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I. Introduction 
The results reported in this paper relating to 

double sampling regression estimation for complex 

sample designs were motivated by the need to 

provide efficient sample design and estimation 

methods for a household based national medical 

care expenditure survey (NMCES) that incorporated 

a subsample based medical provider record check. 

To reduce the computation burden associated with 

regression estimation methods, simplified double 

sampling ratio and poststratified mean estimators 

are derived as special cases of the regression 

estimator. Attempting to combine the efficiency 

of regression based methods with the computational 

ease of the simple Horvitz-Thompson weighted sum, 

the equivalence of regression estimators, 

subsample reweighting strategies, and randomized 

hot deck imputation of medical provider data to 

the complement of the record check subsample is 

explored. 

2. Double Sampling Regression Estimators 
The NMCES double sampling design is character- 

ized by a three stage area household cluster 

sample expected to yield n = rstu household 

members where r denotes the number of primary 

sample counties selected, s depicts the number of 

second stage area segments drawn per PSU, t 

represents the average number of responding third 

stage dwelling units selected per area segment, 

and u is the average number of persons per house- 

hold in the universe. The first phase household 

data collection yields a vector X(i,j,k,~) of 

annual health care expenditure and utilization 

variables for participating person ~ from house- 

hold k in segment j of PSU i. A subsample of m 

household sample participants is then selected for 

a medical provider record check survey (MPS). All 

medical doctors, doctors of osteopathy, and all 

health care facilities administered by MD/DOs that 

were reported as health care providers or usual 

sources of care by the MPS sample members are then 

queried by mail regarding the details of visits 

recorded in their records including associated 

expenditures, sources of payment, and diagnosed 

conditions. 

If the MPS survey members are indexed by a 

single label ~ and Y(£) represents a medical 

provider reported variable, then the universe 

total Y(+) of the medical record based variable 

can be estimated by a generalized double sampling 

regression statistic of the form 

^ ^ p-I ^ ^ ^ 
Y+(DSR) = Y+(M) - ~ [X+(q[M) - X+(q~H)] ~ (M) 

q=l q 

where ^ 

X+(qlH) = ~ x ( £ ) / r t ( ~ )  
£gtttlS q 

is the household sample total for the q-th element 

of X(~). The K(~) denote H}{S sample inclusion 

probabilities. The MPS sample totals are of the 

form ^ 

Y+(M) = ~ m(£) Y(£) / E{m(£)} ~(£) 

£eMPS 

where m(£) depicts the frequency of selection for 

household participant ~ in the MPS sample, allow- 

ing for multiple selections. The quantity E{m(~)} 

denotes the expected number of MPS selections for 

household survey participant ~. The class of 

second phase designs considered specify E{m(~)} as 

follows 
^ 

E{m(£)} = m{V(£)/K(£) V+(HHS)} = mv(£) 

where V(£) is an element of the KHS data vector 

X( £) .  The s t a t i s t i c s  
N 

^ 

V + ( H ~ S )  = ~ V ( ~ ) / ~ ( ~ )  
~eIttIS 

imbeded in E{m(£)} is the HHS based Horvitz- 

Thompson estimator for the V variate universe 

total. The specific form of V(~) envisioned, 

namely 

V(~) = [X(~)] g/2 for g = 0, I, or 2, 

is motivated by optimality considerations under a 

superpopulation variance model ~ of the form 

Var[Y(~)] = o2[X(£)]g 

where X(£) might represent the }[HS reported total 

annual health care expenditure. The MPS based X 

variate total estimators 
^ 

X+(q[M) = ~[ m(£) X (£)/zt(£)E{m(£)} 

£eMPS q 

are defined similarly. 

The regression coefficient estimator proposed 
^ 

for Y+(DSR) i s  
^ 

~(M) = [X ' (V)-2X]  -1 M [X'(V)  2Y] M 

with 

[X'(V)-2X]M = [ [ m ( £ ) X I ( £ ) X ( £ ) / V 2 ( £ ) ]  
HEMPS 

and 

[X ' (V) -2y IM = [ ~ m ( £ ) X i ( £ ) Y ( ~ ) / V 2 ( £ ) ]  • 
~gMPS 

Recalling the variance function superpopulation 

model that motivated the choice of V(~); namely 

Var[Y(£)] = o 2 V2(£) 

^ 

one recognizes ~(M) as the model based best linear 

unbiased estimator (BLUE) for 6- With this speci- 

fication of ~(M) the Taylor Series variance 

approximation for the DSR estimator is derived in 

the expanded version of this paper, Folsom (1981). 

By conditioning on the observed HHS person level 

sample size n, the combined effects of clustering, 

stratification, and without replacement selections 

at the PSU, area segment, and housing unit 
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selection stages are captured by a single }[HS 
covariance component p(H). This variance- 
covariance component representation was derived 
for general PPS without replacement designs by 
Gray (1975) and subsequently extended by Folsom 
(1980) to a wider class of PPS designs including 
with replacement selections and Chromy's (1979) 
probability minimum replacement method. Combining 
this general variance-covariance component repre- 
sentation with an explicit form for the Taylor 
Series linearization of ~(M) derived independently 
by Folsom (1974) and Fuller (1974), the following 
variance approximation for the double sampling 
regression estimator Y+(DSR) was obtained 

^ 

Var[Y+(DSR)] = oe(H) [l+(n-l)p(H)]/n 

where 
+ o2(M) [l+(m-1)Pe(M)]/m 

e 

2 
a (H) = ~ P ( g ) D  (g )  

ggU 
with 

.Y(g) 
Dy(g) = ~ ~  - Y(+)} 

is analogous to the single stage PPS with replace- 
ment variance component based on single draw 
probabilities P(g) = K(£)/n depicting the prob- 
ability that frame unit g is included in the HHS 
sample and is randomly assigned sample person 
label i. The }DIS covariance component 

2 
o ( H ) p ( H )  = :1 :1 P ( g g ' )  D y ( g ) D y ( g ' )  

£sU g' eU 

is defined similarly in terms of the double draw 
probability 

P ( ~ g ' )  = n ( ~ g ' ) / n ( n - 1 )  

that frame units g and g' belong to the }DIS sample 
and are randomly assigned sample person labels i 
and j respectively. Similarly, one can show that 

2 ( n - l )  
o (M)=[  ] Z Z { 

e n 
£eU £ '  eU 

P ( g g ' )  t V ( g ) V ( g ' ) A 2 ( g g  ' ) / 2  
P ( g ) P ( £ '  e 

with 

and 

A ( g g ' )  = { e(J~) e ( g ' ) }  
e V(~----~ - V(g' ) 

e(g) = Y(g) - X(g)]B 

denoting the regression residual or prediction 
bias based on the universe level coefficient 
vector 

= [ X ' ( V I - I X I u  1 [ X ' ( V ) - I y I u  . 

The MPS c o v a r i a n c e  c o m p o n e n t  is 

2 
o (M)p (M) = E ~ ~ [v(g)v(g')-v(gg')]82(£g')/2"" 

e e e 

H ggH g'H 

with E indicating the HHS sampling expectation 
H 

operator, 

8 ( ~ g ' )  = { e(g) e(g') 

and v(gg') denoting a second phase double draw 
probability. The corresponding Taylor Series HHS 
component estimators are 

^ 6 2 
o2(H) = [ ~ { m(~)m(£') WH(g£') { Y(gg') 

geM geM' m(m-l) }{ v(~;) } 2n(n-l) } 

and 
^ ^ 

(H) p (H)= Y :7 {m(£)m(~' ) 
O 2 } { 

~¢M ~'~M ;(-~-~) 

with 

82 
WH(~£' )-1 Y'gg''(~ 

v ( ~ '  ) } { 
2 n ( n - 1 )  

WH(g~') = p(g)p(£,)/p(gg,) 

and 

Y(g) Y(~') 
8y(£~') = {-..p(g) p(g-)}. 

The second phase MPS variance component is 
estimated by 

~2(M ) = ~ ~ {m(~)m(~') d 2 
e gem g' gM m(-~-I ) } WM (£~') e (~g') / 2 

w h e r e  

WM(~g' )  = V ( £ ) V ( g ' ) / V ( g £ ' )  

and 

eM(g) e M ( g ' )  
d ( £ g ' )  = - 
e {n(£)v(~) r[(g)v(g' ) 

} 

with 

eM(g) = Y(£) - X(£)~(M) 

denoting the observed residual for MPS participant 
£. Similarly 

^ ^ 

o Z ( M ) p  (M) = Z X { m ( g ) m ( g ' )  
e e £8M g'eM re(m-l) }[WM(gg')-l]d2(gg')/2e 

^ 

- -  Pe2(M)- ~ m ( g ) e ~  ( £ ) / ~ 2 ( g ) v 2 ( g ) ( m - 1 )  
gem 

^ 

An i n t e r e s t i n g  s p e c i a i  c a s e  o f  Va r [Y+(DSR) ]  i s  
o b t a i n e d  when s i n g l e  s t a g e  PPS w i t h  r e p l a c e m e n t  
s a m p l e s  a r e  d rawn  a t  b o t h  p h a s e s  o f  s e l e c t i o n . -  I n  
this case 

^ 

Var[Y+(DSR) ] = a 2 ( H ) / n  + a2(M)/m 
e 

w i t h  

a 2 ( M ) =  [ ( n - 1 ) / n ]  V (U) ~ e 2 ( g ) / V ( £ )  e + 
ggu  

and V+(u) denoting the universe total for V(£). 
Considering the statistical properties of the 
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proposed DSR estimator, Folsom (1981) notes that 

Y+(DSR) is a double sampling multivariable 

extension of Cassel, S~rndal, and Wretman's (1977) 

generalized regression estimator. The double 

sampling version has the analogous property that 

under the regression super population model with 

known it is the probability unbiased (p-unbiased) 

estimator with smallest expected (g-model expecta- 

tion) sampling variance, among all linear 

probability and model (pg) unbiased estimators. 

Since ~ must be estimated from the sample, Y+(DSR) 

is not probability (sampling expectation E) 

unbiased, but is approximately unbiased, to orders 

0(I/m), in large second phase samples. 

An alternative variance approximation strategy 

that avoids the burdensome calculation of double 

drawn probabilities P(££') and v(~£') is suggested 

in section 5. In the following section, a built- 

in record check pilot survey is proposed that 

permits one to empirically fit the g[Y(~)] model 

and the variance function Var[Y(~)] = o2[x(~)] g 

for g = 0, I, or 2. 

3. Adaptive Double Sampling Designs 

In this section, an adaptive double sampling 

design strategy is proposed. For multi-wave 

household panel surveys like NMCES and NMCUES one 

could initiate a prospective provider record check 

during the first wave of household interviews. 

For a prespecified epsem subsample of the cooper- 

ating round 1 households, permission would be 

obtained to contact all providers for reported 

medical care visits as well as the household 

members usual sources of care (USOC) if no visits 

to the USOC providers is otherwise reported in 

round I. A mail survey of the reported round 1 

providers would be initiated on a flow basis as 

soon as computer generated summaries of the 

reported round 1 visits, visit charges, and 

sources of payment can be produced. These 

summaries would be sent to the providers along 

with a questionnaire designed to validate the 

reported visit dates to correct or supply missing 

visit charge and source of payment information, to 

diagnose the medical conditions associated with 

each visit, and to supplement the record with 

unmatched visits that appear in the providers 

records but not in the patients self report. This 

approach would solicite the provider's assistance 

in matching the patient's self-reported visits to 

the medical records. With data collection waves 

lasting I0 to 12 weeks, the preliminary prospect- 

ive record check could be carried through two 

rounds of household and provider interviews. With 

the first round of household interviews beginning 

around the middle of February with a retrospective 

reporting period extending back to January I, two 

rounds of interviews would record from four to six 

months of household self-reports and matching 

provider record data. Using the matched health 

care utilization and expenditure data from the 

initial record check subsample for the first two 

interview rounds would permit one to emperically 

fit the household to provider prediction equation 

and the associated variance function. A class of 

prediction equations that would seem ideally 

suited to this provider data modeling task is the 

class of cubic polynomial spline models frequently 

used in econometic prediction equations. 

In terms of the model based expectation g and 

variance V operators, a cubic spline model for 

predicting provider variables Y(h£) for person £ 

from the h-fh poststratum is 

3 ^ 

g [ Y ( h £ ) ]  = >- [ X ( h £ ) l  q / 2  IBh(q) 
q=0 

and 

V [ Y ( h £ ) ]  = o 2 ( h )  [ X ( h £ ) ]  g f o r  g = 0 ,  1, o r  2.  

The poststrata h are defined in terms of intervals 

on the X axis. The prediction equation is 

specified as a cubic polynomial in the square root 

of X so that when scaled by V(£) = X(h£) g/2 the 

resulting equation will have an intercept on the 

X(£)/V(~) scale. The separate poststratum h 

polynomials are caused to connect smoothly at join 

points XBD(h) at the boundary between poststratum 

h and h+l by imposing side conditions 

3 ^ 3 ^ 

[XBD (h)  ] q / 2 ~ h ( q )  [XBD(h) ] q / 2  
= ~h+l  (q )  

q=O q=O 

t h a t  f o r c e  t h e  c o n n e c t i o n .  To g u a r a n t e e  a s m o o t h  
transition, the first derivative functions are 

also required to join on the boundaries. The 

corresponding side conditions are imposed for all 

second phase stratum boundaries h = 1,2,...,H-I. 

In the expanded version of this paper, the use of 

a robust regression procedure called weighted 

slice regression originally proposed by W. A. 

Larsen and I. J. Terpenning (1971) and subsequent- 

ly evaluated by L. Denby and W. A. Larsen (1977) 

is illustrated as a method for generating robust 

squared residuals 

3 
2 ^ 2 

r (h£) = [Y(h£) - ~ [X(h£)] q/2 ~h(q)] 

q=0 

which are in turn fit to the model 

g[r2(h~)] = ~2(h)[X(h~)]g(h) 
g 

to determine the optimum value of g for post- 

stratum h. Having obtained the best fitting value 

of g(h) among the alternative values 0, 1, or 2, 

the second phase selections from poststratum h 

would be made with probabilities proportional to 

V(h£)  = [ X ( h £ )  ] g ( h ) / 2  

Having fit the cubic spline models and the 

variance functions to the built-in pilot study 

data one can proceed to determine the optimum 

second phase sample allocation to strata. Extend- 

ing results of Cassel, Sdrndal, and Wretman, one 

can estimate the model expectation of the second 

phase variance contribution in terms of the 

weighted residual mean square 

m' ( h )  .-, 

oZ(h) = ~ [Y(h£) - X (h£) ~ h ]Z/vZ(h£)[m'(h)-4] 

£=1 

where 
v(h£) = {X(h£) g(h)/2 / ~ X(h£)g(h)/2} - 

geM(h) 
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With these definitions the super population model 

yields 

^ ^2 ^ 

8{ E Var [Yh (DSR)]} = (l-fhAh) o~ (h)/m(h) 
HHS MPS 

with 

fh = m(h)/n(h) 

depicting the second phase subs ampling rate from 

poststratum h, and 

n(h) 

A h = n ( h )  2; v2(h.9 . . )  

£ = 1  

The optimum allocation of the second phase 

sample to the second phase strata so as to mini- 

mize cost subject to a total variance constraint 

of the form 

^ 

Var [Y (DSR)] < V(O) 

translates into the problem of minimizing 

H 

2; $ (h)m(h) 

h=l 

subject to 

H ^ 

~_ a~2 (h) /m (h) < V*(0) 

h=l 

whe re 

H ^ 

V*(0)=V(0)-var{ E [Y+(DSR)]} - 2; A h o~2 (h) /n (h) . 

H}IS MPS h=l 

The household survey variance contribution 

^ 

var{ E [Y(DSR)} 

HHS MPS 

in V (0) could be approximated for this purpose by 

combining a simple random sampling HHS variance 

approximation for the provider survey Y variate 

derived from the built-in epsem pilot study sample 

with an }DIS survey based design effect DEFF(X) 

estimated for the matching household reported X 

variate total adjusting the SRS variance 

approximation for the combined effects of HHS 

stratification, clustering, and disproportionate 

sampling (or unequal weighting). 

Having developed the generalized double sampl- 

ing regression estimator and a strategy for 

jointly optimizing the second phase sample design 

and estimation procedures, the next section 

explores some important special cases of the 

generalize regression estimator, namely the double 

sampling ratio estimator and the double sampling 

for stratification estimator. A simple reweight- 

ing strategy for producing the double sampling for 

stratification estimator is presented. 

4. Ratio and Poststratification Estimators 

The double sampling regression estimator 

presented in section 2 can be shown to include as 

a special case most of the familiar double 

sampling estimators. Two of these special cases 

will be displayed in this section. The first 

special case of interest is related to a super- 
population model of the form 

C 

s [ Y ( ~ ) ]  = 2; 6 ( ~ )  x ( ~ )  f ~ ( c )  
c 

c = l  
,, 

with variance function 

V[Y(£)] = a X ( £ )  

o 

where 

6 ( ~ )  = 
c 

1 if person £ belongs to poststratum c 

0 otherwise 

The poststrata indexed by c = I,...,C above could 

include population subgroups identified in terms 

of X variate intervals crossed with various person 

classification variables. Letting X(£) = X(~) N 
6(~) where 6(~) is the vector of C one-zero post- N 
stratum indicators for person £, then the MPS 

selections would be with probabilities v(£) 

proportional to 4X(£)/K(£) where K(£) denotes 

person £'s first phase inclusion probability. The 

estimator for ~(c) in this instance is 
^ 

8 ( c )  = y + ( c / M P S )  / x + ( c l M P S )  

with 

x + ( c l M P S )  = Z 8 ( .e )  x ( £ )  
c 

£gMPS 

y+(clMPS) = 2; (5 (£) Y(£) 
c 

£8MPS 

The associated double sampling estimator is then 
^ ^ 

Y+(DSR) = Z X(£) 6(£) ~ (MPS)/71(£) 

£ s t t I t S  

C ^ ^ 

= 2; X+ ( c I H H S )  f 3 ( c )  
. 

c - 1  

C ^ 

= Z X + ( c I H H S )  [ y + ( c l M P S ) / x + ( c l M P S ) ]  
c = l  

Since Z(£) = X(£)6(£)/V(£) has no intercept term, 

the associated estimator is not necessarily 

consistent. Note that the ~(c) ratios are not 

weighted. The familiar consistent estimator with 

Z m(£)6 (£)Y(£)/~(£)Em(£) ^ 
c 

^* £gMPS Y+ (c IMPS ) 
( c )  = = ^  

Z m(£)8 (£)X(£)/~(£)Em(£) 
£gMPS c X+ ( c IMPS ) 

is produced by weighted least squares using the 
weight matrix 
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-3/2 
W = Diag[X(g) ]. 

The double sampling for stratification 

estimator derives from a model with 

C 

g [ y ( g ) ]  = ~ 6 ( g ) p ( c )  
C 

c=1 

v[Y(g)] = 0 2 . 

^ 

I n  t e r m s  o f  t h i s  m o d e l ,  t h e  BLUE f o r  ~ ( c )  i s  t h e  
u n w e i g h t e d  Y mean f o r  c e l l  c ,  n a m e l y ,  

y ( c [MPS)  = Z m ( g ) 6 ( g ) Y ( g ) /  Z m ( £ ) ~ ( g )  
C 

ggMPS ggMPS 

= X 6 ( g ) Y ( ~ ) / m ( c ) .  
C 

geMPS 

The associated DSR is 
^ ^ 

Y+(DSR) = ~ 6 ( ~ ) ~ / ~ ( g )  
ggHHS 

C ^ 

= ~ N+(clHHS)y(clMPS). 

c=l  

Notice that since 

E m ( g )  = m [ 1 / ~ ( g ) ]  / X [ 1 / ~ ( g ) ]  
£gHHS 

^ 

= m / ~(g) N 

the properly weighted consistent estimator for 

p(c) is the unweighted cell mean y(clMPS). Form- 

ing the ratio adjusted MPS sample weights 

C ^ ^ 

aw(g)  = ~ 6 ( ~ ) [ N + ( c ] H H S ) / N + ( c [ M P S ) ]  
C 

c=l  
^ 

it is clear that one can form Y (DSR) as the + 
simple weighted total 

^ 

Y+ (DSR) = [ aw(£) Y(g) . 
£gMPS 

In the following section, an imputation 

strategy is proposed as an alternative to using 

the general double sampling regression estimator 

presented in section 2. While admittedly adding 

some extraneous variation to the full sample 

estimates, the imputation strategy makes the 

regression estimation transparent to analyst 

processing 'public use' tapes. 

5. Model Based Predictions and Randomized 

Imputations 
An alternative to using the general double 

sampling regression estimator developed in section 

2 is to use the prediction equation 

^ ^ P-I ^ 

Y(9.) = [Bo(M) + ]1 X (g) [B (M) q q 
q=l 

to provide medical provider data for household 

survey participants that were not selected for the 

medical provider survey. Utilizing these 

predicted values along with the household survey 

inclusion probabilities K(~), the simple weighted 

total of the predicted values is equivalent to the 

double sampling regression estimator. 

Another robust prediction estimator that has 

some intuitive appeal makes use of the optimum 

medical provider survey weights so that the 

observed Y values for the MPS participants are 

utilized instead of their model based predictions. 

This estimator has the form 
^ 

Y+(DSR) = ~ m(g)Y(£)/2n(£)Em(g) 

ggH 
^ 

+ ~ [ l-f(g) ]Y(£)/2~(£) [ I-F(£) } 

ggH 

where F(£) is the fractional part of Em(g) when 

the expected number of selections for unit g 

exceeds one; otherwise F(~)=Em(~). Similarly, if 

I(£) is the integer part of Em(£), then 

f(~)=m(g)-l(g)is the zero-one sample indicator for 

the event that m(g)=I(g)+l. If we restrict our 

attention to minimum replacemenL designs, then 

E{f(g)}=F(g). The first term in Y+(DSR) sums the 

predicted values for the MPS participants with 

m(~)>0. The second term sums the predicted values 

for the compliment of the MPS sample where 

m(g)=f(~)=0 21us those units with Em(g)>l and 

f(g)=0, say M . For the regression model treated + 
in section 2 with X(g) including V(g), one can 

show that the weighted residuals 

^ 

m(£) [Y(g)-X(~)~(M) ]/K(~)Em(~) 

sum to zero over ~he entire MPS sample. Therefore, 

one can recast Y (DSR) as + 

Y+(DSR) = Z m(£)Y(£)/2mo(g) 

geM 
^ 

+ X Y(~)/2K(£) [ l-F(g) ] 

ggM + 

where 

o(g) = [v(~)l x v(~)l~(~0]. 

ggKHS 

^, 
The estimator Y (DSR) is produced simply as a + 
weighted sum using weights 

m(£)/2mo(g) for ggm 

w(g) = 

I/2K(g)[l-F(g) for £gM + 

and i m p u t i n g  v a l u e s  Y(£)  = X(£)  (M) f o r  t h e  NonMPS 
members i n  M . F o r  t h e  c e r t a i n t y  u n i t s  w i t h  
m ( £ ) > l  and f ( £ ~ = 0  t h a t  b e l o n g  t o  b o t h  M and M+, a 
w e i g h t e d  a v e r a g e  o f  t h e  o b s e r v e d  and p r e d i c t e d  

N 

v a i u e s ,  s a y  Y ( g )  c o u l d  be u s e d  a l o n g  w i t h  t h e  
a g g r e g a t e  w e i g h t  

N 

w(£) = {m(£)/mo(£) + 11~(g) [ l-F(g) ] }/2. 

For the cell mean model, this strategy would 

call for imputing the Y mean Y(c[MPS) for members 

of poststratum c that were not selected for the 

medical provider record check. While this simple 

prediction model imputation strategy is appropriate 
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