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i. It is remarkable that despite the 
proliferation of statistics research in numerous 
specialized directions, there is no agreement 
about how to tackle the basic problem of 
estimating a finite population mean from a 
probability sample of the population. A variety 
of inferential approaches have been suggested. 
However, it is argued elsewhere (Little and 
Rubin, 1981) that the main distinction lies 
between two approaches, the randomization 
approach where population items are treated as 
fixed and inferences are based on the known 
distribution of sample selection, and the 
model-based approach, where inferences are based 
on a model for the population items. Under 
simple random sampling and a normal model, both 
approaches lead to estimating the population 
mean by the sample mean, with estimated variance 
(l-n/N)s2/n, where s is the sample standard 
deviation, n is the sample size and N is the 
population size. However, when the sample 
design deviates from simple random sampling, and 
in particular when variable probability sampling 
is adopted, the two approaches lead to different 
inferences. 

Let Yi denote the value of an item y for 
unit i, si=l or 0 according to whether unit i 
is selected or not, ~i=E(si ) denote the 
probability of selection for unit i, for 
i=l,...,N. Then the Horvitz-Thompson estimator 

HT = h ~I ~ ~ilsiYi (i) 

(Horvitz and Thompson, 1952) is the standard 
estimator of the population mean Y in the 
randomization theory. In particular, it is 
design-unbiased. However in small or moderate 
sized samples it can have a high mean squared 
error. See, for example, Basu's famous circus 
example (Basu, 1971). 

Sarndal (1980) proposes improving the HT 
estimator by selecting an estimator of ~ from 
the class of generalized difference estimators 

YGD(~ )=N-I ~ ",zsi(Yi-~i)+N-l~ ~,Li, (2) 
| : J  l : ' |  
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where /~i is oa value chosen to predict Yi, 
available for all units in the population, the 
first term on the right hand side of (2) is the 
HT estimator aRplied to the residuals Yi-~i, 
and~=(~l,...,~N )T" .~Setting~i=0 gives 
YGD(0)=HT. Setting~i=~, the sample mean, 
gives the estimator 

SA=~+N -I ~ ~ilsi(Yi-~). (3) 
|'-i 

In his discussion of Basu (1971), Hajek suggests 
the ratio estimator 

HK= ~ E ilsiYi / Z ~ ilsi, (4) 

where the population size N in HT is replaced by 
the denominator of (4). HK can be obtained as a 

,~generalized difference estimator by setting 
~i=HK. Sarndal compares SA and HK, and also 
considers estimators where ~i is obtained by 
regression on covariates x known for• all units. 

In all these cases the predicted values 
vary in repeated sampling, and hence the 
estimators are not design unbiased. However, 
Sarndal shows that they are in a sense 
asymptotically design unbiased. The inclusion 
of modelling information tends to reduce the 
variance, and as a result the estimators often 
have lower mean squared error than the Horvitz- 
Thompson estimate. 

Sarndal's approach is a compromise between 
the modelling and randomization approaches. To 
the pure modeller, the estimate of Y should be 
based entirely on an appropriate model for the 
population, and the Horvitz-Thompson estimator 
applied to the residuals in (2) is unnecessary. 
The latter component affords protection against 
mispecification error. However we suggest that 
this component is not necessary, provided models 
are chosen which yield estimates which are 
insensitive to mispecification error in large 
samples. Indeed this requirement is a key 
ingredient to successful modelling in the survey 
context. 

We shall adopt the Bayesian modelling 
approach to survey inference, as discussed by 
Ericson (1969). Other modelling formulations, 
such as the superpopulation approach of Royall 
(1970), lead to similar estimators for the 
problem we consider. 

2. A Bad Model and a Better One. 

Suppose we specify that the values Yi are 
iid Normal with mean ~ and variance 0 -2 . Then 
the standard Bayesian approach with flat priors 
on ~and ~-2 leads to the posterior 
distribution 

YIdata .~G(~, (l-n/N)s2/n) (5) 

for the population mean, where G(a,b) is the 
Normal (Gaussian) distribution with mean a, 
variance b, and ~ and s are the sample mean and 
standard deviation. This distribution yields 
estimates and probability intervals for Y which 
are numerically equivalent to randomization 
analogs based on simple random sampling. 

Suppose that the correct model specifies 
that the population forms J subclasses, where 
the item values in subclass j are Normally 
distributed with mean ~j and variance ~- X. 

not all the ~" being equal Then if the • 3 
units are selected by simple random sa-~pling, we 
conjecture that (5) leads to approximately valid 
inferences for Y even though the model is 
wrong. On the other hand, if items are sampled 
at different rates ~j in each subclass, then 
(5) is unsatisfactory if the ~ are not equal. 
In particular, the sample distribution over the 
subclasses no longer approximates the 
distribution in the population, and hence the 
centre ~ of the posterior distribution does not 
weight the subclass sample means appropriately. 

Let us define J subclasses such that the 
probability of selection is a constant ,~-j in 
subclass j. Let Nj and nj denote the 
population and sample size in subclass j, and 
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let Yij denote the value of y for unit i in 
subclass j. The population mean can be written 

Y = ~ pjYj, (6) 

where pj i s  the p o p u l a t i o n  p r o p o r t i o n  and Yj 
is  the p o p u l a t i o n  mean in  s u b c l a s s  j .  A key 
a s p e c t  of  the model i s  h e t e r o g e n e i t y  of  the 
p o p u l a t i o n  a c r o s s  s u b c l a s s e s .  A c c o r d i n g l y ,  we 
c o n s i d e r  the model 

Yij ind G(~aj, c" 2) 
J~j ind G(>, C2). 

(7) 

We assume first flat priors for ~, C 2 and 
C 2. If the population proportions p~ are 

known, then the posterior mean of Y glven the 
data is 

5 
MI = ~ pj E(~jldata,pj), (8) 

where .J" 

E(Yjl data,p;) (9) 
=,\j~j + ( l-7~j )~+( 1-~j ) (~j-~)nj/Nj, 

and 
^2 (nj~2 ~2 1 Aj = nj [ + )- , (i0) 

where ~ 2 and ~ 2 are maximum likelihood 
estimates of 72 and c -2, obtained from a 
random effects analysis of variance of the data. 

Equation (9) gives an estimate of the mean 
for subclass j under this model. The last term 
on the right hand side is a finite population 
correction which is small if nj/Nj is 
small. Aside from this term, the estimate is a 
weighted average of ~j and ~, with weights 
given by (10). Hence M1 is a shrinkage type 
estimator, where shrinkage is from the weighted 
to the unweighted sample mean. Note that the 
weight (I0) given to ~j depends on the 
relative size of the wlthin and between subclass 
variances, and is a monotone function of the 
sample size nj which increases to one as nj 
becomes large. If the subclass sample sizes 

are large, we might simply set Ai=l. 
e resulting estimator of Y is simply 

PS = ~ Pj~i, (II) 

which is a post-stratified estimator (Holt and 
Smith, 1979). This estimator is design 
unbiased. Thus the estimators based on (7) are 
asymptotically design unbiased in the sense 
discussed by Sarndal. (Note that PS is also 
obtained by setting [2=~, which corresponds 
to a fixed effects analysis of variance). 

Note that neither M1 nor PS uses the sample 
weights ,T" However the weights do enter the 

' Jd lysis if the proportions pj are mode 1-base ana 
unknown. The maximum likelihood estimate of 
pj is then 

" - 1  ~" p~ = njnj (~ nk~1). (12) 
W=I 

Substituting this expression for Pi in 
equations (8) to (I0) gives an estimator which 
we denote as M2. ,qubstitutin~ it in (11) gives 

HK = ~ nj E]I~ E _I (13) ~i' ~ j/ , )  ,nJ ~Tj , 

which is Hajek's estimator (4) rewritten in the 
notation of this section. 

It is instructive to compare these 
estimators with generalized difference 
estimators given by (2). In the notation of 
this section the generalized difference 
estimator takes the form 

_ ., I ~ 1 ( _ . _ , . ~ .  )+N_  1 ., YGD(~)=N -1~ nj;'T'.l YJ ['] Nj]~j, 

where ]~j i s  the p r e d i c t e d  mean f o r  s u b c l a s s  
j .  This  e s t i m a t o r  can be r e w r i t t e n  in  the  form 

~GD(il) = ~ Pj~j, 
whe re .] ~ 

yj = wjyj + (1-wj)~j, 
and 

wj = ,W~Inj/No • 

Hence estimators in this class9 like the 
model-based estimator (MI), combine a weighted 
average~ of the observed mean (~j) and a fitted 
mean (~j) in subclass j. However the weight 
wj is not intuitively appealing. It has the 
sensible property of tending to one as the 
sample size nj increases, but it can take 
values greater than one. Also, it is not clear 
why the relative weight given to ~j and I~ i 
should depend on the realization of the sample 
de s i gn. 

In particular cases Y-GD does yield 
model-based estimators. We have noted that HK 

A 
is obtained by setting ~j = HK. The 
post-str0~tified estimator PS is obtained by 
setting ~j=~j. However, both these 
estimators are extreme cases where the sample 
mean ~j is given weight i. We contend that in 
small or moderate sample sizes where the 
subclass means are poorly determined, the 
modelling weights ~" provide a more appealing ] 
combination of smoothed and observed data than 
the weights wj in the generalized difference 
e s timat or. 

3. Simulation Study. 

A limited simulation study on 12 
artificially generated populations was carried 
out to provide some numerical comparisons of the 
estimators described above. 

3.1 Population Structure and Sample Design. 

Each population had values of a variable y 
recorded for N=2000 units, arranged in i0 strata 
as in the first row of Table i. One thousand 
samples were selected from each population by 
stratified random sampling, with probabilities 
of selection in each stratum given in the second 
row of Table 1, yielding expected sample sizes 
in the last row of the table. The overall 
expected sample size is 79. 

Table 1 About Here 

3.2 Generation of Population Values. 

The 12 populations are labelled 

INI,IN2,4NI,4N2,1LI,IL2,4LI,4L2,1SI,IS2,4SI,4S2- 

The first numeral indicates the ratio of the 
within stratum variance (~2) to the between 
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stratum variance (~2) and takes the value 1 or 
4. The letter indicates the distribution used 
to sample values (N=Normal7 L=Long -tailed, 
S=Skewed). The second numeral indicates 
replicate (1 or 2). Detailed formulae for 
generating Yij, the value of y for unit i in 
stratum j7 are given below. 

i) Normal populations (IN1, IN2, 4N17 4N2 ). 

Yii = -C]~j + ~- zij' 
~. j ~iid G(0,1)7 
zij iid G(0,1), 

where G(0,1) is the standard Normal 
distribution, ~-2=I 7 and F2=1 (IN1, 1N2) or 
0.25 (4NI, 4N2). These populations are 
generated from the random effects model 
discussed in the previous section, and hence the 
model based estimators MI and M2 of Y should 
perform well. 

ii) Long-tailed populations (ILl, 1L2, 4LI, 4L2). 

Yij = ~7~( ~/~j + ¢- zij ), 
~j ~iid t57 
zij~ iid t57 

where t 5 denotes the t distribution on 5 
degrees of freedom7 the factor ;3~/5 is chosen so 
that the within stratum variance is unity, and 
[2=i (ILl 7 IL2)or 0.25 (4L1, 4L2). 

iii) Skewed populations (IS1, lS2, 4S!, 4S2). 

Yij = k(~j +Azij)27 
~j'~iid U(4,6~, 
zij~ iid G(0,1), 

where U(4,6) denotes the uniform distribution 
between 4 and 6. The exponent of 2 in the 
expression for Yij produces a skewed 
distribution of y-values in each stratum. The 
within stratum variance is not constant7 but 
varies with the mean. Values of k and A are 
chosen so that the average within stratum 
variance is unity, that is 

~2 = E(vsr(Yiji~j) ) = 1, 

and the between stratum variance 

~2 = var(E(Yi.j~.))= 1 (IS1, IS2) 
or 0.25 (4S1, ~$2~. 

3.3 Estimators Compared. 

For each sample seven estimates of the 
population mean Y were calculated: PS given by 
equation (Ii), MI given by equations (8) to 
(i0)7 HK given by equation (13), M2 given by 
equations (8) to (I0)with pj replaced by the 
estimate in equation (12) 7 SA given by equation 
(3), HT given by equation (i), and the 
unweighted sample mean YM. The mean bias and 
the root mean squared error for each estimator 
are displayed in Tables 2 and 3. 

Tables 2 and 3 About Here 

3.4 Summary of Simulation Results. 

A fuller discussion of the results of the 
simulations is given in Little (1981). Like any 
such study, the one we have described is limited 
in scope. Only point estimation of the 
population mean is considered. Only one 
population structure and sampling scheme is 
adopted. A variety of distributions are chosen 
to generate the values, but exchangeability of 
the values in each stratum and the means across 
strata is assumed. Despite these limitations, a 
number of interesting points emerge: 

i) In terms of overall mean squared error, 
the methods ranked as follows: 

MI~ PS ~ M2 ~ HK< SA~ YM< HT. 

2) The Horvitz-Thompson estimator is 
unbiased, but is not robust, with 
particularly disastrous mean squared error 
in the skewed populations. Thus design 
unbiasedness can incur an extreme penalty 
in terms of mean squared error. 

3) The unweighted sample mean has low 
variance, but poor mean squared error when 
the weighted and unweighted averages of the 
population stratum means are divergent, 
leading to a bias which persists as the 
sample size increases. This is a typical 
example of a bad estimator for sample 
surveys. 

4) Methods which use the population stratum 
sample sizes (M1 and PS) are markedly 
superior to methods which do not. Thus 
this information should be used if known. 

5) The model-based shrinkage estimators M1 
and M2 display bias, particularly for the 
non-normal populations. However the bias 
of these methods declines as the sample 
size increases. In terms of mean squared 
error these methods compare favorably with 
methods motivated by design unbiasedness, 
in both normal and non-normal populations. 
The value of shrinkage to the unweighted 
mean appears greater when the stratum 
proportions pj are known (MI~PS) than 
when they are estimated (M2~HK). 

6) The two generalized difference 
estimators, SA and HK, perform similarly in 
simulations, with HK marginally superior. 

4. Extensions to Include Covariates. 

A fuller version of this paper (Little, 
1981) outlines extensions of the modelling 
approach to include covariate information. 
Again the key aspect is to model heterogeneity 
of the population across subclasses indexed by 
the probability of selection. The chosen model 
for a single covariate is 

Yij ~ind G( ~(j+ ~jxii , ~- 
~ j ~ind G(~ , r~), 

~ j ~ind G( ~, [~), 

2), 
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where xij is the value of the covariate for 
unit i in subclass j, preferably centered so 
that the population mean of x in stratum j is 
zero. This model also leads to estimates of Y 
which are asymptotically design unbiased as the 
sample size increases. 

5. Conclusion. 

In theory the role of the sample design in 
the model-based approach to survey inference 
appears limited. The sampling distribution does 
not form the basis for inferences, and provided 
the sampling design does not lead to selection 
bias (is ignorable, in the sense discussed by 
Rubin, 1976), the sampling distribution drops 
out of the likelihood function. Nevertheless 
the sample design is extremely important to the 
applied modeller, who never has a true model on 
which to base inferences. Firstly, probability 
sampling is needed to ensure that the 
model-based analysis is not sensitive to unknown 
biases that cannot be detected in the observed 
sample. Secondly, the chosen model needs to be 
sensitive to aspects of the design which will 
lead to bias if the model is incorrectly 
specified. In our particular example, the fact 
that unequal selection probabilities are adopted 
in different subclasses of the population means 
that heterogeneity of the population between the 
subclasses must be adequately modelled, to avoid 
serious misspecification error. We believe that 
the study and adoption of such models will 
eliminate the need for compromise estimators 
such as those in the generalized difference 
class. These procedures~ although ingenious, 
are not appealing to the strict modeller since 
they include estimators (such as SA)which are 
not efficient under a well defined model of the 
popu lat i on. 
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TABLE 1 
STRATIFIED PROBABILITY SAMPLING SCHEME 

Stratum 

1 2 3 4 5 6 7 8 9 10 A l l  

P opu I at i on 
Size 20 40 40 100 200 200 200 300 300 600 2000 

= Pr 
( se lec t i on )  0.40 0.24 0.16 0.08 0.05 0.04 0.03 0.03 0.02 0.133 .04 

expected 
sample size 8 9.6 6.4 8 10 8 6 9 6 8 79 
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TABLE 2 
MEAN BIAS (xlO00) FROM 1000 SAMPLES 

Estimator 

Population PS M1 FK M2 SA HT YM 

1N1 -0.56 -7.46 -0.95 -5.03 -3.22 -4.02 -28.19(*)  
IN2 -3.24 - i . i i  -0.09 -3.43 0.09 1.76 -99.89(*)  

4NI 4.80 8.03 -1.88 2.a2 0.84 0.64 4.45 
4N2 1.44 77.73(*) 8.85 75.84(*) 6.77 4.06 204.44(*) 

IL l  0.51 36.24(*) 6.74 38.37(*) 4.89 0.71 205.28(4) 
1L2 -3.09 -5.97 -5.57 -10.3L ~ 8.58 -6.48 -139" 75(*) 

4L1 9.05 41.14 3.26 37.08 2.70 0.97 124.13 
4L2 -0.04 56.56(*) 0.60 53.01(*) 2.77 1.58 151.30(*) 

1S1 0.69 55.61(*) 2.03 50.44(*) 4 . 4 5 - 3 2 . 0 9  322.84(*) 
IS2 1.72 -64.26(*)  -8.95 -63.43(*)  -2.75 27.96 -408.01(*)  

4S1 4.72 -51.64(*)  4.59 -46.25(*)  3.81 -5.44 -136.27(*)  
4S2 -2.46 23.38(*) 1.6] 22.57(*) 1.42 -8.98 38.06(*) 

Mean absolute bias 2.69 35.76 3.76 34.02 3.52 7.89 155.22 

*Starred values were s i g n i f i c a n t l y  d i f f e ren t  from zero at the 0.0001 level .  Al l  other 
other values were not s i gn i f i can t  at the .05 level .  

Population PS 

1N1 -13.5 

1N2 -22.4 

4N1 7.3 

4N2 -9.9 

IL l  -13.9 

IL2 -16.9 

4LI 3.4 

4L2 -2.1 

ISI -44.2 

IS2 -49.6 

4S1 -13.0 

4S2 -10.2 

TABLE 3 
ROOT MEAN SQUARED ERRORS x(lO00) 

FROM 1000 SAMPLES 

Estimator 

MI H< M2 SA 

-17.0 10.8 11.2 10.3 

-25.3 14.6 14.2 14.4 

-7.1 5.5 -3.6 5.2 

-8.8 -4.9 1.2 - i  .5 

-17.7 -2.5 - i . I  2.4 

-21.7 4.4 4.2 4.2 

- I 0 . I  0.8 -5.4 2.3 

-8.2 -2.1 -3.7 -1.7 

-41.1 -29.2 -25.4 -24.3 123.7 

-45.2 -32.0 -26.5 -25.0 137.4 

-22.1 -15.2 -19.7 -14.8 94.8 

-24.9 -11.9 -18.8 - I I . 9  108.3 

Column Mean RMSE 159.4 150.5 

(s.d.)  (9.2) (11.8) 

Row mean 
HT YM RMSE 

11.6 -13.4 181.1 

15.8 -11.3 204.3 

4.8 -13.1 143.0 

-7.6 31.5 179.7 

-0.4 33.3 187.4 

13.5 12.2 178.3 

2.9 6.1 160.4 

4.4 13.4 174.4 

39.5 253.5 

39.8 307.3 

- I I . 0  204.4 

-30.5 174.9 

181.1 180.8 185.4 295.8 216.9 

(24.0) ( 2 9 . 8 ) ( 2 6 . 5 ) ( 1 8 5 . 4 ) ( 9 1 . 5 )  

*Root mean squared errors (RMSEs) appear in the row and column margins mul t ip l ied by 
i000. The body of the table presents percentage deviations of the RMSEs from the row 
mean 
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