Monroe G. Sirken, National Center for Health Statistics

INTRODUCTION

Given a sequence of N positive integers

$$
s=\left\{s_{1}, \ldots, s_{\alpha}, \ldots, s_{N}\right\}
$$

The inverse of the harmonic mean is

$$
\frac{1}{N} \sum_{\alpha}^{N} 1 / s_{\alpha}
$$

and the inverse of the arithmetic mean is

$$
\left(\frac{1}{N} \sum_{\alpha}^{N} s_{\alpha}\right)^{-1}=1 / \bar{s}
$$

Jensen's inequality states that

$$
\frac{1}{\mathrm{~N}} \sum_{\alpha}^{\mathrm{N}} 1 / \mathrm{s}_{\alpha} \geq 1 / \overline{\mathrm{s}}
$$

In this paper, we prove the identity

$$
\frac{1}{\mathrm{~N}} \sum_{\alpha}^{\mathrm{N}} 1 / \mathrm{s}_{\alpha}-1 / \overline{\mathrm{s}} \equiv \frac{1}{\mathrm{~N}} \sum_{\alpha}^{\mathrm{N}} \mathrm{~s}_{\alpha}\left(1 / \mathrm{s}_{\alpha}-1 / \overline{\mathrm{s}}\right)^{2} .
$$

PROOF OF THE IDENTITY

$$
\begin{aligned}
& \frac{1}{N} \sum_{\alpha}^{N} s_{\alpha}\left(1 / s_{\alpha}-1 / \bar{s}\right)^{2} \\
= & \frac{1}{N} \sum_{\alpha}^{N} s_{\alpha}\left(\frac{1}{s_{\alpha}^{2}}-\frac{2}{\bar{s} s_{\alpha}}+\frac{1}{\bar{s}^{2}}\right)
\end{aligned}
$$

$$
=\frac{1}{N} \sum_{\alpha}^{N} \frac{1}{s_{\alpha}}-\frac{2}{\bar{s}}+\frac{1}{\bar{s}^{2}} \cdot \frac{1}{N} \sum_{\alpha}^{N} s_{\alpha}
$$

$$
=\frac{1}{\mathrm{~N}} \sum_{\alpha}^{\mathrm{N}} \frac{1}{\mathrm{~s}_{\alpha}}-\frac{2}{\bar{s}}+\left(\frac{1}{\mathrm{~s}^{2}}\right) \overline{\mathrm{s}}
$$

$$
=\frac{1}{\mathrm{~N}} \sum_{\alpha}^{\mathbb{N}} 1 / s_{\alpha}-\frac{1}{\mathrm{~s}} .
$$

EXAMPLE

In this example, a random variable T is defined such that its variance is equal to the
difference between the reciprocals of the harmonic and arithimetic means.

Given a population

$$
I=\left\{I_{1}, \ldots, I_{\alpha}, \ldots, I_{N}\right\}
$$

containing N persons each of whom has $s_{\alpha} \geq 1$ records in file

$$
R=\left\{R_{1}, \ldots, R_{j}, \ldots, R_{M}\right\}
$$

which contains M records, where

$$
M=\sum^{N} s_{\alpha}
$$

Let the indicator variable

$$
\delta_{\alpha j}=\left\{\begin{array}{l}
1 \text { if the } R_{j}^{\text {th }}(j=1, \ldots, M) \text { record } \\
\text { belongs to } I_{\alpha}(\alpha=1, \ldots, N) \\
0 \text { otherwise. }
\end{array}\right.
$$

and it follows that

$$
M=\sum_{\alpha}^{N} \sum_{j}^{M} \delta_{\alpha j}
$$

and

$$
N=\sum_{\alpha}^{N} \sum_{j}^{M} \delta_{\alpha j} / s_{\alpha} .
$$

A record $R_{\mathbf{j}}(j=1 \ldots, M)$ that belongs to $I_{\alpha}(\alpha=1, \ldots, N)$ is selected at random from file R. Iet the random variable

$$
T=\sqrt{\bar{s}} / s_{\alpha}
$$

where

$$
\bar{s}=\frac{1}{N} \sum_{\alpha}^{M} s_{\alpha}=M / N
$$

It follows that

$$
E \text { (T) } \quad \frac{1}{M} \sum_{j}^{M} \sum_{\alpha}^{N} \delta_{\alpha j}\left(\overline{\bar{s}} / s_{\alpha}\right)=\sqrt{\bar{s}} \frac{N}{M}=1 / \sqrt{\bar{s}}
$$

and

$$
\begin{aligned}
E\left(T^{2}\right) & =\frac{1}{M} \sum_{j}^{M} \sum_{\alpha}^{N} \delta_{\alpha j}\left(\bar{s} / s_{\alpha}^{2}\right)=\bar{s} \frac{1}{M} \sum_{\alpha}^{N} 1 / s_{\alpha} \\
& =\bar{s} \frac{N}{M} \cdot \frac{1}{N} \sum_{\alpha}^{N} 1 / s_{\alpha}=\frac{1}{N} \sum_{\alpha}^{N} 1 / s_{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
V(T) & =E\left(T^{2}\right)-E^{2}(T) \\
& =\frac{1}{N} \sum_{\alpha}^{N} 1 / s_{\alpha}-1 / \bar{s} .
\end{aligned}
$$

A1so,

$$
\begin{aligned}
V(T) & =E[T-E(T)]^{2} \\
& =\frac{1}{M} \sum_{\alpha}^{N} \sum_{j}^{M}\left(\sqrt{\bar{s}} / s_{\alpha}-1 / \sqrt{\bar{s}}\right)^{2} \delta_{\alpha j} \\
& =\frac{1}{M} \sum_{\alpha}^{N} s_{\alpha}\left(\sqrt{\bar{s}} / s_{\alpha}-1 / \sqrt{\bar{s}}\right)^{2} \\
& =\frac{\bar{s}}{M} \sum_{\alpha}^{N} s_{\alpha}\left(1 / s_{\alpha}-1 / \bar{s}\right)^{2} \\
& =\frac{1}{N} \sum_{\alpha}^{N} s_{\alpha}\left(1 / s_{\alpha}-1 / \bar{s}\right)^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
V(T) & =\frac{1}{N} \sum_{\alpha}^{N} 1 / s_{\alpha}-1 / \bar{s} \\
& =\frac{1}{N} \sum_{\alpha}^{N} s_{\alpha}\left(1 / s_{\alpha}-1 / \bar{s}\right)^{2}
\end{aligned}
$$

There exists a file of $M>N$ records that belong to N persons. M is known and N is unknown. A random sample of m records is selected to estimate N . Assume that every sample record belonging to $I_{\alpha}(\alpha=1, \ldots, N)$ is labeled by s_{α}, the total number of I_{α} 's records in the file. An unbiased multiplicity estimator [1] of N is

$$
\hat{\mathrm{N}}=\frac{\mathrm{M}}{\mathrm{in}} \sum_{\alpha}^{\mathrm{N}} \sum_{\hat{j}}^{M} \delta_{\alpha j} / s_{\alpha}
$$

Assuming simple random sampling with replacement, the variance of \hat{N} is

$$
\begin{aligned}
\hat{V(N)} & =V\left(\frac{M}{\bar{m}} \sum_{\alpha}^{N} \sum_{j}^{M} \delta_{\alpha j} / s_{\alpha}\right) \\
& =\frac{M^{2}}{m \bar{s}} V(T) \\
& =\frac{M}{m \bar{s}}\left(\frac{1}{N} \sum 1 / s_{\alpha}-1 / \bar{s}\right) \\
& =\frac{1}{m} \sum_{\alpha}^{N} s_{\alpha}\left(1 / s_{\alpha}-1 / \bar{s}\right)^{2}
\end{aligned}
$$

REFERENCE
[1] Sirken, Monroe G. 'Variance Components of Multiplicity Estimators", Biometrics, Vol. 28, No. 3, September 1972, pp. 869-873.

