXAMPLE 1 

The subjects are classified as negative or 
positive for the standard and experimental pro- 
cedures at each time point. The determination of 
positive or negative reading is based on the 
average of two observers' readings. There is 
agreement if the standard and test device readings 
are both positive or both negative for a partic- 
ular reading. In this section, these two types of 
agreement are grouped together as 'agreement'. 
Disagreement, however, could be in one of two 
categories: 

I. Reading of the standard is classified as 
positive, but the test device reading is 
'contra-positive' (i.e., negative). 

2. Reading of the standard is negative, but 
the reading of the test device is contra- 
negative (i.e., positive). 

The following 2 x 2 table illustrates the 
possible outcomes for the subjects at one time 
point : 

TEST 

REACTION 

STANDARD REACTION 

- + 

l 
There are sixteen possible profiles if one con- 
siders the responses for both time points, since 
the classification scheme now depends on four 
binary response variables. Accordingly, the sub- 
jects for each procedure are classified into one 
of the cells of a four by four table. Table 1 
presents the 4 x 4 frequency table for subjects 
having the duplicate standard as the test proce- 
dure. Similar tables were constructed for the 
other test procedures. The vector consisting of 
the proportions in each row of the 4 x 4 table 
can be manipulated through the use of certain 
matrix operations and log and exponential trans- 
formations to produce functions of the proportions; 
these are directed at the relationships of time 
and observer agreement in which we are inter- 
ested. Test statistics can then be constructed 
to investigate hypotheses concerning these func- 
tions and corresponding model parameters esti- 
mated through the use of weighted least squares 
(WLS) computations in accordance with the Grizzle, 
Starmer and Koch (GSK, 1969) methodology. 

Let ~ = (PlI'PI2 ..... P44) be the vector of 

proportions obtained from the table where 
= (nii,/n) is the proportion of subjects Pjj ! 

J J 

in the j-th row and j'-th column. The desired 
functions of this vector are four" the contra- 
negative proportion for Time i, the contra-posi- 
tive for Time i, the contra-negative for Time 2 
and the contra-positive for Time 2. The function 
vector is written as F(~) and calculated as 
follows • 

F(~) = ex~(A2{log(Al- ~) }) 
where 

i i i i i i i ~ 00000000- 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
1 i001 i0011001 I00 
0 01 1 00 1 1 001 1 00 1 1 

A1 = 0 0 0 0  1 1 1 1 000 00000 
00000000 1 1 1 1 0000 
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 [ O00 OO l 

and A 2 0 - 1  0 0 0 1 0 
= 0 0-i 000 1 

0 0 0-i000 

The linearized Taylor series-based estimate of the 
covariance matrix of any function F(~) = Ti(~) is 

denoted by V(T i(~)) (where T i(~) is a transfor- 

mation of ~; i = 1 for a linear transformation, 
i = 2 for a logarithmic transformation, and i = 3 
for an exponential transformation)and is 
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-i 
calculated as" HiV(~)H!~I' where H 1 = A I, H 2 = ~ , 

H 3 = Dexp(~) , and ~~D is a diagonal matrix with 

elements of the vector Z on the diagonal. V(~) 
is often a block diagonal covariance matrix based 
on the product multinomial distribution. The 
variance of a compounded function such as F(I~) 
above is obtained through the application of the 
chain rule for matrix differentiation. 

The weighted least squares method is used to 

^ i 0 b is fit a model F(~) X~b, where X- 0 1 " ~ 

1 0 

FIx) -IF, which has estimated by b = (X'V ~ -IX'VF ~ 

estimated variance V h = (X'V~Ix) -I, and the good- 
~ 

ness of fit chi-square statistic can be written 

VF 1 as Q = (F - X b ) '  ( F -  Xb) ,  and  ha s  d e g r e e s  o f  

f r e e d o m  e q u a l  t o  t h e  number  o f  rows o f  X minus  t h e  
number  o f  co lumns  o f  X. G e n e r a l  h y p o t h e s e s  o f  t h e  
form H O" Cb ~ 0 can be t e s t e d  w i t h  t h e  Wald 

statistic 

QC = b 'C '  (CVVbC')-iCb, 

which has degrees of freedom equal to the rank of 
C. 

The parameters b I and b 2 can be interpreted as 

the contra-positive and contra-negative propor- 
tions for Time i, while b 3 and b 4 represent the 

difference between Time 2 and Time 1 for the 
contra-positive and contra-negative proportions, 
respectively. Table 2 includes the parameters 
b 3 and b 4 for each of the seven test procedures. 

It is of interest to investigate whether the 
time differences represented by b 3 and b 4 are 

procedure-dependent or are uniform across pro- 
cedures. In order to examine this, a new func- 
tion vector E(~) was constructed, consisting of 
the b 3 and b 4 estimates for each of the seven 

separate procedures. The 28 x 28 covariance 
matrix for F(~) consists of the block diagonal 
matrix whose blocks are the seven covariance 
matrices for the individual procedure parameters 
b 3 and b 4. (These would be the lower right-hand 

corner of the covariance matrices calculated from 
the individual weighted least squares analyses 
detailed above.) The model F(~) ^ X~b was fitted 
where the design matrix was the identity matrix. 
The hypothesis tested was that the estimates for 
the time differences for the contra-negatives 
were equal across devices; the same hypothesis 
was tested for the contra-positives. Below are 
the contrast matrices required. 

1 0 -i 0 0 0 0 0 0 0 0 0 0 0 

ii 0 0 0 -I 0 0 0 0 0 0 0 0 ~ 

C1 = 0 0 0 0 0 -i 0 0 0 0 0 0 
0 0 0 0 0 0 0 -I 0 0 0 0 
0 0 0 0 0 0 0 0 0 -i 0 0 
0 0 0 0 0 0 0 0 0 0 0 -i 

QC = 1.6928 d.f. = 6 p = 0.95 

C = 
2 

0 1 0 -i 0 0 0 0 0 0 0 0 0 0 

00 1 0 0 0 -i 0 0 0 0 0 0 0 00 
1 0 00 00-i0 00 00 

, i 0  O0  O0  0 0 - I 0  O0 
1 0 00 00 00 00-i0 
1 0 0 0 0 0 0 0 0 0 0 0 - 

QC = 6.0962 d.f. = 6 p = 0.41 

Neither of these hypotheses could be rejected 
(~ = .05), so it was concluded that the effect 
for time was not device-dependent, but in fact 
was uniform across the devices. 

The generalized kappa statistic allows one to 
assess the extent of agreement for observers for 
a particular procedure. If one takes advantage 
of the modeling aspects of the GSK approach, one 
can also address the question of whether the 
same pattern of agreement holds from one time 
point to the next, and whether the same pattern 
holds for each of the procedures. The kappa 
statistic is of the form 

IT - IT 
o e 

K = 
1 - IT 

e 

where ~ is an observational probability of agree- 
o 

ment and ~ is a hypothetical expected probabil- 
e 

ity of agreement under an appropriate set of con- 
straints here, the independence of observer 
classifications. The following illustrates the 
general form of the operations performed on a 
proportibn vector in order to produce the kappa 

statistic" 

F(~) = exp[A 4(log{A3[exp(A2{log AI~})]})]. 

In order to generate kappa statistics for each 
procedure for each time, the proportion vector 
manipulated was that formed from the 7 x 16 con- 
tingency table whose seven rows of sixteen cells 
correspond to the seven 4 by 4 tables described 
above. The following linear operation matrices 
are those applied to each of the seven segments 
of the proportion vector calculated from the 
7 x 16 table, resulting in kappa statistics, pre- 
sented in Table 3, for Time 1 and Time 2 for each 
procedure. 

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
0000 1 1 1 1 0000 1 1 1 1 

AI = i O0 1 1 O0 1 1 O0 i i O0 1 
iiOOilOOiiOOiiOO 
ooiiooliooiiooii 
iOlOiOiOlOiOiOiO 
0 1 0 1 0 1 0 101 Ol 0 101 

A 2 = 

~ o o o o  
0 1 0 1 0  
0 1 0 0 1  
0 0 1 1 0  
0 0 1 0 1  

I0000 
01010 
01001 
O0 11 0 
00101 
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[ - i  0 0 - i  0 ~I 
A3 = 0 0 l l 0 ~ 

i-i 00- 
0 0 0 1 1 

I~ - 1 0  0-] 
A4 -" 0 1 - l ]  

A weighted least squares analysis was applied to 
fit the model F(~) ^ X~b, where F(~) is the func- 
tion vector consisting of the fourteen kappa 
statistics, and X is the 14 x 14 identity matrix. 
The hypotheses tested for this model were" 

i. There is no difference between the Time 1 
and Time 2 kappa statistics across pro- 
cedures. 

2. There is no difference between the Time 1 
kappa statistics among the procedures. 

3. There is no difference between the Time 2 
kappa statistics among the procedures. 

4. The difference between the Time 1 kappa 
and the Time 2 kappa does not vary among 
procedures. 

The appropriate C matrix and chi-square statistics 
N 

are reported in Table 4. The only hypothesis 
not rejected (~ = .05 level of significance) was 
the fourth One, which had a chi-square of 5.81 
(p value = .44). This suggests that a reduced 
model would be adequate. The 8-parameter model 
F(]2) ~ X2b was then fitted, where 

I i  o o o o o o o- 
0 0 0 0 0 0 1  
1 0 0 0 0 0 0  
1 0 O 0 0 0 1  

0 0 1 0 0 0 0 0  
001 0000 1 
0001 0000 

X2 = 0 0 0 1 0 0 0 1 
0000 i000 
0000 1 001 
000001 00 
000001 01 
000000 1 0 
000000 1 1 

D 

The goodness of fit was QC = 5.81 (df = 6), and 

p = .44, indicating an adequate fit. The para- 
meter estimates and standard errors are summa- 
rized in Table 5. b I through b 7 can be inter- 

preted as estimates of kappa for each procedure 
for Time I, and b 8 is a common parameter reflect- 

ing the difference in the kappa statistic from 
Time 1 to Time 2 for all procedures. Thus, we 
can conclude that the kappa statistics are device- 
dependent and time-dependent. However, the 
change in the kappa statistic from Time 1 to 
Time 2 is homogeneous across devices. 

EXAMPLE 2 

The previous example was concerned with 
observer agreement where the primary unit of 
measurement was the averaged assessment of agree- 
ment for one device at one time point for one 
subject. Depending on whether the averaged assess- 
ment was positive or negative, the subject was 
classified into one of the cells of a four by 

four contingency table, whose entries were the 
basis of analysis. In this example, data are 

from Time 2 readings only, and the primary unit 
of measurement is the response profile of a pair 
of observers' readings for the same reaction; it 
will be--, -+, +-, or--. When the readings for 
both the standard and test reactions are con- 
sidered, there are 42 = 16 possible response 
patterns. In this analysis, interest focuses on 
whether a pair of observers agree on a positive 
rating, agree on a negative rating, or disagree. 
The basis for analysis in this example is the two 
way classification of the pairs into such cate- 
gories for both the standard and test procedure. 
The 3 x 3 table for the duplicate standard test 
procedure data is displayed below: 

Test device" duplicate Number of observers 
standard recording positive 

Number of @ 
observers recording x 
positive reaction 
on standard arm 

reaction on test arm 

@ x 

675 29 23 

39 14 14 

27 19 250 

Each circled '+' or '- indicates that the observ- 
ers agreed on that status, while the '×' indicates 
a disagreement. These classifications have been 
applied to the data for each procedure at Time 2. 

Attention is first directed at assessing the 
extent of agreement between two observers on the 
two reactions. If d is the number of observers, 
there are d determinations for one reaction, and d 
on the other. If one assumes that each of two 
observers made the classifications independently 
of the other, the measuring process can be con- 
sidered a series of independent Bernoulli trials 
Let P0 represent the probability of observers 

agreeing on a negative reading, Pl be the prob- 

ability of one positive reading, and P2 be the 

probability of 2 positive readings. Let n., 
I 

i = 0,1,2 be the number of pairs whose ratings 
include i positives - i.e. if both observers 
agree on a negative rating there are 0 positive 
ratings, if they disagree there is 1 positive 
rating, etc. The average probability of a posi- 
tive reading for one pair of observers is 

no nl n2 nl n2 1 
~ + + ~ _-- ~ + ~ -- 

= 0"n ~ n 2n n 2Pl + P2' p is 

used as the estimate of the true probability of a 
positive reading. Under independence, 

E(P0) = (i , p)2, and E(~2} = ~2. Since 
1 

P0 + Pl + P2 - i, (i - p) = P0 + 2PI" Thus, the 

kappa statistic which applies here is 

K = 

2 

, [p0+  Ip2+  
The 3 x 3 tables discussed above were ana- 

lyzed over procedures by transforming each 
device's 3 x 3 table into an overall table with 
seven rows and nine columns. The 63 x 1 observed 
proportion vector was formed, and matrix 
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operations applied to generate these kappa sta- 
tistics for each of the two tests of seven pro- 
cedures at Time 2. 

The form of the compounded function vector 
F(B) is as follows" 

exp{A4[log[A3{exp[A2(log(Al.~) )]} + C]]} 

The linear operator matrices for this transforma- 
tion are" 

A 1 = 

A 2 = 

1 1 1 0001 1 i- 
Iii i i i ~ T ~ 0  0 0 

1 1 1  
o o o T ~ l l l  

l O l l O l l O l  
1 1 1 

1 T o  1 TO 1 go 
1 1 1 ) g l O g l O T 1  

-] 

2 0 I 
I 

21 1017 

0 2 I 
2 t 

_.A 

0 1 7  

[ ~ -  i - i 

A3 = 1 1 

0 
0 t i - i - 0 1 7  

0 i 

A 4 = [ i  - i ]  @ 17 

The constant vector C added was C = [0 i] @ I14. 

The fourteen kappa statistics and their standard 
errors are found in Table 6. The model F(£) ~ Xb 
was fitted with the 14 x 14 identity matrix as 
the design matrix. Two hypotheses were tested" 

i. There is no difference in the kappa sta- 
tistics for the standard procedures. 

2. There is no difference in the kappa sta- 
tistics for the test procedures. 

Hypothesis 1 was not rejected (p = .94) and 
Hypothesis 2 was rejected (p = .00). The cor- 
responding contrast matrices and chi-square 
statistics are also found in Table 6. A 2- 
parameter, reduced model was then fitted. The 
design matrix is as follows" 

1 01 
1 01 
1 01 
1 !! 

1 01 
1 ~' i l 

1 01 
X = 
~ 1 ii 

1 01 
1 ii 
1 01 

1 

The resulting goodness of fit statistic was 
4.2841 (12 degrees of freedom), with p-value of 

0.98, indicating a good fit. The estimate of b 
1 

is 0.8620 + 0.0061 and the estimate of b 2 is 

-0.0899 + 0.0100. The parameter b I can be inter- 

preted as being the kappa statistic for the 
standard procedure, and b 2 represents the dif- 

ference between the statistic for the standard 
and test procedure for each of the seven groups 
except for the first one. However, that test 
procedure is the duplicate standard, which, 
understandably, has an estimate nearly identical 
to that of the standard. It is concluded there- 
fore that the extent of agreement between two 
observers was similar for the standard procedures, 
and also similar for the test procedures as well, 
"there being a constant difference between the 
standard kappa statistic and the test kappa sta- 
tistic, except for the case discussed above. 

The analysis of the seven by nine table is 
continued by examining summary measures of the 
extent of agreement in the standard test and the 
experimental test for the seven procedures. In 
order to investigate the pattern of reliability 
in the data, a short series of hierarchical kappa 
statistics was computed. A hierarchy of weights 
is used to combine certain adjacent response 
categories in order to create successively less 
stringent definitions of agreement. These 
weighted kappa statistics provide a framework for 
investigating the internal mechanisms that con- 
tribute to the decreasing reliability resulting 
from the broader definitions of judgment criteria. 

The two sets of weights used in the analysis 
are displayed in Table 7. If njj,denotes the 

number of subjects in the j-th response category 
for the standard procedure and the j 'th category 
for the test procedure (for j, j' = 0,1,2 for no 
positives, one positive, or two positives), then 
the weighted kappa statistic created can be writ- 
ten as 

70 - ~E ^ 2 2 
K = I - ~E where ~0 ~' ~. Wh, , /n) 

j=0 j'=0 jj (njj, 

is the observed agreement and 
2 2 

^ 7. ° ~E ~ w /n 2) is the agreement j= j'=0 h,jj'(nj+n+j' 

expected under independence. 
The analysis begins with the 63 × 1 observed 

proportion vector. 
The compounded function vector F(D.) has the 

same general form as it had in Example 1 (p. i). 
The necessary linear operator matrices are" 

A 1 = 

63 × 63 

1 1 1 0 0 0 0 0 &  
0 0 0 1 1 1 0 0 0  
O 0 0 0 0 0 1 1 1  
i 0 0 1 0 0 1 0 0  
0 1 0 0 1 0 0 1 0  
0 0 1 0 0 1 0 0 1  
1 0 0 0 1 0 0 0 1  
1 0 0 0 1 1 0 1 1  
1 0 0 1 1 1 0 1 1  

@ 17 
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A 2 = 
77 x 56 

]0010000 
i0001000 
i0000100 
01010000 
01001000 
01000100 
00110000 
00101000 
00100100 ~ 0 0 0 0 0 1 0  

o o o o o o k  

@ 17 

I_~ 0 0 0 -1 0 0 0 -1 1 "] 

A3 = 0 0 0 i-i 0-i 1 0 iJ @ T7 ~ 
1 1 1 01 1 1 00 

28 × 77 1 1 1 0 0 1 0 0 0 

1 0-i ~!7 
14 x28 

The estimates and standard errors for these kappa 
statistics are shown in Table 8. These values 
reflect the expected increase in agreement for 
the second set of weights. Weighted least 
squares analyses would also be appropriate here 
as a way to explore the pattern of variation in 
these measures of agreement in a manner similar 
to those described above. 
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TABLE i" FREQUENCIES BY STANDARD READING AND TEST 
READING FOR TIMES 1 AND 2, FOR SUBJECTS 
RECEIVING DUPLICATE STANDARD AS THE TEST 
PROCEDURE (EXAMPLE I) 

std 

Reading at - 

Time 1 + 

+ 

Tota 

Reading at Time 2 

- - + + Total 

dup - + - + 

509 4 17 3 533 

13 8 0 8 29 

14 1 17 9 41 

7 4 9 170 190 

543 17 43 190 793 

TABLE 2. PARAMETERS AND STANDARD ERRORS FOR TIME 
CHANGE FOR CONTRA-NEGATIVE STANDARD AND 
FOR CONTRA-POSITIVE STANDARD (EXAMPLE i) 

Device 

Time change for 
contra-negative 
standard (and 
standard errors) 

Time change for 
contra-positive 
standard (and 
standard errors) 

A 0. 021 (0. 010) -0 .  007 (0. 027) 

B 0. 026 (0. 016) 0. 055 (0. 027) 

C 0.031 (0.013) 0.059 (0.033) 

D 0.033 (0.016) 0.012 (0.024) 

E 0.011 (0.014) -0.021 (0.031) 

F 0.032 (0.017) 0.013 (0. 026) 

G O. 025 (0. 015) O. 026 (0. 025) 

TABLE 3" KAPPA STATISTICS (AND STANDARD ERRORS) 
FOR EACH DEVICE AND EACH TIME POINT 
(EXAMPLE I) 

Device J Time Kappa s.e. 

1 0.783 0.025 
A 2 0.812 0.023 

B 1 0. 568 0.032 
2 0. 643 0. 030 

C l 0.510 0.037 
2 0. 607 0. 035 

D 1 0.566 0.030 
2 0.612 0.029 

E 1 0.644 0.030 
2 0.642 0.030 

F 1 0.525 0.029 
2 0. 573 0. 028 

G 1 0.611 0.030 
2 0.668 0.028 

TABLE 5" PARAMETER ESTIMATES AND STANDARD ERRORS 
FOR REDUCED MODEL FOR KAPPA STATISTICS 
(EXAMPLE 1) -~o.772 ± o.o21-] 

o.62o. , o o26 I 
565 + 0 026[ 

0 .525 + 0 026 I 
b ~ 0 .537 + 0 032[ 

0 .616 + 0 026[ 
~583 ± 0 02 81 
048 + 0 011] 
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TABLE 4" CONTRAST MATRICES AND CHI-SQUARE STATISTICS FOR TESTS OF HYPOTHESES CONCERNING KAPPA 
STATISTICS (EXAMPLE i) 

i. H 0 no difference between the Time 1 and Time 2 kappa statistics across procedures. 
1 -i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 -i 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 -i 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 -i 0 0 0 0 0 0 0 0 f~ f~ 24.37 d.f. 7 

~i = 0 0 0 0 0 0 0 0 i -i 0 0 0 0 0 0 ~C 
o o o o o o o o o o i - i  o o o o 
0 0 0 0 0 0 0 0 0 0 0 0 1 -i 0 0 P = 0.0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -i 
2. H • no difference between the Time 1 kappa 3 H 0" no difference between the Time 2 kappa 

0" statistics among the procedures• statistics among the procedures. 

1 0-i 0 0 0 0 0 0 0 0 0 0 0 -0 1 0-i 0 0 0 0 0 0 0 0 0 
1 0 0 0-i 0 0 0 0 0 0 0 0 0 0 1 0 0 0-i 0 0 0 0 0 0 0 

"~2 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 ~'~3= 0 1 0 0 0 0 0 -1 0 0 0 0 0 
= 0 0 0 0 0 0 0 -1  0 0 0 0 0 1 0 (~ 0 0 0 0 0 -1  0 0 0 

0 0 0 0 0 0 0 0 0 -1  0 0 1 0 0 0 0 0 0 0 0 0 -1  0 
0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 

QC = 70.117 d.f. = 6 p = 0 QC = 57•544 d.f. = 6 p = 0 

4. H 0- no variation across procedures in the difference between Time 1 kappa and Time 2 kappa. 
1 -i -i 1 0 0 0 0 0 0 0 0 0 0~ 

ii-i 0 0 -i 1 0 0 0 0 0 0 0 00 I ._C 4 = - i  0 0 0 0 - i  1 0 0 0 0 0 % 5.81 d.f. 6 
-i 0 0 0 0 0 0 -i 1 0 0 0 0 
-i 0 0 0 0 0 0 0 0 -i 1 0, 0 
-i 0 0 0 0 0 0 0 0 0 0 -i 1 p = .44 

0 

TABLE 6A: KAPPA STATISTICS AND STANDARD ERRORS TABLE 6B: HYPOTHESES, CONTRAST MATRICES, AND TESTS 
BASED ON INDIVIDUAL OBSERVER ASSESSMENTS OF SIGNIFICANCE FOR KAPPA STATISTICS 
(EXAMPLE 2) SHOWN IN 7A* (EXAMPLE 2) 

D e v i c e  Used as  T e s t  P r o c e d u r e  Kappa s , e .  H 0 no d i f f e r e n c e  i n  s t a n d a r d  d e v i c e  a g r e e m e n t s  
A std. 0.854 0.017 1 0 "-i 0 0 0 0 0 0 0 0 0 0 0 

test 0.865 0.017 ii 0 0 0-i 0 0 0 0 0 0 0 0 00 
o oo o o _ 1 o  oo oo o 

B std. 0.862 0.017 CI= 0 0 0 0 0 0 0 -i 0 0 0 0 
test 0.759 0.021 0 0 0 0 0 0 0 0 0 -i 0 0 

C std. 0.858 0.018 0 0 0 0 0 0 0 0 0 0 0 -I 
test 0. 790 0. 022 

QC = 1.771 d.f. = 6 p = 0.94 

std. 0. 861 0. 017 
D test 0 759 0 021 H 0 no difference in test device agreements 

" " 0 1 0 -i 0 0 0 0 0 0 0 0 0 0 

E std. 0.850 0.017 ~ 1 0 0 0-i 0 0 0 0 0 0 0 0 

test 0.786 0.021 C2= 1 0 0 0 0 0 -i 0 0 0 0 0 
1 0 0 0 O 0 0 0 -i 0 0 0 

F std. 0.878 0.016 1 0 0 0 0 0 0 0 0 0 -i 0 
test 0.761 0.019 1 0 0 0 0 0 0 0 0 0 0 0 - 

G std. 0. 866 0. 017 
test 0.779 0.020 QC = 26. 647 d.f. = 6 p = 0.002 

*Design matrix is 14 x 14 identity matrix. 

TABLE 7" CRITERION WEIGHTS FOR HIERARCHICAL 
KAPPA STATISTICS (EXAMPLE 2) 

Criterion (h) 1 2 3 4 5 6 7 8 9 

1 0 0 0 1 0 0 0 1 

1 0 0 0 1 1 0 1 1 

TABLE 8- ESTIMATES AND STANDARD ERRORS FOR 
UNWEIGHTED AND WEIGHTED KAPPA STATISTICS 
(E XAMP LE 2 ) 

Device Criterion Weight Kappa s.e. 
A 1 0. 706 0. 021 

2 0. 754 0. 021 

B 1 0.525 0.024 
2 0. 549 0. 027 

C 1 0.480 0.026 
2 0.500 0.029 

D 1 0.535 0.023 
2 0. 549 0. 026 

E 1 0.604 0.023 
2 0.642 0.025 

F 1 0.493 0.022 
2 0.512 0.024 

G 1 0. 552 0. 023 
2 0.587 0.025 
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