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Abstract 

This paper is an attempt to present the logic underlying some 
practices in sample surveys. The primary focus is on the nature of 
information in labels for estimating a distribution function F(X). 
Lack of sufficiency is an inadequate justification in practice for an 
argument that the marginal distribution of a variable should be 
influenced by its joint distribution with another variable such as 
the label. 

The application of the maximum likelihood estimation (MLE) 
for a nonparametric distribution function leads to the Horvitz- 
Thompson estimator, in general. This result, coupled with the 
large sample properties of MLE, provides a justification for use of 
the Wald statistic, based on Horvitz-Thompson estimators, for 
tests of hypotheses and confidence intervals. 
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1. I N T R O D U C T I O N  

In the last twenty-five years, many "new" theories, founda- 
tions, and techniques have been proposed for estimation and infer- 
ence in sample surveys. Good summaries appear in Smith (1976) 
and Cassel, S~rndal and Wretman (1977). 

Godambe (1955)confirmed the conjecture by Horvitz and 
Thompson (1952) that there is no linear estimator that is uniformly 
best ("minimum mean square error") for estimating population 
total over the set of all possible populations. Later formalizations 
of theory by Godambe (1966) and Basu (1969, 1971) show that 
Fisherian ideas of likelihood and sufficiency fail to provide any 
useful inference. Hartley and Rao (1969) and Royall (1968) have sug- 
gested alternative approaches based on the contention that labels 
are uninformative. Ericson (1969), Scott and Smith (1969), and 
Royall (1970) have suggested a super-population and/or Bayesian 
framework; these works suggest that the inference is independent 
of the probabilities of selection used in survey design. Basu (1977) 
has questioned even the need for randomization. 

The major problems for inference in survey sampling are 
related to: (a) likelihood principle, and (b) labels. Hartley and Rao 
(1969) have suggested the "scale load approach" to derive max- 
imum likelihood estimates. The objective in this paper is to show 
that maximum likelihood estimators are applicable in general for 
estimation of the distribution function. 

The statistical parameter considered in this paper is the 
population distribution function, F(X), of a random vector X. For a 
simple random sample, the empirical distribution, Sn(X), is the 
maximum likelihood estimate (MLE) of the true distribution func- 
tion. A few formal results are presented in Section 2 as theorems 
for estimating F(X) under different conditions. These theorems are 
valid as per assumptions stated therein and are independent of 
sample survey practice. An application of the theorems to survey 
sampling is discussed in Section 3. 

Section 4 addresses the problem of sufficient and maximum 
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likelihood estimators of the marginal distribution of one of the 
variables (say y = X i) in the vector X. The results in Section 4 indi- 
cate that the problem of inference in presence of labels is the same 
as the problem of inference about marginal distributions of a 
multivariate distribution, and hence, it is not unique to survey 
sampling. 

In Section 5, estimation and tests of hypothesis for functionals 
of F are considered. A class of parametric functions is defined to 
which one can apply classical inference based on asymptotic prop- 
erties of Wald statistics. The results obtained are consistent with 
those suggested intuitively and verified empirically by many 
survey researchers. Some suggestions for further research are 
presented in Section 6. The concluding section contains personal 
views. 

2. ESTIMATION OF A DISTRIBUTION FUNCTION 

This section presents a few theorems on estimation of a 
distribution function. These results are very general and not 
dependent on any specific aspect of survey sampling. 

Theorem 2.1: 
If x 1, x 2 . . . . .  x n are independent random (vector) observations 

with identical distribution function F(X), then the empirical (sam- 
pling) distribution function is the maximum likelihood estimate of 
F(X) and is also a sufficient statistic. 

The empirical distribution function Sn(X) is defined as 

n 

Sn(X) = ~ e(X, xi)/n (2.1) 
i = l  

where 

e(X,Z) = 1, i fZ _< X; 
= 0, otherwise. 

and the relation <_ is any arbitrary partial ordering on the set IX}. 

Proof: 
For any X 0, the number r of the n observations satisfying 

x i <_ X 0 has binomial distribution given by 

n }n- r  
P(r) = (r) F(X0 )r {1 - F(X 0) 

and hence r/n is the MLE and a sufficient statistic for F(X0). 

Theorem 2.2: 
If Xl, x2 . . . . .  x n is a random sample of observations whose dis- 

tribution function is G{F(X)}, and G is a one to one function, then 

F(X) = G -  l[Sn(X)} (2.2) 

is the maximum likelihood estimate and the jointly sufficient 
statistic for F(X). 

Proof: 
By Theorem 2.1, Sn(X)is the maximum likelihood of G{F(X)}. 

Since G is one to one, G - 1  exists. Hence, invariance of MLE 
implies G-I{Sn(X)} is the MLE of F(X). The same argument 
applies to sufficiency of the statistic. 



It should be noted that  the sufficiency of Sn(X) is obtained for 
each individual value of X = X0; however,  sufficiency for 
G -  lISn(X)} is simultaneous for the entire range of values for X. 

Theorem 2.3: 
Let  m independent  observat ions from an r dimensional 

binomial random variable (X 1, X 2 . . . . .  X r) be denoted by (Xlf, 
x2t . . . . . .  Xrt,); f = 1, 2 . . . . .  m. If the marginal  distr ibution of each 
X h (h = 1, 2 . . . . .  r) is binomial with the same probabili ty P, and if 
every  permutat ion of (X 1, X 2 . . . . .  X r) has the same joint prob- 
ability distribution, then the MLE of P is given by 

/ , ,  r I n  
(2.3) P = E E xL~,/mr.. 

h = l i ' = 1  

Proof: 
Let nili2 . . . . .  ir (ij = 0, l " j  = 1,2 . . . . .  r) be the frequency of 

observat ions such that  Xj = ij, and let ~il i2. .  .ir be the corre- 

sponding hypothetical  probabilities. Then due to symmet ry  under  
permutat ions,  all Cs that  have an equal number  of one's in their  
subscripts  are equal. 

7rili2...i r = Xk; if Eij = k. 

Since the sum.of all Cs is one, 

r 

E0(k)k k = 1 . (2.4) k= 

Maximizing likelihood with respect  to the restr ict ions on X k yields 

Xk = Y:~nili2...ir/(~)m ' (2.5) 
* 

where E k is summation over all i l i 2 . . . i  r such that  l~ij = k. 

Now 

1 

P = ij E ~'1 = 0 i2i 3 • • .i r 

r - 1  
E (r kl) Xk + 1 

k=O 

Using (2.5), one obtains 

~, r , 

P = k~  1 k Ek nili 2 .. .ir/mr • 

Since, each nili2 . . . i  k in E k has k of ij's equal to 1, for each k: 

, In 

k ~k nili2 " " "ir C = ~1 xkC 

This leads to: 

A r I n  

P = __U E XhJmr  . (2.6) 
h 1C=1 

Corollary 2.1: 
If x 1, x 2 . . . . .  x n are binomial observat ions (not necessarily inde- 

pendent) and if it is assumed that  all permuta t ions  of x 1 . . . . .  x n 
have the same distribution, then the MLE of P (probability tha t  
any x is one) is given by ~ = E xi/n; and x is sufficient for P. 

Proof: 
The corollary immediately follows from Theorem 2.3 with 

m = 1 and r = n. Given ~, the conditional distr ibution of ones and 
zeroes over x 1 . . . . .  x n is a function of n~ only. Hence, ~ is sufficient 
for P. 

Theorem 2.4: 
If x 1, x 2 . . . . .  x n are random observat ions with the same random 

distr ibution function F(X), and if every  permutat ion Yl' Y2 . . . . .  Yn 
of x 1, x 2 . . . . .  x n has the same joint distr ibution function; the 
est imator  

n 

Y: e(X, xi)/n = Sn(X) (2.7) F(X) = i= 1 

is the maximum likelihood est imate and a sufficient statistic. 

Proof: 
For  a given value of X, e(X, x i) are binomial variables, with 

probabili ty F(X), sat isfying conditions of Corollary 2.1. Simple sub- 
sti tution of F(X) for P and e(X, x i) for x i yields the result .  

3. A P P L I C A T I O N  TO S U R V E Y S  

Let  a finite population consist of the vectors X 1, X 2 . . . . .  X N, 
then its distr ibution function F(X) with a given partial  order  rela- 
tion _< on the set IX}, is given by 

N 
Y: e(X Xi)/N . (3.1) F(X) = i= 1 ' 

If a random sample of n observat ions with replacement  is 
drawn, then each x i has random distr ibution F(X) and Theorem 2.1 
applies. 

However ,  for the case of with replacement  sampling, if one of 
the variables in the vector X represen t s  the label or the identifica- 
tion, then with that  additional information Sn(x) may not be the suf- 
ficient statistic. Consider the hypothetical  population of the 
responses  Xir tha t  could have been realized for the ith individual 
on r th  trial (r = 1,2 . . . . .  n). 

In a hypothetical  case, all Xir with the same i are identical; in 
practice they may slightly differ. In any case, the assumption is 
that  the variance of Xil, Xi2 . . . . .  Xin is small (equal to zero in hypo- 
thetical case). This assumption is equivalent  to t rea t ing  Xil, Xi2, 
. . . .  Xin as a cluster and assuming tha t  within cluster variance is 
very  small or equal to zero. 

The utilization of information about clusters is well known to 
survey  statist icians (Neyman 1934). If the within cluster variance 
is assumed to be zero, then optimal use of resources will require 
only one unit per cluster, or sampling without  replacement.  Of 
course, there  may be additional information in labels beyond 
clustering (multiple observat ions with identical labels). The discus- 
sion of the other  potential  information is deferred to Section 4. The 
remainder  of this section addresses  sampling without  replacement.  

Theorem 3.1: 
Let  x 1, x 2 . . . . .  x n be a random sample from a finite population 

without  replacement  and P(x i) be the probabili ty tha t  the observa- 
tion x i is included in the sample. Let  us assume that  the inclusion 
probabili ty is g rea te r  than zero for each unit in the population, and 
that  labels and any other  variables of in teres t  are included in the 
vector X. If the order  of selection of x 1, x 2 . . . . .  x n is ignored, then 
the Horvi tz-Thompson est imator:  

a 

F(X) = 
n 

E e(X, xi)/P(x i) ~ 1/P(x i) 
i=1 i = l  

(3.2) 



is the MLE of the population distribution function F(X), and I~(X) is 
jointly sufficient for F(X). 

Proof: 
Let Yl' Y2 . . . . .  Yn be a random permutat ion of x 1, x 2 . . . . .  x n. 

Then ignoring the selection order of x 1, x 2 . . . . .  x n is equivalent to 
assuming that  inference under x 1, x 2 . . . . .  x n is identical to infer- 
ence under Yl' Y2 . . . . .  Yn" The vectors Yl' Y2 . . . . .  Yn have identical 
joint distribution under permutation and, hence, satisfy the condi- 
tions of Theorem 2.4. It follows that  Sn(Y) is the MLE and the suffi- 
cient statistic for estimation of the distribution function of each Yi" 

The distribution function of each Yi is given by 

G(Y) = ~ e(Y, Xi)/P(X i) --~1 l/P(xi) " 
i=1 i 

(3.3) 

The distribution function of interest  is F(X) given by Equation 
(3.1). It can be shown that  if P(X) is grea ter  than zero, then the rela- 
tionship between F and G is one to one. Hence, by Theorem 2.2, 
G -  1 {Sn(Y) } is the MLE and jointly sufficient statistic of F(Y), 

l~(y)= t ~ l i  e(Y, y i ) / P ( y i ) f / l  ~i=1 1/P(Yi): " (3.4) 

Due to invariance under permutation, Y's can be replaced by 
X's to obtain the result  (3.2). 

This completes the proof. 

The following observations need to be emphasized for practical 
implications of Theorem 3.1. 

a. The theorem is valid for any without replacement sample 
design provided inclusion probabilities are known and the 
inference space is repeated application of the same design to 
the same population. As a further  illustration, an al ternate 
approach to multistage designs is presented in the Appen- 
dix. 

A 

b. The statistic F is jointly sufficient for F. It  is not t rue in 
general that  a marginal or a set of marginals of ~ is suffi- 
cient for the corresponding marginals of F. 

c. It should be noted that  the conditions of Theorem 3.1 appear  
to be similar to the exchangeable prior of Ericson {1969). 
This concept has been used in finite populations by Madow 
and Madow {1944) and Kempthorne {1969), who have con- 
sidered invariance under permutat ions of the population 
values. Theorem 3.1 requires invariance under permuta- 
tions of the observed sample values only. 

4. INFORMATION AND LABELS 

Consider the bivariate distribution for the finite population 
Yi, Zi; i = 1,2 . . . .  W, one of which may represent  labels. For a 
specific value of Y0 and Z 0, define sets A, B, as follows: 

A = {Yi < Y0} 

B = lZ i _< Z 0} 

the sets A and B are complements of A and B, respectively. Let 
the number of units M.. in a finite population be as in the following 1j 
bivariate table by A and B. 

B B 

A Ml l  M12 M1. 

M21 M22 M2. 

M.1 M.2 M.. 

If the results of a simple random sample are denoted by small mij 
in a similar table, the hypergeometr ic  distribution yields the prob- 
ability 

e (ml l ,  mi2, m21, m22 ) =  ~ ( M i j / / ( M  ) . 
\ m i j / /  \ m  

Assume that  the parameter  of interest  is the marginal prob- 
ability P for Y, given by 

P1. = M1./M'" 

The maximum likelihood est imate of P1. is given by 

A 

P1. = ml./m'" ' 

h 

but P1. is not a sufficient statistic. The conditional distribution of 
mij's given P1. is 

/ \ ~ / \ 

e(mli ,  m12, m21, m22/ei.) = ~ r ( M i j / / T r ( M i . ) ,  
\ m i j / /  \ m i  / 

which is not independent of M1. or P1 • Of course, it is well known 
that  m11, m12, m21, m22 are jointly sufficient for all parameters .  

A 

The nonacceptance of the est imator P1. because it is not suffi- 
cient may seem to imply that  there exists a "bet ter"  estimator 
which is a function of mij. If this were true for any variable in place 
of Z, the conclusion would be P1. should be dependent on all 
variables that  are observed in a survey. 

Consider a hypothetical case where a hand-held calculator is 
available and produces a psuedorandom number between (0, 1) 
when a special key is pressed. It is assumed that  the generated 
random numbers are all distinct. In a survey the following two 
variables are measured: height (Y) of the respondent  and the 
number (Z) shown on the calculator when the respondent  presses 
the random number key. A logical paradox, in a t tempting to use 
"all" the information about Y and Z while estimating the marginal 
distribution Y, is self evident in this case. Commonsense logic dic- 
tates  that  Z is i rrelevant  and hence 1~1. has all the information; the 
sufficiency principle applied to likelihood implies that  P1. is not suf- 
ficient for P I.' but we cannot logically conclude that  Z has "some" 
information on P1." The unanswered question is: "Is there a 
criterion (besides common sense about the variables) that  may 
determine relevance of the information on one variable while 
est imating the marginal distribution of the other?" 

Of course, there may be some variables that  are very relevant; 
for example, the height (Y) of a person and the sex (z) of a person. 
The practical operating principle is: "The information about all 
other variables is irrelevant,  unless hypothesized or assumed 
otherwise, while est imating the marginal distribution of a 
variable." 

The following summary points are worth noting: 

a. Labels can be t rea ted as values of a variable and the ques- 
tion of their relevance should be addressed in the same 
spirit as other variables like sex or a random number. 

b. The sufficiency principle alone cannot resolve whether  a 
given variable is "relevant" or not for estimating the 
marginal of another variable. 

c. If the only assumption is that  Z is re levant  for Y, and no 
other assumptions or information are available, then the 
maximum likelihood est imate for the marginal distribution 
of Y is the same as the one produced by ignoring Z. 
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d. Thisproblem does not arise in infinite populations because 
the P1. is always the sufficient statistic. If N is very large, 
then the distribution of m.. is approximated by the multi- . . . .  ~ l J  

nomlal dmtmbutlon and P1. is sufficient for P in the multi- 
nomial distribution. 

5. ESTIMATION AND TESTS OF HYPOTHESIS 

Since MLE's are invariant under all functional transforms, and 
~(X) is the MLE of F(X), the MLE of any function of F(X) is the 
corresponding function of I~(X). The mean of X (if X is numerical) is 
defined by 

# = JXdF(X), (5.1) 

and is estimated by 

^ = JXdl$(X) (5.2) 

The variance-covariance matrix of X is defined by 

V= J ( X -  ~)2dF(X), (5.3) 

with the MLE given by 

~ - - I ( x  ^2 ^ - ~) dF(X). (5.4) 

In general, any parameter  that is expressed as a functional of 
the population distribution F(X) is estimated by the  corresponding 
functional of the Horvitz-Thompson estimator I?(X). 

Furthermore,  this formulation presents an opportunity to con- 
struct a large sample Wald statistic for a vector of parameters 
O = (01 ...On/) which are functions of F and are estimated by corre- 
sponding functions of 15. Such tests can be treated as a first approx- 
imation for testing hypotheses about finite populations from 
survey data. 

The most commonly used test statistic in practice is 

A _  

t = (~:w - ~)/(S(xw) (5.5) 

where Xw is the weighted sample mean or Horvitz-Thompson esti- 
A _  

mator of the population mean # and S(x w) is a consistent estimator 
of the standard error of Xw" If the sample size is large, it is gener- 
ally concluded that the distribution t is approximated by Student 's 
t-distribution. This result follows from asymptotic normality of 
MLE. 

Kish and Frankel (1974) present simulation results for such 
tests for univariate hypothesis. For multivariate hypothesis, such 
a test was suggested by Koch, et al. (1975) for linear models of pro- 
portions in contingency tables. 

Tests of hypotheses for statistics for linear models from survey 
samples have been considered by Shah, et al. (1977) and Fuller 
{1976). Rao and Scott (1979) and Holt et al. {1980) contain references 
to many other empirical investigations concerning tests for popula- 
tion proportions in contingency tables. These investigations con- 
firm that for large samples, the Wald statistic using traditional 
sample survey techniques {based on Horvitz-Thompson esti- 
mators), is distributed approximately as a )/2 variate with appro- 
priate degrees of freedom. 

The major difficulty in tests of hypothesis appears to be the 
need for defining parameters  in terms of the distribution function 
F. The population total (T) is not expressible as a functional of the 

distribution function F(X), and hence, it is not directly estimable 
under the approach presented so far. If N is known, total can be 
estimated as N~'. If N is not known, it can be estimated from inclu- 
sion probabilities because 

E(Z1/Pi ) = N 

T = l~(1/Pi) ~ . (5.6) 

The distribution of inclusion probabilities created by a sam- 
pling statistician is known prior to observing the values of X. If the 
sample size n is variable, then the conditional expectation of the 
weightedmean given n is ~', but the equivalent statement is not 
true for T given in (5.6). 

6. FURTHER RESEARCH 

Theoretical support for the pivotal quantities based on func- 
tionals of the distribution function is provided in this paper, as well 
as empirical results cited in the previous section for the Wald 
statistic. Many results for the distribution function and its func- 
tionals have been derived for continuous distribution functions 
(see Boos and Settling 1980). 

If S n is an empirical distribution function based on a simple 
random sample, and F is the true distribution function, then 
Kendall and Stuart  (1967, Vol. 2, p. 451) state: 

"For each value of x, from the Strong Law of Large Numbers, 

Lim PISn(x) = F(x)} = 1, (30.98) 
n ---- ~ 

and in fact stronger results are available concerning the con- 
vergence of sample distribution function to the true distribu- 
tion function. In a sense, (30.98) is the fundamental relation- 
ship on which all statistical theory is based. If something like 
it did not hold, there would be no point in random sampling." 

This long-run property is not considered quite compelling for 
inference on each specific occasion by many statistical 
philosophers. For example, Hacking (1965, p. 41) states: "Not only 
does the long-run rule not formally imply the unique case rule, but 
also there is no valid way of inferring the one from the other." 

A distance function defined by Kolmogoroff (1941) is well 
known. Exact distribution of Kolmogoroff's distance has been 
obtained by Birnbaum and Tinger (1951). Walsh (1962, p. 308) has 
presented a method for obtaining bounds for confidence intervals 
in the discontinuous case. Kempthorne (1969) has suggested use of 
I( F _ 19)2 dFx as a pivotal quantity for inference about F. Exact 
results or better  approximation for the discontinuous case are 
needed. The next question concerns the possibility of translating 
confidence intervals on F into confidence intervals for functionals 
of F, and determining the impact of selection probabilities on these 
limits. Functional representation of statistical parameters and 
their asymptotic properties were first studied by Von Mises (1947); 
more recent references can be found in Boos and Serfling (1980). 

The common approach is to consider the asymptotic results 
regarding MLE (Wald 1943). Sprott  (1975) has considered appli- 
cability of asymptotic normality in finite samples. Empirical 
results suggest that these results are valid for a wide variety of 
cases. There is a need to determine the set or sets of conditions 
under which the Wald statistic is applicable to samples from finite 
populations. The problem of estimation of variance-covariance 
matrices of the functions of MLE needs further investigation. 
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ALTERNATE APPROACH FOR 
MULTISTAGE DESIGNS 

Theorem 3.1 is valid for any design; however, the alternate 
approach presented in this appendix clearly illustrates a rationale 
for stratification and clustering in survey practice. 

In the case of stratified random samples, let there be H strata 
and F h (h = 1, 2 ..... H) be the distribution function of the hth strata. 
The population distribution function F is then a weighted average 
of the F h given by 

F = ENhFh/N, 

where N h is size of the hth strata, and N is the population size. 

Since samples are drawn independently in each stratum, the 
sample distribution function fh is the MLE of F h. Hence, we have 

A . A 

F = ENhfh/N.  

To extend our model to a two-stage sample with random selec- 
tion, let there be H primary sampling units (PSU's), m of which are 
selected at random. From hth PSU, m h individuals are selected 
and a value of X observed for each individual. Sample selection 
within each PSU is independent of the selection within any other 
PSU. 

Now assume that the distribution function of X within the 
hth PSU is Fh(X). Fur ther  assume that for each X, t he  
Yh = Fh(X)(h = 1, 2 ..... H) have a random distribution G(Y). 

The population distribution function can now be written as 

F(X) = IYdG(Y) . 

The following conclusions follow: If fh is a MLE of F h, and if 
g(y) is the sample distribution function formed by values of fh, 
h = 1, 2 ..... m, then g(y) is a maximum likelihood estimator of G(Y). 
Hence, the MLE of F is given by 

F(X) = Iydg(y). 

The reader can satisfy oneself by proving that estimates in this 
appendix are identical to the Horvitz-Thompson estimator in 
Theorem 3.1. 
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