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1. Introduction

The model discussed in this paper was motiva-
ted by the following problem. Assume a finite
population which consists of N elements. It is
known that w, of the elements have a particular
characteristic and N-wg of the elements do not.
The desire is to change the number of elements in
the population which have the particular
characteristic while keeping the overall
population size, N, constant. This change may
mean a decrease or an increase in wy. Changes
are accomplished by randomly selecting one
element at a time and replacing it with a similar
or dissimilar element.

The model presented is a generalization of the
Ehrenfest Model (1907) and is appealing because
at each trial it leaves the choice of replacement
to chance while at the same time achieves a
predetermined goal concerning the desired
proportion of elements possessing the
characteristic of interest.

In Section 2, a brief overview of relevant
modifications of the Ehrenfest Model are
presented. In Section 3, we present a new
sampling scheme for the establishment of goals
which is a further modification of the Ehrenfest
Model. Numerical examples illustrating the new
sampling scheme are given in Section IV.

2. The Ehrenfest Model and Some of Its
Modifications

One model which can be used to address the
general problem described in Section 1 is the
Ehrenfest Model. In this section, we briefly
review the Ehrenfest Model and some of its modi-
fications as discussed by Johnson and Kotz
(1977).

The basic Ehrenfest Model is presented under
Model 1.

Model 1. Assume an urn with wy white
balls and by black balls (wg+bg=N). At
each trial, a ball is drawn at random.

If it is white, replace it by a black
ball with probability 1.

If it is black, replace it by a white
ball with probability 1.

After the nth trial, let Wn denote the

nunber of white balls in the urn. It can
be shown that as n»e<, the limiting
distribution of Wn has a binomial
distribution with parameters N and 1/2.
One can also show that
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A slight modification of Model 1 is given by
Johnson and Kotz (1977) which permits some
randomization before each replacement. This
model is summarized under Model 2.

Model 2. As in Model 1, we have an urn

with wy white balls and by black balls.
At each trial a ball is drawn at random.

If it is white, replace it by:
a black ball with probability a.
a white ball with probability l-a.

If it is black, replace it by:

{a white ball with probability o.

a black ball with probability l-a.
(0<axl)

As in Model 1, wn is the number of white

balls in the urn after the n'" trial. It
can be shown that as n»e, the limiting
distribution of W_ is again binomial with
parameters N and “/o. Thus the limiting
distribution of W does not depend on a.
We also note that
n
EM ) = 3+ (- D -EY (3)
% Zn
f-0-8) (a)
2n

e - - 2T

Bl =

Other modifications exist in the Titerature
and are discussed by Johnson and Kotz (1977).
We make only brief mention of some of them. One
model was presented by Karlin and McGregor
(1965). They assume an urn with wy white balls
and by black balls. Ti’ the time between the

(1'—1)th trial and the ith trial, is a random
variable which is independent of Tj (where i#j)
with distribution given by P(Ti>t) = Mt
(x,£>0)vi. Under these assumptions N .y,

the number of trials completed in a fixed time T,
is Poisson with parameter At. As each trial
occurs, the experimenter proceeds as under Model
2. If W_ is the number of white balls in the

urn after time 1, one can show:
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The Karlin and McGregor (1965) model differs
from models 1 and 2 because the number of trials
is a random variable. In models 1 and 2, the
experimenter has control over the number of trials,
whereas in the Karlin and McGregor model, the
experimenter has control over the time.



Another modification of the Ehrenfest Urn
Model is given by Vincze (1964) where before
each trial, the experimenter decides with
probability m not to draw a ball. Thus after n
trials, the effective number of selection is a
binomial random variable with parameters n and
1-m.

The Ehrenfest Model and some of its
modifications have found application in areas
incTuding heat exchange problems and genetics.

The modification which we consider in the
next section is a simple extension which is
consistent with the spirit of models 1 and 2.

3. A New Sampling Scheme for the Establishment

of Goals.

As in models 1 and 2 discussed in the pre-
vious section, we assume an urn with wy white
balls and by black balls. The total number of
balls {N=wy+by) in the urn is constant.

At the first trial, select a ball at random.

If it is white, replace it by:
{a black ball with probability a,.

a white ball with probability 1l-q,.
If it is black, replace it by:

a white ball with probability o, .
{a black ball with probability l-a,.

Below we define the random variables Xn’ N1s
n2, and wn which will be used in finding E(wn),

the expected number of white balls in the urn
after n trials.

Let
X, be the number of white balls selected
on the first draw,
n, be the number of white balls replaced

if a white ball has been selected, and

n, be the number of white balls replaced
if a black ball has been selected.

It is easy to see that X, n;, and n, are all
Bernoulli

l-a,, and o, respectively. Further, let

W, be the number of white balls in the urn

after the first trial and

B, be the number of black balls in the urn
(Note By=N-W,.)

after the first trial.

We observe that

W= wy -

number of white balls which
were replaced by black balls
+ number of black balls which
were replaced by white balls
= wy = X (I-ng) + (1-%X))n, (7)
Since N = wy + bg = Wy + By, we have
B, = by + X {l-ny) - (1-X{)my (8)

In matrix form, we have
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Assuming independence between the random variable

random variables with parameters wQ/N,
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¥, and the random variables n, and nj, we have

Wy wg ] [-(1-E(ny))  E(n)|[ Elx,)
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Similarly, for n=2, we have
Wy = Wy - X% (1-M) + (1-X)N,
and BZ = Bl + Xz(l‘nl) - (].—Xz)nz

In matrix form, we have
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In general after the nth trial, we have

wn wn-l

—(1-n1) Ny Xn

Bn Bn-l (I-ny)  -my 1'Xn

where X the number of white balls selected on

the nth draw, has a Bernoulli conditional distri-
bution with parameter W _,/N and W_is the number

of white balls in the urn after the nth draw and
randomized replacement. It follows that

W n
1
B, E[Bn]= {1 +N/.\} Ko

The formula (11) gives the expected number of
white balls {and black balls) that one can
expect to have in the urn after n trials.

Thus the sampling scheme is a tool for the
attainment of certain goals which one may want
to accomplish over time. The tool is appealing
because it leaves the choice of replacement at
each trial to chance while at the same timeeit
achieves a predetermined goal concerning the
desired proportion of white balls.

(11)



Note that the new sampling scheme is a
generalization of models 1 and 2. Recall that
as neeo, E(W,) + N/2 for every value of a. This
suggests that the experimenter has severely limit-
ed control over the achievement of predetermined
goals under models 1 and 2. It also suggests
that if a goal is achieved at trial n-1, one
will need to constantly vary a in order to
maintain the desired proportion of white balls
in the urn.

The sampling scheme which we have presented
gives the experimenter greater control over the
rate at which a goal is achieved by having him
choose @; and @, instead of, say simply a.

Given that we have W 4 white balls at
trial n-1, one can find the conditional distribu-
tion of W,[W,_  from the following table:

"o ‘ W11 Hn-1 Hp-1*1
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N N N

Then we have

o Lty
E(wnlwn_l) (1 N )wn_1 + o, (12)
and
3a, +a
\ ' = (22172
Jar(wnlwn_l) ( . )wn_1 (23)
_\ _ (Nt
+ (o, zun_l)(l a) - ( " ) W

When the desired goal is achieved, it can be
maintained on the average by selecting new a; and
a, as indicated below. Assume that the desired
goal is achieved on the (n-1)th trial and that

it is Wk _q. If we want o} and ap which will give
E(wn) = w;_l, we take (12) and obtain

* = L A T

W1 (1 N )wn—l %

Solving for a; gives

a = N - 1](!2 (14)
W-1

Thus to maintain the goal achieved on the (n-l)th

trial, take a} = a, and

a) = (E"— - 1)og. (15)
n-1

In practice in order to establish the stated
goal of E(wn), for given N, wy, and n, the
experimenter chooses a; and o, which will satisfy
(11). Once that goal is achieved, it is main-
tained by choosing a; and oy according to (15).
Some numerical examples are given in the next
section.

Further efforts are being made to find o,
which will give the minimum n for o = a1 + d,
where d is some positive real number such that
oy ~ o) <dand ay > ay.

4. A Numerical Example

Blatz (1968) obtained a general expression
for any integer power of a 2x2 matrix

N

He showed that for any positive integer n,

n.n n-1 n-1
A=A A Y
e e e P YO W (16)
)\1->\2 Ay =Ag

where Ay and A, are eigenvalues of M and I is the
2x2 identity matrix. Applying (16), one can show
that the matrix

1
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is equal to
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Thus from (11), we have
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n’ A,
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Consider an urn with wy = 90 white balls and by
= 10 black balls (N=100). We first assume that
the experimenter wants to achieve a goal of
10L=E(wn)) white balls after n=500 trials. To

determine oy and @y which will give the result on
the average, we choose values for o; between 0
and 1 and solve (17) for corresponding values of
ay. The results are indicated in Figure 1 for

n=500. Similar results are also given for
n=1,000 and n=1,500.
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From Figure 1, we observe for n=500, that
one pair that will accomplish the stated goal
on the average is (a},0) = (.6,.043). For
fixed o;, as n increases, we observe that o
increases. Note for n=500, that if o, < .4,
then there is no value of @, which will
accomplish the goal on the average. Similar
results are true for n=1,000 and @,<.2 and
for n=1,500 and a,<.1. This is not surpris-
ing when one considers the definition of o,
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and a, and the stated goal.

In"Figure 2, we consider the same initial
urn conditions, but the goal is 25 white balls
after n trials. As in Figure 1, we take
n=500; 1,000; and 1,500. Similar results are
given in Figures 3, 4, 5, and 6 for the goals
of 50, 75, 90 and 95 respectively.

Generalizations to urn models with more

than two categories appear to be straight-
forward.
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