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Abstract: The rationale for the use of sample 
survey weights in a least squares regression 
analysis is examined with respect to four 
increasingly general specifications of the 
population regression model. The appropriateness 
of the weighted regression estimate depends on 
which model is chosen. A proposal is made to use 
the difference between the weighted and unweighted 
estimates as an aid in choosing the appropriate 
model and hence the appropriate estimator. When 
applied to an analysis of the familial and 
environmental determinants of the educational 
level attained by a sample of young adults, the 
method leads to a revision of the initial additive 
model in which interaction terms between county 
unemployment and race, as well as between sex and 
mother's education, are included. 

1. INTRODUCTION 

Suppose that a sample survey measures (p + I) 
variables on each of n individuals, so that the 
data consist of the n x I matrix Y and the n x p 
matrix X. Then the least squares estimator of the 
regression coefficients of Y on X is 

A 

B = (X'X)-IX'Y . (I.i) 

However, the rows of Y and X often are not a 
simple random sample from the population. 
Differential sampling rates and differential 
response rates among various strata lead to 
different probabilities of selection for each 
individual. Kish (1965) discusses the computation 
of these probabilities for various sampling 
schemes, but this paper will be concerned only 
with stratified sampling and not the further 
complication of cluster sampling. Further, the 
stratification is permitted to be based on X but 
not on Y. 

As described in Kish (1965), the differential 
sampling and response rates lead to the 
computation of weights for each case which 
attempts to give each stratum the same relative 
importance in the sample that it has in the 
population. This paper assumes that an observable 
stratification variable ] takes on K levels and 
that {~j}, the proportions of the population for 
which 7 = j, j = 1 ..... k are known. Let nj be 

the size of a simple random sample drawn from the 
jth stratum, j = I, ..., k, so that 
n i + ... + n k = n. Since the jth stratum is 

underrepresented in the sample by a factor 
proportional to ni/~i, the weight assigned to the 

,~ q.J 

ith observation is 

w = ~. /n. , (1.2) 
i Ji Ji 

where Ji is the value of J for the ith 

observation, i = i, ..., n. Let W denote the 
diagonal matrix whose ith diagonal element is w . 

i 

In some textbooks, and in many analyses of survey 
data (see Klein (1953), Bachman et al. (1974), 
Blumenthal et al. (1972), Duncan and Morgan 
(1974), Hu and Stromsdorfer (1970), and Juster et 
al. (1976)), a weighted least squares estimator is 
used, namely 

~W = (X'WX) i X'WY . (1.3) 

Which estimator should be used? Controversy 
has raged at least since Klein and Morgan (1951). 
The advocate of ~ can point out that the 

justification for weighted regression in terms of 
adjusting for unequal error variances (see, e.g., 
Draper and Smith (1966)) isnot at issue here. In 
the usual homoscedastic regression model, ~ is 
minimum variance unbiased whether or not the 
strata are sampled proportional to size. 

A 

Nevertheless, the advocates of ~ are concerned 

with reducing the supposed bias caused by the 
sampling scheme, r~asoning by analogy to the 
estimation of an overall population total or mean. 
In that case, such weighting is clearly necessary 
if there are systematic differences in the stratum 
means. In addition, they argue that the 
assumptions which lead to the optimality of ~ are 
likely to be violated in populations of interest. 
Brewer and Mellor (1973) discuss how the choice 
between ~ and % is influenced by the choice of a 

model-based approach to inference, versus an 
approach based on randomization within a finite 
population in which no particular model is 

assumed. 
The point of this paper is to clarify this 

issue by showing how the appropriate estimator 
depends on which of several possible regression 
models (if an'y)~ is appropriate and to show how a 
test based on ~W - B may be used as a device to 

help decide which model, and hence which 
estimator, is appropriate. Section 2 defines four 
different regression models of increasing 
generality which might be used to justify the use 
of ~W" Section 3 discusses the relationship 

between the models and the choice of estimator. 
Section 4 shows how an easily computed test based 
on BW- ~ may help in choosing a model. Section 5 

contains further discussion, and the last two 
sections illustrate the issues by the construction 
of an educational attainment model based on a 
national survey. 

2. FOUR REGRESSION MODELS 
2.1 Not at ion. 

The decision to use the weights or not depends 
on what one assumes about the population from 
which the data has been drawn. This section 
describes four models which exemplify the most 
common assumpt ions. 

The reader may find it easier to think in terms 
of sampling from an infinite population, since 
population size per se is not a major issue here. 

We shall always assume that the stratum sample 
size {nj} are small fractions of the corresponding 

population stratum sizes, and the mathematics of 
sampling with replacement or from infinite 
populations will be used throughout this paper. 
Let ~ and ~ denote the scalar and (i x p) random 
variables defined by a single draw of the 
dependent and independent variables, respectively, 
from the entire population. Let y and x denote 
values of ? and ~, namely, single rows of the data 
matrices Y and X respectively. Unconditional 
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expectations E(.) refer to a simple random sample 
from the population, while conditional 
expectations E(.IJ) refer to stratified sampling, 
where a simple random sample of size n. is taken J 
from the jth stratum, j = 1 ..... k. 
2.2 The Simple Linear Homoschedastlc Model. 

This is the usual regression model in which 

Y = X$ + ~ , (2.1) 
e,. 

where B is a p × I vector of coefficients, and 
is random error with mean 0 and variance 02 . The 

key assumption is that the mean and variance of ~, 
conditional on (~,]), are independent of (~,][). 
2.3 The Mixture Model. 

This model supposes no unique 8, but that 8 
varies by stratum in the population. That is, 
there are k parameter vectors 8(i), .... B(k), 
and, conditional on ] = j, 

= X$(j) + ~ , (2.2) 

where, again, ~ has mean 0, variance 02 , 
independent of (~,~). By analogy to the 
univariate sample survey problem of estimating a 
mean, one vector parameter of interest is the 
weighted average coefficient, 

k 

= ~ ~ B(O) 
j=l J 

(2.3) 
n n 

= ~ wiSi/. ~ w i , 
i=l l=l 

where 8. = 8 ( j . )  and t h e  s e c o n d  e q u a l i t y  f o l l o w s  
1 1 

from (1.2). 
2.4 The Omitted-Predictor Model. 

This model assumes that the simple 
homoscedastic model of §2.2 would hold if only 
were augmented by the unfortunately omitted 
(1 x q) variable ~. That is, 

= ~ + ~ + ~ , 

(2.4) 

= ~ + ~ + ~ , 

where ~ has mean 0, variance (~2, independent of 

(~,~,.~). The coefficients of ~ and ~ are ~ and V, 
respectively, while ~ is the part of ~ orthogonal 
to ~, namely 

= Z - X E(X'X) -i E(X'Z) . (2.5) 
Since ~ has not been identified, the parameter 
of interest in this model is 8, but if ~ were 
identified, we assume the analyst would prefer to 
know (~,y) rather than to know merely 8. 

There are two important points of contrast 
between this model and the mixture model. First, 
even if ~ is taken to be the ~ × ~ interaction 
variable, so that the two models are identical, 
the two parameters 8 and ~ will not usually be 
equal. Second, even when assuming that omitted 
predictors exist, we have in mind that they are 
not too numerous, so that although the omitted- 
predictor model is theoretically a generalization 
of the mixture model, in practice it would have 
fewer parameters since would hope that 
(p + q) << kp, especially if k, the number of 
strata, is large. 
2.5 The General Nonlinear Model (No Model). 

This model makes the minimal assumption that 

Y = XS* + e* , (2.6) 

where E(e*) = 0 and Cov(X,e*) = 0. However, no 
other assumptions are made about E(~*I~,~) or 
V(~*l~,]). The parameter 8" is thus defined as 

8" = E(X'X) -I E(X'Y) . (2.7) 

The parameter ~* will be called the census 
coefficient, since it would be the least squares 
estimate if the population were finite and the 
entire population were sampled, as in a census. 

Another interpretation of 8" is that ~8" 
represents the best linear predictor of ? in the 
sense of minimizing the expected squared error of 

prediction. 
If every nj is small compared to the size of 

the jth population stratum, this model seems 
equivalent .to the finite population formulation in 
which the values of ? and ~ in the population are 
treated as fixed with no underlying structure. 
This model includes the three earlier models as 
special cases. Note, however, that if the mixture 
model is true, it is not generally true that 
8" = 3, while, if the~mple homoscedastic model 
or the omitted-predictor model is true, then 
8" = 8. In fact, setting ~* = ~Ty + ~ shows that 
the omitted-predictor model is formally equivalent 
to the general nonlinear model. But the former 
model assumes U (actually, ~) is an easily 
interpreted and not-too-hard to measure variable 
that was omitted by oversight or some practical 
necessity, while the latter model allows ~ to be 
any variable with Cov(U,~) = 0, perhaps an 
unobservable variable. 

3. WHEN TO USE WEIGHTED REGRESSION 
3.1 Not If the Simple Linear Homoscedastic Model 

is Acceptable. 

Under the linear homosc edastic model, ~ is 
unbiased and has minimum variance among all linear 
unbiased estimators, and would naturally be 

preferred to Haberman (1975) proves various 
relations between ~ and ~. For example, he shows 

that for any linear combination c' of the 
coefficients 

4R/(I + R) 2 ~ V(c'~IJ)/V(C'~wIJ), - . < 1 

where R is the ratio of the largest to the 
smallest of the {wi}. In order for the linear 

homosc edastic model to be "acceptable," it must 
be a priori plausible substantively and in 
addition pass the usual data analytic tests 
involving examination of residuals, checking for 
interactions, etc. 

3.2 Not If the Mixture Model is Preferred. 
The mixture model cannot provide a general 

rationale for preferring ~W to ~. To see this, 

assume the model of §2.3 and let 9nxl and ~n×l be 

de fined by 

~. = x.~. i = 1 .... , n ; 
i I l 

e,. 

=X8 , 

where x i is the ith row of X. Then elementary 

calculations (let Y = 9 + e = ~ + ~ - ~ + e in 
(1.1) and (1.3)) show that 

E(~IJ) = ~ + (X'X)-IX,(~_ ~) , 

E(~WIJ) = ~ + (X'WX)-Ix,w(~_ ~) . 
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Notice that, in general, neither ~ nor ~ BW is an 
unbiased estimate of the average coefficient 3, 
and there is no simple way to tell from the above 
expressions which has the smaller bias. For 
example, if p = I, so that ~, the ~i, and the x i 

are all scalars" 

Bias (~) = ~ x 2(~ - ~)/ ~ x 2 
i i i ' 

Bias (~W) = I w x 2(~ _ ~)/ I w x 2 . 
i I i i I 

if x -- I, Bias (~,) = 0 by the definition Then, 
i 

(2.3) of ~, but for other choices of X this will 
not be true. In fact, it could happen that x 2 is 
proportional to wi, in which case ~ would, bu~ ~W 
would not be unbiased. In general, neither ~ nor 
~W appear to be suitable estimators for B in the 

mixture model. Konijn (1962) and Porter (1973) 
use the mixture model and recommend estimating 
separately within each stratum and then taking a 
weighted average of the estimates as the final 
estimate of ~. That is, use 

= ~ ~j~(J)= I Will/ ~ wi • 

Unfortunately, this recommendation is 
inadvisable for sampling schemes with many strata 
and relatively few observations per stratum. 
Pfefferman and Nathan (1981) suggest using weights 

A 
for the B i which take into account the precision 

A 
of each h i. Sometimes separate estimation within 

many strata is impossible because there are too 
few degrees of freedom. If one were especially 
suspicious that one of the coefficients (typically 
the constant term of the usual regression) varies 
by strata, one could allow the estimate of only 
that coefficient to vary by strata. Such an 
analysis of covariance on the entire data set 
costs only one degree of freedom per stratum. 
3.3 Use ~ If the Linear Homoscedastic Model is 

not Acceptable but an Estimate of B* is 
Desired. 

A 

The advantage of ~W in the models of §2.4, 2.5 
is that ~. is at least a consistent estimator of 

W 
B = 8", while B may not be. Proof of consistency: 
let each nj + oo and w i = ~j /nji , i = i .... , n. 

Then with probability one X%WX/ ~ w= approaches 
E(~'~) and X'WY/ ~ w i approaches E(~'?) so that by 
(2.7) ~9 ÷ B*. On the other hand, if the sample 
sizes of the strata, nj, are not proportional to 
the population proportlons nj (i.e., the w i do not 
approach equality), then ~ need not approach 8*. 
3.4 A Strategy for Choosing Between ~ and ~. 

First, if one believes the mixture model of 
§2.3 and desires to estimate ~ of eq.(2.3), then 
neither ~ nor ~ is appropriate. Therefore, the 

rest of this paper will ignore the mixture model 
and the estimation of ~. 

There remains the problem of choosing between 
the linear homoscedastic mode[ of §2.2 (thus 
choosing ~) and the more general models of §2.4 
and §2.5. If the general nonlinear model is 
chosen, ~qW is appropriate. If one believes the 

omitted-predictor model, then one should try to 
identify the extra predictor Z and estimate (e,y) 
in eq.(2.4) or, failing that, settle for using "~ 

as an estimate of 8. 
The controversy arises in deciding how much 

evide,lce, if any, to require before giving up the 

linear homoscedastic model. Closely related is 
the question of how hard to look for additional 
predictors. On one side are those (see Kish and 
Frankel (1974), Brewer and Mellor (1973) and 
references therein) who tend to be extremely 
dubious of the assumptions of the linear 
homoscedastic model and who also may not be very 
interested in searching for extra predictors. 
They are satisfied with making inferences about 
the census parameter 8*. 

On the other side are those who tend to accept 
the simple model of §2.2 so long as it can 
withstand the scrutiny of a careful regression 
analysis as described, for example, in the books 
by Mosteller and Tukey (1976) and Belsley, Kuh and 
• Welsch (1980). The process of refitting with 
transformed variables, checking for interactions, 
plotting residuals, etc., may lead to the use of 
extra predictors, but the basic strategy is to 
accept the simple model (and use ~) unless 
evidence against it develops. The advantages of 
this approach are, one, the simple inferential 
procedures (standard F-tests and confidence 
intervals) and, two, the more straightforward 
interpretation of B, which the model of §2.2 
allows. Without the assumptions of that model, 
the interpretation of 8" is difficult. For 
example, years of schooling may have a positive 8" 
for predicting income, but the income of some 
subgroups may drop with increasing education. 
Published regression analyses are often applied to 
subpopulations or to completely different 
populations by later researchers. In that case, 
B* may be misleading, while the extra effort spent 
to identify interactions or other omitted 
predictors may lead to greater theoretical 
understanding. Smith (1976) makes a similar 
point. 

In the spirit of this latter approach, we next 
describe yet another test which the data should 
pass before one accepts the simple model and uses 

the estimator ~. 

4. USING THE WEIGHTS TO TEST THE SIMPLE MODEL 
The test is based on the difference ~ = ~- ~, 

where A = m(~) = E(~) - E(~). The hypotheses of 

§2.2 imply that A = O. As an alternative 
hypothesis, we consider the omitted-predictor 
model of §2.4: 

Y = Xa + ZT + ¢ , (4.1) 

where the columns of Z are further (perhaps 
unobserved) predictors which should have been 
included in the regression but were not. We will 
see that the hypothesis T = 0 implies A = 0 but 
not vice versa. The hypothesis A = 0 can also be 
interpreted as E(~IJ) = 8* in the context of the 
general model of §2.5, but our development will 
concentrate on the use of ~ in a test (perhaps one 
of many) of the simple model versus the omitted- 
predictor model. Furthermore, when our test 
rejects the simple model, examination of ~ usually 
suggests candidates for the needed predictors Z. 
In this section we do not distinguish between E(.) 
and E(.IJ) , since all expectations here are 
conditional on (X,Z) and, for the two models being 
compared, the additional conditioning on J makes 
no difference. 

Since ~ = ~W - ~' it may be represented as A = BY, 
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where D = (X'WX)-IX'W- (X'X)-IX ' • (4.2) 

Under the model of §2.2, elementary calculations 
show that the covariance matrices of ~, "BW' and 

are • 

v(~) = (x'x)-1o z , 

V(B W) = (X'WX)-I(X,W2X)(X'WX)-Io 2 , 

V(~) = DD' 0 2 

= [(X'WX)-I(x'wex)(x'wx)-I-(x'x) -I]O 2 

= V(B w) - V(B) (4.3) 

Notice two things about the above expressions. 
A 

First, V(B W) is not (X'WX)-Io 2, as would be true 

if V(e i) = o2/wi 7 = I .... n. Thus, the 

standard errors and t-statistics output by most 
weighted regression computer programs are invalid 
for our situation, even if the linear model holds 
and A = 0. Second, since 
V(B W) = V(B + A) = V(B) + V(~), we see that ~ and 

are uncorrelated, as can be shown directly by 

noticing that, as a linear transformation of Y, 
is orthogonal to the columns of X (i.e., DX- 0). 
Therefore, the sum of the squared residuals from 
the unweighted regression can be partitioned into 
a part due to A and an error, or unexplained, 
component (Assume n > 2p and that both (X'X) and 
V A = V(~)/o 2 are nonsingular.) This leads to an 

ANOVA table with three independent components" 

Source df Sum of Squares Mean Square 

A 

Regression I p SS R = B'(X'X)~ MS R = SSR/p 

Weights p SS W = A'VA-II MS W = SSw/p 

Error n-2__~p SS E = remainder ~2 = SSE/(n_2p ) 

n Y'Y 

If the model of §2.2 is true, and in addition 
c is normally distributed, then the ratio MSw/~2 

has an F distribution with p and (n-2p) degrees of 
freedom. Under the extended model of §2.4, the 

expected value of MS W is 0 2 = A'VA-IA/p, while the 
expected value of ~2 is 0 2 + T2/(n-2p) where 
T 2 = y'Z' (I-X(X'X)-Ix ' )Zy - A'VAA. The formula 

for T 2 can be interpreted as the difference 
between the excess in the residual sum of squares 
due to neglecting the tgerm Zy in the model (4.1), 
and that accounted for by estimating A = DZy, 
where D is given by (4.2). If T 2 is small (the 
next theorem implies that T 2 = 0 is equivalent to 
Z = WXC for some matrix C), then the F-test based 
on MSw/O2 will be a useful test of the simple 

linear model of §2.2. If this model is rejected, 

we conclude that ~ and ~ have different 

expectations. The rationale for preferring 
unweighted to weighted regression is also rejected 
unless some other variables Z can be found which 
lead one to accept an extended model of the form 

(4.1). 
A weighted least squares computer program is 

required to compute ~ and ~, and another special 

program is required to compute V A. However, as 
the following theorem shows, SS W can be computed 

and the test performed with ordlnary, unweighted, 
regress ion programs" 

Theorem: The F-test for A = 0 is the same as 
the usual F-test for y = 0, if the regression 
model Y = X~ + WXy + s is fitted by ordinary least 
squares. (That is, create the new variables 
Z = WX, and test for the effect of Z part ial led- on 
X.) 

Proof: Since "~ = DY = D(X~ + T~PXy + e), and 
DX = 0, 

A = E(A) = DWXy 

= VA(XWX)~ 

using (4.2) and (4.3), where V A = V(~)/o 2. 

Therefore, the F-tests of A = 0 and ~ = 0 will be 
equivalent if V A and (XWX) are both nonsingular. 

This condition can be shown to be equivalent to 
the assumption that the matrix (X:WX) is full rank 
(=2p), which is true if there are at least (p+l) 
distinct w i whose corresponding rows of X have 

rank p. (We conjecture that the theorem is true 
for arbitrary X and W, although the F-tests would 
have fewer degrees of freedom in the numerator.) 

Figure A shows a geometric interpretation of 
the theorem when p = I and x -- 1 (estimation of 

I 
the mean of Y only). In this case we can plot the 

values (wi,Y i) and draw lines on the plot 

corresponding to the unweighted mean, weighted 
mean, and the regression of Y on the weights. 
Then the theorem states that the test that the two 
horizontal lines have the same expected value is 
equivalent to the test for zero slope of the 
regress ion line. 

Figure A 
Geometric Interpretation of the Theorem 

when p = I and x i - I. 

The test that the two horizontal lines have the 
same expected value is equivalent to the test that 
the regression line and the Y = ~ line have the 
same expected value. 

Y=~+ W 

- , 
. . 

, Y = ' B  

~ ,r • .t 

In practice, one might use one of two different 
methods to compute SS R and SSw, depending on the 

details of one's least squares regression computer 
program, after having formed the variables Y, X, 

and Z = WX (Zij = wiXij). 

Method A: Perform the regression of Y on X and Z, 
and then refit the regression, dropping the Z 
variables. The two "due to regression" sums of 

squares will be SS R + SSw, and SSR, respectively. 

Method B: Perform the regressions of Y and Z on 
X. Then perform the regression of Y on the 
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residuals of the Z-on-X regressions. The last 
"due to regression" sum of squares will be SS W- 

5. SOME FURTHER REMARKS 
The following remarks are somewhat independent 

of each other but are offered as discussion and 
for clarification. 
5.1 Remark One. 

Although the tests involving ~ and ~ are 
equivalent, interpretation of their individual 
components is somewhat different and less 
straightforward for ~ than for ~. If the 
hypothesis A = 0 is rejected, we suggest checking 
for interactions among the variables for which the 

/-, 

corresponding components of ~ or ~{ are 
significantly different from zero. 
5.2 Remark Two. 

Bishop (1977) suggests using a weighted 
regression in certain situations when the sampling 
ratio is a function of the dependent variable (not 
merely the predictor variables) even when the 
simple model holds. The present paper does not 
discuss that situation, which is akin to 
retrospective or case-control sampling. Manski 
and McFadden (1980) provide a general formulation 
and analysis of the problem. 
5.3 Remark Three. 

Thomson (1978) presents another rationale for 
using estimates of regression coefficients which 
depend on the sample design, even when the 
additive model holds. He shows that although B is 
best conditional on X, there may be other unbiased 
estimators with smaller variance for certain 
ranges of the true ~, if bias and variance are 
computed by averaging over all values of X in a 
given sampling design. However, under Thompson's 
model, B is always more efficient than B W. 

6. A LARGE-SCALE EXAMPLE 
To elucidate the issues in terms of the 

applicability of the models discussed in 
Section 2, we consider the analysis of a subset of 
data from the Panel Study of Income Dynamics, a 
continuing longitudinal study begun in 1968 by the 
University of Michigan's Survey Research Center. 
The original sample of 4,802 families was composed 
of two subsamples. The larger portion (2,930) of 
the original interviews were conducted with 
household heads from a representative cross- 
section sample of families in the United States. 
An additional 1,872 interviews were conducted with 
heads of low-income households drawn from a sample 
identified and interviewed by the Census Bureau 
for the 1966-67 Survey of Economic Opportunity. 
Annual interviews have been conducted since 1968 
with these household heads and also with the heads 
of new families formed by original panel members 
who have left home. At the end of the fifth year 
of the study, a set of weights was calculated to 
account for initial variations in sampling rates 
and variations in non-response rates. The weights 
were intended to help estimate population means 
and totals and for possible use in other 
statistical analyses. The calculation of the 
weights, which are inversely proportional to the 
probability of selection for each individual, is 
described in Morgan (1972, pp. 33-34). For the 
purpose of this example, we ignore the fact that 
the sampling scheme was clustered as well as 
stratified. 

This analysis attempts to predict educational 
attainment and is restricted to panel individuals 

(I) who were children in 1968 households, aged 14- 
18; (2) who had become heads or wives of families 
by 1975; (3) who had completed their schooling by 
1975; and (4) who had completed at least eight 
years of schooling. Restrictions (3) and (4) 
eliminated 46 and 9 observations, respectively. A 
final restriction was necessary because the 867 
individuals satisfying restrictions (i) through 
(4) came from only 658 different families. Since 
the educational attainments of siblings are not 
likely to be independent, we randomly selected one 
observation from each set of siblings that came 
from the same family, reducing the number of 
observations to 658. The weights for these 658 
cases range from 1 to 83, with a mean of 29.0 and 
standard deviation equal to 21.4. The data used 
in this analysis, consisting of 867 computer card 
images, is available from the authors and also 
from JASA. 

Theoretical and empirical studies of the 
economics of educational attainment (Becker, 
1975), (Ben-Porath, 1967), (Duncan, 1974), 
(Edwards, 1975), (Hill, 1979), (Liebowitz, 1974), 
(Parsons, 1975), and (Wachtel, 1975) have 
identified numerous characteristics of the family 
and the economic environment that may affect the 
attainment decision. This past research leads to 
our initial specification of the following form: 

Ed = ~ +(+~FaEd +(+~B MothEd +(+~ Sibs 

(6.1) 

+ B4Family Income + +~Age + +~Exp/Pupil 
(+) ( ( 

+ BTUnemployemnt + B8Rural + B9%College 
(+) (+) (+) 

+ Bi0County Income 
(+) 

Table I defines the variables in the above model 
and the hypothesized signs of the coefficients are 
given in the parentheses of eq.(6.1). In 
addition, we include dummy variables for black 
males, white females and black females in order to 
compare their educational attainment with white 
males. 2 

7. RESULTS OF THE DATA ANALYSES 
We began our analysis by obtaining unweighted 

estimates of the parameters of (6.1), with the 
race-sex dummy variables included as additive 
predictors. The coefficients and associated 
standard errors are" the boldface entries in the 
second and third columns, respectively, of 
Table 2. Taken as a whole, these variables 
account for more than a quarter of the variance in 
educational attainment. Virtually all of them 
have the hypothesized signs, although, with the 
exception of the county income variable, only the 
ones measured at the family level are 
statistically significant at conventional levels. 
The result for the county income variable is 
puzzling, although a significant negative 
coefficient has also been found by Wachtel (1975, 
p. 515) with different data. A histogram of the 
residuals, and a scatter plot of the residuals 
versus the fitted values, showed no gross 
deviations from the assumptions of the simple 
mode I. 
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Table I. Variable Definitions in 
Model of Equation (6.1) 

Ed Completed educational attainment of 
the individual, in years, self- 
reported 

FaEd Educational attainment level of the 
father, in years, reported by the 
father 

MothEd Educational attainment level of the 
mother, in years, reported by the 
father 

Sibs Number of siblings 

Family Income 1967-1971 average total parental 
family income, in thousands of 1967 
dollars, reported by the father 

Ag__~e 

Exp/Pupil 

The age of the individual, in years 

Per student public school 
expenditure in 1968, for county of 
residence in 1968 

Unemployment The percent of county labor force 
unemployed in 1970, for county of 
residence in 1968 

Rural A dichotomous variable equal to one 
if the parental family resides more 
than 50 miles from a city of 50,000 
or more in 1968, and zero otherwise 

% College The percent of persons 25 or more 
years old in the 1968 county of 
residence who have completed four 
or more years of college 

County Income The median 1969 income in 1968 
county of residence, in thousands 

of 1969 dollars 

Using Method A to compare ~ with ~, we formed 

14 Z variables by multiplyuing each independent 
variable (including the constant) by the weight 
variable. When the dependent variable is 
regressed on both sets of independent variables, 
we found that the null hypothesis that A = 0 
(i.e., the simple model is correct) could be 
rejected at about the 6 percent level, as the 
following analysis of variance table indicates: 

Sum of Mean Signi- 
Source df Squares Square F ficance 

Regression 13 670.0 51.5 20.1 <.0001 

Weights 14 59.2 4.2 1.7 .056 

Error 630 1586.7 2.5 

657 2315.9 

We proceeded to calculate estimates of A, VA, and 

weighted estimates of B. 
The weighted estimates of B and the t-ratios of 

A are given in the boldface entries of columns 4 

and 5 of Table 2. The regression performed in 
Method A provides an estimate of coefficients (y) 
and standard errors for each of the Z variables; 
the t-ratios of each are given in the sixth column 
of the table. 

Given the significance of these differences, we 
could have chosen to use the ~ of column 4 as 

descriptive estimates of B* in the census model. 
This rejection of the simple model would put more 
emphasis on race and sex, and less on 
unemployment, as predictors of educational 
attainment. 

We chose instead to use the information in the 
boldface entries of Table 2 to explore extensions 
of the simple model of (6.1). The unweighted 
coefficients differed substantially from the 
weighted coefficients for four variables: 
mother's education, county unemployment rate, and 
two of the race-sex dummy variables. Notice that 
there is a rough correspondence between the 
ranking (and direction) of the t-ratios on 
differences between unweighted and weighted 
coefficients and the t-ratios of the corresponding 
Z variables. Thus, it would appear that the more 
easily computed tests of significance on the Z 
variables can serve as a guide to variables with 
Iarge A ' s. 

Prior research and the significant A's suggest 
that the most probable cause of misspecification 
is omitted interactions between race and sex and 
some of the independent variables listed in 
equation (6.1), especially mother's education and 
county unemployment. Although the hypothesis of 
equal slopes for the four race and sex subgroups 
could not be rejected (F = 0.94; df = 30, 614), 
the subset regressions did suggest a possible 
interaction between race and county unemployment 
rate in which increases in unemployment had a 
stronger positive effect on the educational 
attainment of blacks thSn whites. This 
interaction is quite plausible since unemployment 
rates for blacks are considerably higher than 
those of whites and a unit change in the overall 
county unemployment rate has more effect on blacks 
than whites. When this interaction term was added 
to equation (6.1), the coefficient was -.21 with a 
standard error of .09. Furthermore, when Method A 
was repeated with it and its associated Z variable 
(i.e., whether white × county unemployment 
rate x weight) included as predictors, the F-ratio 
of the entire set of weight interactions drops 
from 1.7 to 1.3, and the coefficients of the two Z 
variables formed from the county hnemployment 
variable are insignificant. 

Since the three other Z variables significant 
at the .05 level in the original specification 
remained significant when the race-unemployment 
interaction was included, we continued our search 
for additional interactions. We discovered that 
mother's education interacted with itself (i.e., 
its effect was nonlinear) and, furthermore, that 
these nonlinear effects of mother's education on 
the educational attainment of the children 
depended upon the sex of the child. 

Results from the estimation'of our final 
specification of the education attainment model 
are the italic entries of Table 2. In contrast to 
the initial specifications, the highest t-ratio 
for the difference between weighted and unweighted 
coefficients is 1.4. The analysis of variance 
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Table 2 

COEFFICIENTS,STANDARD ERRORS, AND t-RATIOS 
OF VARIOUS TESTS FOR TWO VERSIONS OF THE EDUCATIONAL ATTAINMENT MODEL 

Boldface: Initial model ( eq. (~.i)) ft, aL{c: Final model chosen as described 
in text 

Independent 
Variable 

tA: 
t-Ratio of 

SE(~ ): ~w: D i f f e r e n c e  Between 
Unweighted Weighted Weighted and Un- 
Estimate Standard Estimate weighted Estimates 
of 8 Error of 8 of 8 

FamEd .082 .076 

MothEd .125 .002 

S i b s  - .  01 . l  - . 0 6 9  

Family Income .044 .033 

Age .171 .251 

Whether  
B lack  Male - .  280 - 1 . 2 6 7  

Whether 

(.021) (.020) .082 .082 0.0 0.3 

(.026) (.126) .158 .055 1.6 0.6 

(•031) (•031) -.069 -.074 0.2 -0.2 

(.012) (.012) .039 .030 -0.9 -0.5 

(.045) (.045) .314 .297 1.3 1.4 

( .215)  ( .448)  -.639-1.753 -1.5 -I.0 

White Female -.068 1.385 (.163) 

Whether 
Black Female -.070 

Lxpenditure/ 
Pupil .022 

Unemployment .037 

Rural 

%College 

.491 (.196) 

.006 (.078) 

.183 (.042) 

-.081 -.097 (.175) 

.016 .019 (.017) 

- . ! Q ~  -.084 (.049) County Income 

Constant 

Whether White 
and Unem- 
ployment 

6.705 7.679 

-.208 

Whether Female 
and MothEd 

Mo=hEd 2 

-.340 

,008 

Whether 
Female x 
MothEd 2 

R 2 • 289 

Standard Error 
of estimate 1.60 

.017 

.315 

1.57 

Sample Size 658 6 58 

(.796) -.218 1.048 -2.8 -0.5 

(.900) •142 •268 1.0 -0•3 

(.077) .027 .027 9-2 0.4 

( . 0 7 6 )  - . 0 1 5  .210 - 2 . 3  0 . 3  

( . 1 7 2 )  - . 1 1 3  - •119  - 0 • 3  - 0 . 2  

(.017) .030 .024 1.0 0.4 

(.048) -.129 -.092 -0.7 -0.2 

(.907) (1.080) 6•073 6.794 -I•0 -I.i 

(.085) .252 -0.5 

( •169)  - . 3 2 0  

( . 0 0 7 )  .005 

( . 0 0 9 )  .017 

0.2 

-0.6 

-0.0 

ty : 
t-Ratio of 
Estimated 
Coefficient of 
Variable x Weight 

0.0 0.I 

2 .0  0•5  

0 . 0  - 0 • 2  

- 0 . 2  - 0 . 5  

1•6 1•6 

- 2 . 1  

- 2 . 8  

- 0 . 3  

- 2 . 0  

- 1 . 1  

- 1 . 0  

0•5 0.6 

- 2 . 3  0 . 3  

0 . 2  0 . 2  

0•6 0•4 

- 0 . 7  - 0 . 3  

- 0 . 7  - 0 . 6  

-i. 2 

0.2 

-0.4 

-0.2 

Source" Morgan (1972) 

table for the final model shows that the F-ratio 

associated with the weights is below 1.0" 

Sum of Mean 

Source df Squares Square F 

Signi- 
ficance 

Regression 17 730.6 43.0 17.35 <.0001 

Weights 18 43.3 2.4 0.97 .494 

Error 622 1542•0 2.5 

657 23[5.9 

The coefficients and standard errors presented 
as the italic entries of columns 2 and 3 of 
Table 2 should be regarded with some caution 

because the data were used to suggest the 

appropriate functional form. 
As a final analysis step, we reestimated the 

model on the 209 individuals who were excluded 
when the sample was restricted to only one sibling 

per family• The results were quite similar, 
particularly for the race-unemployment interaction 

and the nonlinear effect of mother's education. 

635 



Although the sign of the interaction between sex 
of child and mother's education changed direction, 
the only coefficient that changed by a 
statistically significant amount was family 
income. The income coefficient increased, 
suggesting a more important role for income for 
these 209 individuals from families with at least 
two children in this five-year age cohort. When 
the final model was fitted to the complete sample 
of 867 individuals, the coefficient of income rose 
from .033 to .044. 

Our use of the weights to test for model 
misspecification has led us to the substantive 
conclusion that a simple linear additive 
educational attainment model is not appropriate 
for several reasons. First, a worsening of local 
economic conditions (as measured by the county 
unemployment rate) appears to provide more of an 
incentive to stay in school for blacks than 
whites. A one percentage point increase in the 
unemployment rate was associated with an 
additional one-fifth of a year of educational 
attainment for blacks, while the effect for whites 
was essentially zero. Second, the effects of 
mother's education on the attainment of children 
increase with the level of her education, and 
furthermore depend upon the sex of the child. The 
following table evaluates ~Ed/SMothEd for mothers 
with 8, 12, and 16 years of education: 

Education Level of Mother 

Sex of 8 12 Grades 16 Grades 
Child Grades (H. S. Grad.) (College Grad.) 

Male .13 .19 .26 

Female .06 .26 .46 

There is a modest increase in the marginal effect 
of mother's educational attainment for sons and a 
much more dramatic increase in this effect for 
daughters. An extra year of mother's education 
level is associated with virtually no increase in 
the attainment of daughters whose mothers have an 
eighth grade education but with an additional one- 
half year of education for daughters with college- 
educated mothers. These conclusions do not change 
when the model is estimated from the complete 
sample of 867 individuals. None of the six 
numbers in this table changes by more than .03. 

Finally, this extended model seems to fit well, 
and we thus prefer the unweighted estimates of its 
coefficients. 
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FOOTNOTES 
IThe source labeled "Regression" here includes 

the constant term if it is present in the model. 
In most applications, and in our examples of 
Section 7, the effect of the grand mean is omitted 
and the df for "Regression" is p-l, while SS R and 

Y'Y are reduced by the square of the grand mean. 

2Because low-income families were oversampled, 
the number of black and white observations are far 
more evenly distributed in the sample than in the 
population. There are 176 observations on white 
males, 112 on black males, 221 on white females 
and 149 on black females. 
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