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INTRODUCTION and 

The estimation of parameters for small areas 

has received considerable attention in recent 
years. A comprehensive review of research in 
small-area estimation is given by Purcell and 
Kish (1979). Agencies of the Federal Government 
have been significantly involved in this research 

to obtain estimates of such items as population 
counts, unemployment rates, per capita income, 
health needs, etc., for states and local govern- 

ment areas. Acts of the U.S. Congress (e.g., 
Local Fiscal Assistance Act of 1972 and the 
National Health Planning and Resources Develop- 
ment Act of 1974) have created a need for accu- 
rate small-area estimates. Research in this area 
is illustrated in such papers as DiGaetano et 

al. (1980) , Fay and Herriot (1979), Ericksen 

(1974), Gonzalez (1973) and Gonzalez and Hoza 

(1978). Fay and Herriot (1979) outline the 
approach used by the U.S. Bureau of the Census 

which is based upon James-Stein estimators [see 

Efron and Morris (1973), James and Stein (1961)]. 

Recently the U.S. Department of Agriculture 

(U.S.D.A.) has been investigating the use of 
LANDSAT satellite data to improve its estimates 
of crop areas for Crop Reporting Districts and to 

develop estimates for individual counties. The 
methodology used in some of these studies is pre- 

sented in C£rdenas, Blanchard and Craig (1978), 

Hanuschak et al. (1979), and Sigman et al. (1978). 
In these studies ground observations from the 

U.S.D.A. 's June Enumerative Survey for sample 
segments are regressed on the corresponding 
satellite data for given strata. County estimates 
obtained by the regression approach generally 
have smaller estimated variances than those for 
the traditional "direct expansion approach" 

using survey data only. 

In this paper we consider the prediction of 
crop areas in counties for which survey and sat- 
ellite data are available. It is assumed that 

for sample counties, reported crop areas are ob- 
tained for a sample of area segments by inter- 
viewing farm operators. We assume that data for 
more than one sample segment are available for 
several sample counties. In addition, we assume 

that for each sample segment and county, satel- 
lite data are obtained and the crop cover classi- 

fied for each pixel. A pixel (an acronym for 
"picture element") is the unit for which satel- 
lite information is recorded and is about 0.45 
hectares in area. Predictors for county crop 
areas are obtained under the assumption that the 
nested-error regression model defines the re- 
lationship between the survey and satellite data. 

u.. = v° + e.. , (2) 
l] i l] 

where Y.. is the reported area in the given 
i] 

crop for the j-th sample segment of the i-th 
county as recorded in the sample survey involved; 
n° is the number of sample segments observed in 
i 

the i-th sample county; x.. is a (i x k) 
~13 

vector of values of explanatory variables which 
are functions of the satellite data; and B is 

a (k x i) vector of unknown parameters. The 

random errors, v i , i = 1,2, .... t , are 

assumed to be N.I.D. (0 (72) independent ' of 
' V 

the e°.'s , which are assumed to be 
I] 

N.I.D.(0, 02 e) . From these assumptions it 

follows that the covariance structure of the 

errors of the model is given by 

~2~_(72, if i=i' and j =j ' 
v e 

E (uij ui, j, ) = (72V , if i=i' and j #j' (3) 

<0 , if i#i' . 

This model specifies that the reported crop 
areas for segments within a given county are 

correlated, and that the covariances are the 
same for all counties, but that the reported 
crop areas for different counties are not cor- 
related. Efficient estimation of the nested- 
error model is discussed in Fuller and Battese 

(1973). 

We consider that for each sample county, 

the mean crop area per segment is to be pre- 
dicted. These are conditional means that are 

denoted by ~i ' i = 1,2 ..... t , where 

~i = Xi(p)~ + vi ' (4) 

No 

where Xi(p) N-I y i i " j=l xij~ , the mean of the 

x..'s for the N. population segments in the 
~i] 1 

i-th county, is assumed known. Note that ~i 

is the conditional mean of Y.. for the i-th 
lj 

sample county, given the population mean of the 

x..-values. 
~i] 

NESTED-ERROR MODEL AND PREDICTORS 

Consider the model 

Yij = xij$~ + uij', i=l ..... t; j=l ..... n i ; (i) 

It is noted that the above problem is a 
special case of the estimation of a linear com- 
bination of fixed effects and realized values of 

random effects [see Harville (1976), (1979), and 
Henderson (1975)]. Although some of our results 
are obtained as special cases of the general 
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results are given in these papers, we derive the 
predictors involved by first considering that the 
elements of ~ (as well as the variance compo- 

nents, (72 > 0 and (72 > 0 are known. Con- 
v e 

sidering the prediction of the county effects, 
v. , i = 1,2 .... , t , is motivation for the pre- 
i 

dictors of the county means to be presented 

later. 

(a) Prediction When ~ is Known 

If the parameters of the model (i) are known, 
then the random errors, uij , are observable. 

The sample mean of the random errors for the i-th 
n 

-- -1 i -- 
county, u - ni Y~ u =v +e has uncondi- 

i. j=l ij i i- 

tional mean 0 and variance 02+n?i(7 2 . The con- 
v 1 e 

ditional mean, E(~__. Ivi) , is equal to vi and 

the conditional variance, V(~i. Ivi ) , is equal 

-i 2 
to n. 0 . Thus, the sample mean, u° , is a con- 

1 e i. 
ditionally unbiased predictor for v., i=l,2,...,t. I 

We consider the class of linear predictors 
for v. that is defined by 

1 

v (~) 6 u • . . , 

1 1 l" 

where 6. is a constant such that 0 < 6. < 1 . 
i -- 1 -- 

The error in this predictor is given by 

^(6) 
v - v = -(i-6 )v + 6 e (5) 
i i i i i i. 

and so the mean squared error of the predictor is 

E[;(6)-vi]2=i (i-6i)2@2+62v ini -]O2e " (6) 

It is easily verified that (6) is equal to 

E[v[a)-vi]~:(Ov~+n7 lo~)e (6i-Yi)2+(1-7i)~2 ' 

where Yi is defined by 

= (72 ((Tv 2 + n71 (7e2) -I (7) 
Yi v i " 

Thus, the best linear predictor of v. is 
1 

^(Y) - -- and its mean squared error is v i Y i u i  . 

E[v(~)-vi] 2 i  = (i-~i)(72v - ~{ini-1 (72e " (8) 

However, under the assumption of norma_lity of 

v.l and e..lj ' it follows that E(vilu i.)=Yiui. 
A 

and so v (7). is the predictor with minimum mean 
1 

squared error. 

Since the expectation of the prediction 

error (5) conditional on v is -(1-6i)v i 
• i ' ' 

then the mean of the squared conditional bias 
(hereafter referred to as the mean squared bias) 
of the predictor is 

E[E(v(6) I _vi]2 )2 02 (9) i vi) = (1-6i v " 

We consider that the mean squared bias (9) may 
be of basic importance in the consideration of 
predictors for v. . In fact, we assume that 

l 
information is available such that the mean 
squared bias of predictors is required to be no 
larger than a predetermined constant. The best 
predictor with constrained mean squared bias is 
stated in Theorem i. 

Theorem 1. If model (i)-(2) holds and the para- 
meters are known, then, in the class of linear 

predictors, v ~6j. - 6.u. , for which the mean 
i 1 i" 

squared bias is constrained by A i , the best 

predictor is defined by 

f -- if A > (1_7i) 2 (72 
': Yiui ' i -- v I 

A 

v (~*) = ! 
l 

' YlU--i. , if Ai < (l_Yi)2 (72V 

where 7" = 1 - (Ai/(72)½ l ; and therefore pre- 

dictors satisfying 0 _< 6 i < 7i are inadmis- 

sible. 

(I0) 

(b) Prediction When ~'~ is Unknown 

Returning to the predic_tion of the condi- 

tional county means, ~i - ~Xi(p)B~ ÷ vi ' 

i = 1,2 ..... t , it is seen that the problem is 
that of predicting the sum of v. and a linear 

i 
function of unknown parameters. We consider the 
class of predictors defined by 

^ __ __ __ A 

~!6)i - Xi(p)~~ + 6i(Yi.-xi. ~)~ ' (11) 

^ 

where B is the best linear unbiased estimator 

for ~ ( a s s u m i n g  a g a i n  t h a t  (72 > 0 and  (72 
~ V e 

n 

-- -i il Yij -- > 0 are known); Y - n Y ; x 
i. i j= ~i. 

_] n. 

-n E l i j=l xij ; and 6.1 is a constant such 

that 0 < 6. < i . 

For ~. = 0 , the predictor (ii) is 
l 

A 

^ (0) : xi 
~i (p)~ ' 
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which is referred to as the "regression pre- 
dictor." For 6° = i , the predictor is 

1 

Ui x. ~1(p)~ i. "~ 

: Y.~. + (Xi(p) - xi.) ~ ~  ~ ' 

which is referred to as the "adjusted survey pre- 
dictor•" This predictor adjusts the survey sam- 
ple mean, Yi- , to account for the sample mean 

of the regressors, x. , differing from the pop- 
~l. 

ulation mean, x i(p) . 

The error in the predictor (ii) is expressed 

by 

~(6) =[-(i-6 )v +6 e ] 
Ui - Ui i i i i. 

^ 

+ (Xi(p)-6ixi.)(~-~) , (12) 

where the first term is the prediction error (5) 
for the case when B is known and the second 

term arises in the estimation of B • The mean 

squared error for the general predictor (ii) and 
the best linear predictor are stated in the next 

theorem• 

Theorem 2. If model (i)-(2) holds, where 02 
v 

and o 2 a r e  known p o s i t i v e  c o n s t a n t s ,  t h e n  t h e  
e 

^(6) is mean s q u a r e d  e r r o r  f o r  t h e  p r e d i c t o r  Ui 

~ku;/2N 2_ 2 2--i 2 
E[Ui -Ui] -[(i-6i) O2+6"n'v i i Oe] 

+2 (6i-Yi) (xi (p)-6. x )V (~)x'. 1~i. ~ ~ ~1- 

A 

+(Xi(p)-6"x'1~1.)V(~)(Xi(p)-6"x~ ~ i_i.)' ' (13) 

A 

where V( ) is the covariance matrix for B • 

Furthermore, the mean squared error is a minimum 

when 6i = 7i - O2v (02 + n~ "I @2)-le " 

It can be shown that the expectation of the 
prediction error (12), conditional on the realized 

random effects, v = (Vl,V 2 ..... vt)' is 

A(6) = - (1-6i)v E[ui Iv] - Di i 

^ t 

+(Xi(p)-6"x'1~1.)V(8) X x'i i i /°2 " ~ ~ ~ j=l ~~'v~7~ (14) 

^(6) 
From this result the mean squared bias of Ui ' 

denoted by MSB(u; 6 ^(. )) , and the best constrained 

predictor are obtained, as stated in the follow- 

ing theorem. 

Theorem 3. If model (i)-(2) holds, where 02 
v 

and 02 are known positive constants, then the 
e 

mean squared bias of the predictor ^(6) is 

E[E(^ (6) 2 2 2 
~i IV)--Ui] = (i--6i) Ov 

- 2(l-6i)Ti(Xi(p)-6.x. )V(~)x~ 1~1" ~ -~ -~1- 

t 

+ X [ (x i(p) 
j = l  

-6~x~ )v (~)x' ~j ]~/o$ . (15) 
• ~ ~ ~J. 

Furthermore, if the mean squared bias is con- 
strained by A. , then the best constrained pre- 

i 
dictor is defined by 

~1(p)~ _ ~ ' 

~¥*) = 

A 

- ^ *- - ~) if A <MSB(~ (~)) xi (pl~+Yi (Yi.-xi. _ ' i i 

* is the root of A = E[E( -(6~- -^ where 7i i Ui I v)-ui ]2 

with smaller mean squared error. 

The mean squared bias (15) has positive de- 
rivative with respect to 6. and is generally 

1 

expected to be monotone decreasing as 6. in- 
l 

creases from zero to one. 

ESTIMATION OF VARIANCES 

When the variance components, o 2 and 02 , 
v e 

are unknown, different estimators can be used. 
Harville (1977) contains a discussion of estima- 
tion methods for component-of-variance models• 
We use the fitting-of-constants estimators pre- 
sented in Fuller and Battese (1973) for the 
nested-error model (I)-(2)• By use of normal 
theory, the variances of these variance compo- 
nents are obtained and presented in Battese and 
Fuller (1981). 

These estimators for the variances and co- 
variances of the variance estimators are neces- 

sary for inference about 02 and 02 and for 
v e 

obtaining approximate generalized least-squares 
estimates for the variances when prior informa- 
tion is available. The county predictors defined 
above are approximated by replacing the vari- 

ances, 02 and 02 , with their corresponding 
v e 

sample estimates. 
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If all n. are the same, it is possible to use o 2 were estimated was ignored in computing the 
1 e 

the results of Efran and Morris (1973) to show that standard errors of the remaining parameters. 

the estimation of 02 will increase the average 
v 

s q u a r e d  e r r o r  by  an  amoun t  a p p r o x i m a t e l y  e q u a l  t o  

2(t_l)-l(av2+n?11 2 -i -2 (7) n. o . 
1 e 

Estimating (7 2 adds a term to the variance that 
e 

i s  a p p r o x i m a t e l y  e q u a l  t o  

i n?l I (02+t01(72)12 ^ _ 
i v{o2}V{u } , 

(Uv2+n~I O2)2 i e x. 

where t o = (t-l)-i [n_n-i Y i=it ni2 ] • 

EMPIRICAL RESULTS 

We consider prediction of areas of soybeans 
for 12 counties in North-Central lowa, based on 
data for 1978. The Economics and Statistics 
Service of the U.S. Department of Agriculture de- 
termined the area of soybeans in 37 area sampling 
units (segments) in the 12 counties during the 
June Enumerative Survey in 1978. The segments 
are about 259 hectares (or one square mile) in 
area. The numbers of pixels classified as soy- 
beans in these area segments were determined 
from the NASA's LANDSAT satellites during passes 
over Iowa in August and September 1978. 

To obtain predictions of crop areas we 
assume the simple model, 

- BO+~IX i +uij Yij j , i=1,2 ..... 12; j=l,2 ..... n.1 " 

where Y.. is the number of hectares of soybeans 
l] 

in the j-th sample segment of the i-th county as 
recorded in the June Enumerative Survey in 1978; 
X°. is the number of pixels of soybeans for the 
13 

j-th sample segment of county i . The parameter 
estimates are obtained by use of the nested-error 
software of SUPER CARP [Hidiroglou, Fuller, and 
Hickman (1980)]. The parameter estimates and 
their estimated standard errors (in parentheses) 
are : 

^ 

Y.. = -3.8 + 0.475 X.. , where 
13 (9.3) (0.040) 13 

2 = 250 and (7 2 = 184 . 
^ 

v e 
(142) (53) 

The estimate for the intercept parameter is 
not significantly different from zero. The 

a m o n g - c o u n t y  v a r i a n c e  e s t l m a t e ,  (72 , i s  s i g n i -  
v 

ficant at the 5% level. The fact that 0 2 and 
V 

Given the preceding results, the predictions 
for the mean hectares of soybeans per segment in 
the several counties are listed in Table i for 
the different predictors discussed in preceding 
sections. Also presented are the sample mean of 
the reported soybean hectares for the June 
Enumerative Survey. The square root of the esti- 
mated mean squared error is given in parentheses 
below the corresponding prediction. The popula- 
tion and sample county means for the number of 
pixels classified as soybeans are presented in 
Table 2, together with the population number of 
segment s. 

It is evident from Table 1 that the use of 
the satellite data to obtain predictors is much 
more efficient than using only the reported crop 
areas from the June Enumerative Survey. The 
mean squared errors of the sample mean of the 
reported hectares are relatively large for the 
individual counties. For predicting soybean 
areas, the regression predictor is always less 
efficient than the adjusted survey predictor 
because the variance among counties is the 
dominant term in the total variance. 

^(Y) , has mean squared The best predictor, ~i 

error that is considerably smaller than that for 
A 

the regression predictor, N~0) , especially 
[ 

when 

several sample segments are available in a coun- 
ty. The ratio of the mean squared error for the 
best predictor to that for the regression pre- 
dictor is a rather complicated function of the 
variances, the values of the x-variables, and 
the sample sizes. However, for the soybean data, 
the values of' this ratio for the different coun- 
ties varied little for particular numbers of 
sample segments. The square root of the average 
value of the ratio is presented in Table 3 for 
the different values of the sample sizes. Al- 
though these statistics are based on different 
numbers of observations and should be interpreted 
with caution, they show an interesting pattern. 
As the number of sample segment's increases, the 
relative root mean squared error decreases, but 
at a declining rate. This is due to the fact 
that the mean squared error for the best pre- 
dictor decreases markedly as the number of sample 
segments increases, but that for the regression 
predictor does not. The decreases in the rela- 
tive root mean squared error with increasing num- 
bers of sample segments are quite substantial for 
soybeans. Furthermore, these data would suggest 
that obtaining data for a few sample segments in 
more counties is likely to result in greater pre- 
cision of prediction than obtaining more data for 
fewer counties. 

CONCLUS IONS 

The nested-error regression model with sat- 
ellite data as the auxiliary variable offers a 
promising approach to prediction of crop areas 
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Table i: Predicted Hectares of Soybeans 
per Segment for Twelve Iowa Counties 

Predictions 

County ^(0) ^(y) ^(i) 

i Yi ~i ~i ~i i. 

Cerro 0.58 86.4 78.2 72.1 8.1 
Gordo (15.6) (ii.0) (13.7) (31.4) 

Franklin 0.80 85.6 66.1 61.4 52.5 
(15.3) (7.1) (7.8) (18.2) 

Hamilton 0.58 89.7 93.3 95.9 106.0 
(15.7) (i0.5) (13.6) (31.4) 

Hancock 0.87 90.7 i00.5 i01.9 i17.5 
(15.2) (5.8) (6.2) (14.1) 

Hardin 0.89 80.4 74.4 73.7 89.8 
(15.2) (5.4) (5.7) (12.8) 

Humboldt 0.73 100.9 81.8 74.7 35.1 
(15.6) (8.7) (9.9) (22.2) 

Kossuth 0.87 93.5 119.3 123.1 117.8 
(15.2) (5.7) (6.1) (14.1) 

Pocahontas 0.80 113.7 113.2 113.1 118.7 
(15.2) (7.1) (7.8) (18.2) 

Webster 0.84 113.7 109.9 109.2 113.0 
(15.1) (6.3) (6.8) (15.7) 

Winnebago O. 80 84.3 97.6 i00.8 88.6 
(15.3) (7.1) (7.9) (18.2) 

Worth 0.58 93.8 87.2 82.3 103.6 
(15.7) (10.6) (13.6) (31.4) 

Wright 0.80 101.5 112.8 115.6 97.8 
(15.3) (7.2) (8.0) (18.2) 

Table 2: Pixel Data for Soybeans 
in Twelve Iowa Counties 

No~ of segments in Pop'n Sample 
County pop'n sample mean mean 

Cerro Gordo 545 1 189.70 55.00 

Franklin 564 3 188.06 169.33 

Hamilton 566 i 196.65 218.00 

Hancock 569 5 198.66 231.40 

Hardin 556 6 177.05 210.83 

Humboldt 424 2 220.22 137.00 

Kossuth 965 5 204.61 193.60 

Pocahontas 570 3 247.13 259.00 

Webster 687 4 247.09 255.00 

Winnebago 402 3 185.37 159.67 

Worth 394 i 205.28 250.00 

Wright 567 3 221.36 184.00 

Table 3: Averages of the Ratio of the Root 
Mean Squared Error for the Best Predictor 
to that for the Regression Predictor 

Number of sample 
segments, n. 

1 ~(Y) (~i 
{MSE( i )/MSE (0))}½ 

i 0.68 

2 0.56 

3 0.47 

4 0.42 

5 0.38 

6 0.38 

for counties. A reasonably large number of 
counties is required for the satisfactory esti- 
mation of the among-county variance. The U.S. 
Department of Agriculture plans to implement 
the software of the nested-error approach for 
the prediction of county crop areas in the next 
crop year. 
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