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INTRODUCTION

Large statistical surveys often require linear
estimators with integer weights. Integer weights
are required because of the survey data processing
system used to tabulate the data. Integer weight
linear estimators reduce cost by simplifying
numerically and operationally the computation of
survey estimates. Rarely, however, will an
estimator in a complex survey have weights which
are naturally integers. To achieve a gain in
data processing efficiency, noninteger constant
weights must be converted to integer weights.
Converting the weights reduces survey data
processing costs; but, it increases the total
survey error of the estimator by adding a non-
sampling variance or a nonsampling bias. This
conversion is done by making the weight an integer
valued random variable. The new estimator 1is
a linear estimator with integer rtandom variable
weights. This is a special case of the gereral
problem of having a linear estimator with random
variable weights. An alternative to integer
weighting is to reduce sample size and use the
money saved to develop a data processing system
which can handle real number weights.

A major argument given for using integer
weights is that they simplify tabulation by
eliminating the need to round frequency tables for
count data. For example, Table 1 gives a
frequency distribution of a sample characteristic
--hired farm labor--from the 1978 Census of
Agriculture.

Table 1. Number of Farms Reporting Hired Farm
Workers in Charles County, Maryland, in 1978
Census of Agriculture

Characteristic Number

Farms 369

Farms with

1 worker 55
2 workers 57
3 or 4 workers 108
5 to 9 workers 93
10 workers or more 56

If noninteger weights were used to produce
Table 1, the total number of farms, and the
number of farms in each frequency class would
be rounded to an integer. The rounded total
number of farms generally would not be the
same as the sum of the rounded counts for each
individual frequency class. Integer weights
would, on the other hand, always give a total
count of the number of farms which agrees with
the sum of the counts from a set of mutually
exclusive, exhaustive classes of farms.

A second argument given for using integer
weights 1is that integer weights along with
integer data values allow the use of integer
arithmetic in computer programs. This increases
computational efficiency and reduces the computer
cost.

A special case of the integer weight linear
estimator problem has been studied in connection
with the 1970 and 1980 Census of Population and
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Housing. Hanson (1969) and Thompson (1978)
considered a restricted situation and studied the

problem. No general solution to the problem was
found.
BACKGROUND
Given a population of elementary units, U,
with values of a characteristic, X, then a

population parameter, § , is a function of the

population characteristics:

o = f (X)

T

u = (U,I,UZ,...,Ui,...,UN)
x' =

(XgXpyeeesXiyeensXy)

A sample of n population units, u, is selected
fram the population U using a probability sampling
plan. The data collected on sample units, u, are
given by the observed value vector, x. The
general form of the linear estimator of the
parameter,6, which has weights which are constant
values is given by (1). The expected value and
variance of the estimator (1) is given in (2) and
(3), respectively. The "best" linear_unbiased
estimator, BLUE, of the parameter,®, is an
equation of the form of (1).

] = ﬂTi (1
= T
E(8) = EEX (2)
z T
Oé‘ = _W_ix!l_ (3)
where
) = The estimator of the parameter 6.
W = An n by 1 vector of constant weights of
the vector of sample observations x.
T
W= (W1,W2,...,Wi,...,wn)
X = An n by 1 vector of sample observations
of the characteristic x on the vector of
sample population units, u.
L
x = (X1’X2""’Xi""’xn)
1 = An n by 1 vector of expected values of
the sample vectar x.
T
By ® (i sl peeesty geees )
1 2 i n

An n by n variance-covariance matrix

of the sample vector x. The variance-
covariance matrix is determined by the
survey population and the sample design.
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There are an infinite number of possible linear
estimators for the parameter 6. In most surveys
there will be a preferred estimator, often the
BLUE, for each parameter of a characteristic. In
many surveys the same weights will be used for all

E(x-p ) (x-H,



linear estimators for all characteristics of a
parameter.

RANDOM WEIGHT ESTIMATOR

If the weights associated with the estimator
(1) are random variables instead of constants,
a linear estimator with different properties is
produced, Random variable weights change the
statistical properties of an estimator of 6. The
new estimator with random variable weights is
given in (4). A special case is the situation of
a random variable with integer values.

The statistical characteristics of the random
weight estimator (4) depend, like the constant
weight estimator (1), on the sampling plan and
survey population. In addition the statistical
characteristics of the estimator (4) depend on
the weighting scheme used to produce weights.
When weights are created using a probability
weighting scheme statistically independent of the
sample values, x, the expected value and variance
of the estimator (4) are given in (5) and (6),
respectively. The bias of the random weight
estimator as an estimator of the expected value of
the constant weight estimator is given in (8).

T

§ = WX (4)
E(0) = ETWEX (5)
2 _ T T (6)
o4 = Ewixﬁw * tr(ixiw> * Exiwyx
2 2 T
o5 S ) ix (1, +#)
T
+ tr(ixiw) + B ing
when , = W
2 2 T ¢
% o+ te (L1~ 2 L @)
where
6 = The random weight linear estimator of
the parameter 0.
W = The vector of random variable weights
of the sample units u.
T
W = (w1,w2,...,wi,...,wn)
H, = The expected value of the weight
vector w.
uT = (4 ,u Y Ho)
Yy = WL VLIRS NIRRT
2 1 2 i n
gg = The variance of the constant weight

estimator when the random weight
vector is an unbiased estimator of W.

The n by n variance-covariance
matrix of the random weight vector,
W,

beos B ey

The expected value and variance of the random
weight estimator are developed in appendices 1 and
2. The statistical properties are the same for
integer and noninteger value random variables.
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Since the random weight linear estimator is
used as a replacement for the constant weight
estimator, the bias of the random weight estimator
compared to the expected value of the constant
weight estimator is given in (8).
= E(8) - £(®)

BiasEé(g) (8)

T
- (_Ew-!v.) ‘EX

The random weight estimator and the constant
weight estimator have the same expected value when
the random weight vector is an unbiased estimator
of the constant weight vector.

ESTIMATION OF THE SAMPLING VARIANCE

The true variance of the random weight esti-
mator (4) is given in (6). In estimating the
variance (6), the expected value and the variance-
covariance matrix of w are known.

When w is an unbiased estimatar of W, an
unbiased estimator of the random weight
variance estimator (6) is given in (9).

2 A2 T

93 =05 +Xx twﬁ (9)
ygere: 2

o3 = An unbiased estimate of o

H, = The n by 1 vector of expected values

of random weight vector, w.

The n by n variance-covariance matrix
of random weight vector, w.

e
=z
n

| %
"

The n by 1 vector of sample values.

= An unbiased estimator of the variance
of the constant weight estimator.

Q>
D@ N

The proof is given in Appendix 3.
SIMPLE RANDOM SAMPLING WITHOUT REPLACEMENT

The general random weight estimator (4)
can be used with any sampling plan, any linear
estimator, and any weighting scheme. However,
when either the sampling plan or.the weighting
scheme have regular statistical properties the
form of the estimator can be simplified. Regular
statistical properties refers to statistical
characteristics such as either all weights or
all variables having the same expected value and
variance or the covariance being the same for all
pairs of weights or all pairs of variable values.
The simplified form of the estimator for a basic
sampling plan or weighting scheme can be used to
illustrate the general properties of the random
weighting estimator.

When a probability sample is selected using a
simple random sample without replacement sampling
plan, the constant weight estimator and the
random weight estimator of the population total

are given in (10) and (11), respectively. The
constant weight estimator is the best linear
unbiased estimator of the population total. The

expected value of the two estimators (10) and (11)
is the population total whenever the random
weight vector, w, is an unbiased estimator of the
constant weighf_vector,.ﬂ.



Simple random sampling without replacement
produces a variance-covariance matrix of the
sample vector that is a pattern matrix of the
form given in (12). The regular form of the
variance-covariance matrix changes the expression
of the variance of the two estimators (1) and
(4). The variance of the constant weight
estimator is given in (13).

When the weighting scheme selected for
constructing weighting is regular--all weights
have the same expected value and variance, and
the covariance between any two weights is the
same--the variance of the random weight estimator
can be simplified. When the random weight w is
an unbiased estimator of W, the variance of the
random weight estimator is given in (14). The
expression of the variance of the random weight
estimator (14) shows the effect of random
weighting on the total variance of the estimate.

Relative efficiency can be used to compare
the constant weight estimator (10) and the random
weight estimator (11) of a population total.

The relative efficiency of the two estimators
(15) is expressed in terms of the population
size, the sample size, the relative variance of

the population, the relative variance of the
random weight, and the correlation between random
variable weights.

T

wsrsl-5

(10)

1
Xsrs, constant

— (11)

Xl
srs, random

ix, STS -

E1 +1/n) I - (1/n) J:Ioiﬁz)

2 1.2
02, = nuw(N—n)N 10X (13)
srs, constant
-
when Ew = W, .Jj and iw = )‘£1-pw)l+pw3 oy
o2 = ol o l(ul +07)(14)

srs, random srs,constant

2 2 2 _q
+ n{n-1) pwcw(uX - GXN )

Relative
At . 1
Efficiency ( érs, random'xérs, constant) (%)
Oj, /021
srs, constant Xsrs, random
-
o -1y-2 LIV I
= LJ+V;N(N—n) VT n=1) v, (VN
Where

'

X ; .
srs, constant An unbiased estimate of

population total under simple

random sampling with constant
weights,

t

X . .
srs, random An unbiased estimate of

population total under simple
random sampling with random
weights.

609

The constant weight expansion

Srs factor for simple random
sampling.
J = An n by 1 vector of 1's.

T
J

= (1,1,.00,1)

The n by n variance-covariance
matrix of the sample vector x
when x is selected using a
simple random sampling without
replacement sampling plan.

ix, srs -

I = An n by n identity matrix.
J = An n by n matrix of 1's.
Py ~ Lorrelation between random weights when
the correlation between all pairs of
weights is the same.
2
Vx = The relative variance of the population
characteristic X.
2 2 2
VX = O>< / ux
2
Vw = The relative variance of the random
weight.
2 2 2
Vw = Ow / pw

Table 2 shows the relative efficiency of the
integer valued random weight estimator and the
constant weight estimator for simple random
sampling without replacement. The integer valued
random weight estimator uses the weighting scheme
described in equation (16). The correlation
between weights assigned to different sampling
units 1s zero. Figure 1 shows graphically the
relative efficiency of the two estimators over a

range of values. The variability of the
population surveyed, V_, has a large effect on
the relative efficiency of the two estimators.

Table 2. Relative efficiency of integer valued
random weight and constant weight estimator of
a population total for simple random sampling
without replacement for different weights and
different populations

2

Population Relative Variance--V
Weight x
5 1.0 2.0 4.0
1.5 .6000 .7500 .8571 L9231
2.5 .8823 L9375 L9677 .9836
3.5 .9459 L9722 .9677 .9929
4.5 .9692 .9844 .9924 L9960
5.5 .9802 .9900 .9950 L9975
10.5 L9950 L9975 .9987 .9994
15.5 .9978 .9989 .9994 .9997
20.5 .9988 L9993 .9997 .9998




Figure 1. Relative efficiency of interior weight
and constant weight estimator for sample
random sampling without replacement.
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The random variable weight used is the one
described in equation (16) in the example below.

EXAMPLE

Integer weighting is frequently used in major
statistical sample surveys and censuses. Integer
weighting was used in the estimator for the 1978
Census of Agriculture Area Sample.

Sample Design--The sample design for the 1978
Census of Agriculture Area Sample was a
stratified sample with a single systematic sample
selected within each stratum. A sample unit is
an area segment. Each segment was canvassed and
all farms in the segment enumerated. The
estimator of the variance assumes the population
is randomly ordered. The sample is considered a
simple random sample without replacement. The
sample within each stratum was selected with a
constant rate for each state. The sampling
interval or expansion factor was generally not an
integer. For the state of Delaware, the
population size, number of samples selected, and
expansion factors (sampling interval) for each
stratum are given in Table 3.

Table 3. Stratum Characteristics for Delaware
in the 1978 Census of Agriculture Area Sample
Number of Segments
Expansion
Stratum Populat ion Sample Factor
h
Nh n, Wh
1 207 45 4.6
2 83 20 4.13
3 92 9 10.13
4 42 2 21.00
5 231 3 76.79
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Weighting--Integer weights were assigned
independently to each segment. For each sample
unit--an area segment--a continuous uniform (G,1)
random variable was selected. If the random
number selected was less than or equal to the
noninteger part of the segment weight, the weight
was rounded up. If the random number was greater
than the integer part of the random weight, the
weight was rounded down.

The integer random variable weight was of the
form given in (16). The expected value and the
variance of the random variable is given in (17)
and (18). The variable € is a Bernouli, zero or
one, random variable with an expected value equal
to the noninteger part of the weight.

W = [ﬁ] + P
W= [H] + € (16)
Ew = W + P (17)
2
OW = P(1-P) (18)
where
Dﬂ = Largest -integer smaller than W.
- 2
€ (P,Ow)
€ = 1 or 0,

For example, when a weight is 4.13, the remain-
der is .13. If the selected random number
associated with the segment is .72, the weight
is rounded down to the integer 4. If the
selected random number is .1, the weight is
rounded up to the integer 5. The expected value
of a weight is 4.13.

Estimators--The constant weight estimator of a
population total in the 1978 Census of Agriculture
Area Sample is given by equation (19).

The integer weight estimator for Delaware is
given in (20). The integer weight estimator (20)
and the constant weight estimator (19) were
compared for Delaware for four major character-
istics--number of farms, land in farms, cropland
harvested, and sales. The relative efficiency
of the two estimators was calculated. The
difference in the estimate and a comparison of
their sampling variances are given in Tables 4
and 5.

5 n% wgs
o v
X = L ) W X (19)
constant hetl so1 hs o1 hsf
;L
"
X = A w X (20)
integer hot soq hs o hsf
where
Xg;nstant = Estimate of the total value of
characteristic x in Delaware using
constant weight.
igteger kLstimate of the total value of a

characteristic x in Delaware using
integer valued random weights.



h = Stratum.
s = Segment.
f = Farm.
n = Number of segments in stratum h.
n = Number of farms in segment s of
h
stratum h.
W = Weight associated with segment s
hs .
in stratum h.
W = Integer weight associated with
hs
segment s and stratum h.
Ewhs = th

The estimator (19) is the best linear unbiased
estimator of the population total of census farms
not included on the mail list in Delaware.
The data processing system used in the 1978
Census of Agriculture Area Sample required that
each expansion factor be an integer. ©Since the
sampling interval used to select the sample was
not an integer, the true expansion factors for
each farm enumerated were not integers. Each
noninteger weight was converted to an integer.
The estimator (20) is the linear estimator using
these integer weights to estimate the population
total.

For four selected characteristics--number of
farms, land in farms, cropland harvested, and
sales-~in the state of Delaware, estimators for
the two estimators are close. The relative
efficiency of the integer weight and constant
weight estimator varies by between .9698 and
.9877. Integer weighting increased the variance
by 1.2 to 3.0 percent.

Table 4. Comparison of Estimated Delaware Totals
for Selected Characteristics in 1978 Census of
Agriculture Area Sample for Constant Weight and
Integer Weight Estimates

r
Estimates of Totals[ Difference
Charac- Constant |Integer
teristic Weight Weight Absolute | Relative
Estimator{Estimator
X' x" d=x" - x';100d +x'
i
All Farms 232.9! 234 +1.1 +0.47
Land in 9314.8? 9,399 +84.2 { +0.90
Farms .
(Acres) E
Cropland 3718.8 3,661 -57.8 { -1.55
Harvested
(Acres)
Sales 4,660,864.314,755,6011+94,763.7 | +2.03
(Dollars)
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Table 5. Comparison of Variances of Constant

Weight and Integer Weight Estimators for
1978 Census of Agriculture Area Sample in
Delaware
Absolute Variance Relative
Efficiency
Charac- Canstant Integer Integer
teristic Weight Weight Weight To
Estimator Estimator {Constant
Weight
Estimator
All Farms 1,351 1,393 .9698
Land in 8,377,831 8,481,810 .9877
Farms
(Acres)
Cropland 1,113,132 1,146,533 L9709
Harvested
(Acres)
Sales 1,915,939x10° | 1,956, 281x10° .979%
($1,000)
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APPENDICES

Appendix 1 gives a proof of the covariance
between the product of two variables. Appendix 2
gives a proof of the variance of the random
welght linear estimator. Appendix 3 proves that
if there is an unbiased estimator of the variance
of the constant weight estimator then there is an
unbiased estimator of the variance of the random
weight estimator.

Appendix 1

Let x and y be statistically independent random

vectors with the following expected values and
variance-covariance matrix.

X = (X1,x2,...,xi,...,xn)
Y = (y1’)’2’---a)’iy---:yn)
T T
Ex' = B °F (ux IR IRTL N 1 )
il 2 1 n




T By Appendix 1 since w. and x. are independent
E—XT = = (u s geesl  geeayl ) Y nee 1 1 P
Ey v My, Yy Y,
2 _ g (2 o? o+ 2e? 4g o2 )

T % 12=1 o Ty T B Oy

fo = B o)’ = (o, D)
i nn

T * %tg(“xiux.Owlw.+uwiuw.cxlx +0wiw c i

);=E(-><->=<(o ) SRR
Y =y Ty )’i)’J

Rearranging th d
The random variable zi = xiyi has the g1ng e ordet

n n
following properties: 2 -
UO (.21 .Z1uw.uw.0xAx.)
£z, = Ex.y. =ExEy = [ p =i 1=y
i i1 17 X, Y. z.
i7i i n n
+ (1 Tu o
o, , = E(zi—Ezi)(zj—Ezj) i=1 j=1 Xixj wiwj
1
E( E ) E ) 7oy
P RO B0y By P D Do)
i=1 j=1 71 7§ "ivj
= E(x,y.x.y.)-Ex.y.Ex.y.
( i’i JyJ i’ JyJ 2 T ¢ (i iw) Ti
% = By * t0 Ly +-Ex wEx
= Exiijyiyj—ExiEijyiEyj
Appendix 3
= a . .
(Gx.x.+ExiExj)( y.y.+Ey1EyJ)
1] 177 If x and w are statistically independent random
vectors
-ExiEijyiEyj
X~ (ugs ix) o iw)
= Ex.Ex.o +y.Ey. o +0 o
I3 Yy.y, Y17 XX, X.x. Y.y,
17 1y 1J7°173 Then by Theorem 1, Sector 25, Searle (1971),
= W Mg +uopo 40 O
£ =
when 1 = j X iw§ tr(iwiw) +-ExiWH*
2 2 2 2 2 2 2
Gx_y_= “x,cy_+uy,0x,+0x,0§‘ (21) When Sg is an unbiased estimator of the variance
i’i i7i 717 i
~ A2
of 6 , then % will be an unbiased estimator
Equation (21) is the variance of the product of 8

i 0
two independent random variables derived by L.A. of the variance of ©.

Goodman (1960).

e Tiw-
Appendix 2 0 TUR X4
0 = WX = LWy = Eog + Ex iﬂé
i=1 2] Al
N n , nn
o5 = Lo 4llo 2 i i
8 ; 22
io1 "X iz WX wjxj Eoe 5+ t( ; x) + uq'p
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