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i. INTRODUCTION. The practical aspect of this 
study grew out of the need to develop a method to 
reduce the bias in ratio estimation in stratified 
samples. Several auditing problems and a tax 
assessment ratio study have benefited from this 
research in the early seventies. 

Bias reduction in parametric estimation was 
first presented by Quenouille (1949) and his meth- 
od was called "Jacknife" by Tukey (1958). Miller 
(1974) gives an excellent review of the subject. 
Asymptotics of the Jacknife statistics have been 
recently studied in details by Thorburn (1976, 
1977). 

Let X I, ..., ~ be a random sample from a 

distribution function (df) F(x, 8), where 
8 = 8 (F) is an unknown parameter. Suppose 
that there is a good method to estimate 8, but 
it is biased, and it is desired to reduce this 
bias. Divide the N observations^into n groups 
of k each, i .e., N = nk. Let 80 = @ (X I .... ,XN) 

be the estimate of 8 based on all observations, 
and let ~. = @(X 1 ...... X 

i (i-l)k' Xik +I ' 

Xik+2 ,...,~) be the estimate of 8 based on all 

observations after the deletion of the i-th group, 
i = l,...,n. Define the "pseudo-values" as 
fo i lows : 

^i ^ 8 =n80 - (n-i) i' i =1,2 .... ,n. (i.i) 

The "Jacknife" estimate of 0 is defined by: 

-i n ^i 
Qj = n Zi=le . (1.2) 

Simple calculations show that if E00= 8 + [a/kn] 

+ [b/(kn) 2] + 0(n-B), then E0j = 8 - 

-3 
b/kn(n-l) + 0(n ). Higher order Jacknife 

statistics are defined similarly, see Miller 
(1974). 

The purpose of the present investigation is to 
propose a method to reduce the bias in the multi- 
sample case and demonstrate that this method does 
indeed reduce the bias and eliminates the cross 
product terms of the bias representation, see 
equation (2.6) to follow. Cox and Hinkley (1974), 
Miller (1974), and Jones (1974), independently, 
proposed a closely related method to reduce the 
bias of the first order in the multisample case. 
We shall formulate and discuss this method as we 
go along and discuss its analogy with our defi- 
nition. 

The paper contains five sections, in Section 2 
a formal definition of the multisample Jacknife 
is presented and an estimate of the variance of 
the estimate 8 0 based on multisample pseudo- 
values is developed. In Section 3, the asympto- 
tics of the multisample Jscknife statistics are 
presented, and in Section 4 the method is applied 
to ratio estimate from stratified samples. A 
discussion is presented in Section 5. 

2. MULTISAMPLE JACKNIFE STATISTICS. To fix 
ideas we start by defining Jacknife statistics 
for the two-sample case. Let Xjl ..... XjN., j=l,2 

O 

be two independent samples from df's F, j=l,2. 
] 

Let 0 = e(F I, F 2) be an unknown parameter to be 
estimated by a reasonably good but biased method. 
Divide N. into n. groups of k. each, i.e., 

J J J 
N. = n.k. j = i, 2. Let ~(0 0) denotes the 

J 3 J'  
estimate of e based on all observations from 
the two samples, i.e., 

8 = ~ (X 1 • ,X21 ..... X2N2), (2.1) (0,0) 1 .... KiN I 

let ~ denote the estimate of e obtained 
(i I ,0) 

from the two samples after the deletion of the 
il-st group from the first sample, i.e. 

(i 1,0) = (XII'''''XI [(il-l)k I]' 

X1 ( i l k l + l )  . . . .  'X1N1 'X21 . . . . .  X2N 2) • 
^ 

S i m i l a r l y  we d e f i n e  () and e 
(0,i2) (i I ,i 2) 

f o l l o w s :  

and 

(2.2) 

as 

(0,i 2) = ~ (XII ..... XIN I'X21 ..... X 2[(i2_ l)k 2], 

X 2 (i2k2+ I) ..... X2N2 ) . (2.3) 

(i I ,i 2)=e (Xl I .... 'Xl [ (il-l)kl] 'Xl (i Ikl+l)' 

.... XIN 1 ,X21 ..... X2[ (i2-1)k2] , 

x 2 (i2k2+ I) ..... X2N 2) . (2.4) 

Define the two-sample "pseudo-values" as follows: 
^ 

(il 'i2)=nl n28 (0,0) -(nl-l)n2~ (i I ,0) 

-n I (n2-1)~ (0,i2)+(nl -I) (n2-1)e (i I ,i2)' 

(2.5) 

for ij=l ..... nj, j=l,2. The two-sample Jacknife 

statistic of e is given by: 

nl n2 ^(i i2) (2 6) 
~j=(n In 2)-IZ il=IZi2= le i, • 

LEMMA 2.1. Le__~t n = min(nl,n2) and assume 
that 

Ee (0,0) =O+[al/nlkl ]+[a2/n2k2] +[b12/nln2klk2] 

+[Cl/(nlkl)2]+[c2/(n2k2)2]+O(n -3) (2.7) 

Then 

Eej=e-[el/n I (nl-l)k~ ] - [c2/n2 (n2-1) k2] +0 (n-3). 

(2.8) 

PROOF. Using expression (2.7) for each of 

E0(0,0), E0(il,0) , E0(0,i2) , and Ee(i I,i2) we 

get, ignoring terms of order higher than the 
second, that 
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^ 

Eej=n In2{ e+[a I/n Ik I ]+[a2/n2k2]+[bl2/nln2klk2] 

+[Cl/(nlk I) 2]+[c2/(n2k2)2] } 

- (nl-l)n2{ e+[al / (nl-l)kl ]+[a2/n2k2] 

+[b12/(nl_ l)n2k Ik2]+[c I / (nl_ l)k I) 2] 

+[c2 / (n2k2) 2] } 

-n I (n2-1) { e+[al/nlkl] +[a2/(n2-1)k2] 

+[bl2/nl (n2_l)klk2]+[Cl/(nlk I)2] 

+[c2/((n2-1)k2) 2 ] } 

+(nl-l) (n2-1) { O+[al / (nl-l)kl ]+[a2/(n2-1)k2] 

+[b12/(nl_l) (n2_l)klk2]+[c I / ((nl_l)kl)2] 

+[c2 / ( (n2_l)k 2) 2] }. 

=0- [cl/n I (nl-l)k2 ]- [c2/n2 (n2-1)k22] . (2.9) 

The desired conclusion follows. QED. 

REMARKS. (i) Arvesen (1969) proposed a two- 
sample jacknife estimate, which, in our notation 
may be written as: 

~J =(nl+n2)-l{(n2+n2)~ (0,0) -(nl-l)Zn~=l ~ (i l, 0) 

- (n2-1) E n2 ~ } (2 i0) 
i2=l (0,i 2) • 

Taking expectations, using representation (2.7) 
we get after simple algebra that 

-1 n2 al nl a2 -2 
Eej:e+(nl+n2) [ (~i) (~T)+(~2) (~2) ]+0(n ) 

-i 
=8+0 (n ). (2.11) 

i 
Thus 8j does not reduce the first order bias. 

(ii) If one is only interested in reducing the 
bias of the first order in representation (2.7), 
a simpler formulation of the Jacknife estimate 
would suffice, viz., 

ej= (n l+n2-1) e (0,0)- [ (nl-l)/nl ] 7.nl i~=1 (i~,0) 
n2 ^ (2 12) -[(n2-1)/n2 Ei2=18(0,i2). 

It is easy to see that the first order bias in 
(2.7) is eliminated. The above extension is due 
to Cox and Hinkley (1974), p. 264 and was inves- 
tigated in the context of stratified sampling 
from finite populations by Jones (1974). It was 
also suggested by Miller (1974). Note also that 
Jones (1974) suggests a second order Jacknife in 
the two-sample case but he, unfortunately, over- 
looked the fact that the third term on the right- 
hand side of his (3.2) is also of second order 
whenever ag =0(a h) , g Ch, which invalidates 

his conclusion that his ~(2) is unbiased to the 
third order. 

(iii) It is possible to use the pseudo-values 

(il'i2) to provide a Jacknife-based estimate of 
^ 

the variance of 8(0,0) as follows: 

^2 -iln I n 2 (i i ) )2. (2 13) 
il=lY.i2= I(~ I, 2 _~j oj=(nln2) 

Note that another estimate based on ej is also 

possible, let the pseudo-values of ej be given 
by 

for 

~(il'i2)=(nl+n2-1)e(0,0) -(nl-l)n2~(i 1,0) 

-n I (n2-1)e (0,i2) , (2.14) 

ij=l ..... nj, j=l,2. Thus we can write 

ej= (nln2)-iznl n2 ~ 
il =ili2=le (il ,i2) 

and hence 

~2 -izn I n I (~ (i I ,i 2)_~J)2 
oj= (nln2) ii=17i2=i 

n I -i ~ ) 
= nTiEil=l($(il,0)-nl Inll= 1 (il,0) 

+n217n2 _n21zn2 ^ 2 
i2=l(e(0,i2) i2=l e (0,i2)) . (2.15) 

Note that $j was proposed by Ahmad (1973) and 

for stratified samples from finite populations by 
2 < ~ Jones (1974). It is easy to see that ~j_ . 

The multisample Jacknife estimates may be 
expressed in an analogous way to that of the two- 
sample case. Let -0' = (0 .... ,0), (ij,0)_ = 

(0,...,0,ij,0,...,0) and, similarly define 

(ijl,ij2,0)_ ..... until _i'=(i I ..... ic )" Let 

{Xjl ..... X~ }, j=l ..... c be c independent 

samples fromJdf's F I, ..,Fc, respectively. 
^ 

Denote by e 0 the estimate of a parameter 
e = O(F I .... ,--F c) based on all observations 

from the c-samples, ~(i.,0) the estimate of 0 

based on all observation~ f--rom the c-samples 
after the deletion of the^i-th group from the 

j-th samples, j=l .... ,c, 0(i.l,i.2,0 ) .... , 
^ j J ~(i I ..... ic ) are defined similarly~ The c-sample 

pseudo-values are defined by: 
C C 

~(i I .... i ) ~ c ^ 
' c =( H n ) -Y -i) H n~e 

j =i j O j=l (nj ~ j (ij, 0__) 

+ Z c Z c -i) 2-1) H 
Jl= 1 j2= l(njl (nj ~#jl,j2 

n~e(ijl,ij2,_0)-'''(-l)C~(il,. ..ic )" (2.16) 

The multisample Jacknife statistics is defined 
by: 

C 

~j =( H n )-lyn n ~(i I .... i ) 
j=l j i=l'''Z c=Ic ' c . (2.17) 

A Jacknife-based estimate of the variance of 00 

is also given by: 

^2 c _fEn I n (i I i c ) )2 Z c (~ ..... _~j 
oj=( H n.) il=l.., ic=l 

j=l j (2.18) 

Note that it is also possible to extend the 
Cox and Hinkley-Miller-Jones estimate ~j to 

multisample cases and propose an estimate of the 
variance of ¢0 as follows: 

c -iznl n c ~ ..... ic ) 
~j=( H n.) =iu (il (2.19) 

j=l J il=l'" "Zi 
C 

and 
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~=zc -i n. 
. n.y.J (9 0) j=l j lj=l (ij ,_ 

where 

-nTl znj 9 0)) 2 , 
j lj=l (ij,_ 

(2.20) 

. . . .  c 
(if'" ic)-(Z =inj+l)e0_-Ej=l(nj-i #j _ 

ij=l,...,nj, j=l,...,c. (2.21) 

3. ASYMPTOTIC PROPERTIES. In this section 
^ 

some asymptotic properties of ej and ^2 aj are 

presented. In the spirit of the recent work of 
Thorburn (1976, 1977) we find sufficient condi- 
tions such that ~0 and 9j are asymptotically 

- ^~ 
equivalent in distribution and that o is con- 

sistent. Let n = rain n. and assume that 
l<j<n j 

no =0(n), j=l,...,c. The following conditions 
J 

are needed to establish Theorems 3.1 and 3.2 be- 
low. Assume throughout this section that k.=l, 

J 
j=l, ... ,c. 

^ 

Condition (I). Assume that Var 90=a2/n+¢ 
- - n' 

where (i) s =0(n-l), (ii) ~n-Sn_l-o(n-2), and 
n 

-3 
(iii) ~n-2an-l+~n-2 =°(n )" 

Condition (II). Let e denote the o, (n +l) 
J ^ 

estimate 90 with the j-th sample of size 
^ 

(nj+l) ....... j=l-- c Assume that E(9 O, (nj+l) I 

XII,''',XIn ,''-,Xjl,''',Xjn°,''',Xcl .... 'Xcn ) 
n. ^ I J -3 c 

= ~n°+l 90+rnj' where (iv) Var(rnj)=o(n ) 

J ^ -2 
(v) coV(rnj ,90)=6nj=O(n ), and ~nj-~. n(n-l) = 

-3 
o(n ), j=l,...,c. 

Note that the above conditions are multisample 
versions of those used by Thorburn (1976, 1977) 
where he discusses cases where the conditions 
are satisfied and also presents the interrela- 
tions between them (see p o 30 of Thorburn (1976)). 

THEOREM 3.1. Suppose that conditions (I) and 

(II) are satisfied. If the pseudo-values 

8(ii, ,~ ) "'" c converge in the second mean to 

random variables @ (il'''''i2) for every 
1/2 

il,...,i c, as n ÷ ~, then n (j-9) con- 

verges i__n_n distribution to a normal random vari- 
able with 0 mean and variance o -~, as n ÷ ~. 

PROOF. Since this resembles very closely that 
of Theorem 3.2 of Thorburn, it sball only be 
sketched. Again for notational convenience let 
c=2. Thus 

Var (9 (il 'i2) 

n2) 2Var9 (0,0)+(nl-l) 2n2Var9 (il,0) =(n I ) 

+n 2 (n 2-1) 2Var9 
(0,i2) 

+ 2 all the covariances. (3.1) 

Using Conditions (I) and (II) and after some 
algebra and cancellation it can be shown that 

Var(~ (iI'i2))=o2+o(I), ij=l ..... nj, j=l,2. In 

similar fashion we may show that 

cov(9 (il ,i2) 9 (il, i2") =COV (e (il ' i2 ) 0 (il*,i2)) 

=coy (9 (il ' i2), 9 (il*' i2") ) =0 (n-l), (3.2) 

for all if#if* and i 2 #i2" 1 < i i * < n , ., . ., 

^ -- 1 J -- J 

j=l,2. Hence Var(0j-90) =o(n-l), and thus it 

follows from Theorem 2.2 of Thorburn (1977) that 

0 (i i, i2) are independent random variables. 

Assume without loss of generality that Eg~il,i2 )A.. 

= EO (il 'i2) =0 for all l<i .<no, j=l,2. Let --j--j 

= n n i ) 
@j (nln2)-lli I y i 2 @(il, 2 (3 3) 

1 =i 2 =i " " 

It is possible, using methods similar to those of 

Theorem 3.2, to show that Var(~j-gj) Thorburn, 

=o(n-l), but @j is equivalent to a U-statistic 

(Hoeffding (1948)) and is easily seen from the 
results of Hoeffding (1948) to be asymptotically 
normal with mean 0 and variance 02 . The result 
follows. QED 

THEOREM 3.2. Under the conditions of Theorem 

^2 is a consistent estimate of 02 3.1, oj __ • 

PROOF. Again we let c=2. Note that it is 
not difficult to see that 

o2=(nln2)-IEnl n 2 (i i 2) 2 
n il=lli2=l (@ i, -@j) ÷ 02 in 

probability as n ÷ ~. (3.4) 

But also we can establish, using arguments out- 
lined in Theorem 3.1 above except obviously more 

^ 2 - 0 2  ÷ 0 t e d i o u s  c a l c u l a t i o n s  a r e  n e e d e d ,  t h a t  o j  n 

in probability as n ÷ ~. QED 

REMARKS. (i) It follows from Theorems 3.1 

and 3.2 that nl/2(~j-e)/aj-- is asymptotically 

standard normal. Thus approximate Jacknife con- 
^ ^ 

fidence interval for 9 may be given by ej+z /2a J 

where ms/2 is such that P[IZI <_ z /2 ] = I-~ 

where Z denotes the standard normal variate. 

(ii) If e=f(el .... e ) where e admits 
' c ^ j ^ ^ 

an estimate^ ej j=l .. c. Thus e0=f(el,.. ) 
' '" ' " ~ C 

and ej is the multisample Jacknife--es timate o f  

e. If f admits bounded partial derivatives up 
to the fourth order and if the conditions of 
Theorem 3.1, above are satisfied then 
1/2 ? 

n (0j-9) is asymptotically normal with mean 

0 and variance o2=Zj=IOj f j c  2 (91 , . .., e c ) ' where 

f.(91 ..... 9 ) = 8f(O I ..... 9 )/~gj, j=l ..... c. 
j c c 

An application of this result is the case of 

means ~j=EXjI=gj, j=l ..... c in which case all 
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conditions of Theorem 3.1 are satisfied if f 
has bounded fourth derivative and we obtain an 
extension to multisample of a result of Miller 
(1964). A direct proof of this special case 
based on Miller's argument appears in Ahmad 
(1973). 

4. AN APPLICATION. In this section we show 
that the multisample Jacknife estimates defined 
in Section 2 not only do they reduce the bias 
but also they reduce the variance when estimating 
the ratio of means from stratified samples taken 
from normal populations. Let ~ ~ [0, i] be any 
real number, and let F I and F 2 be two inde- 
pendent d.f.'s. Further, assume that F=~F I 
+(l-a)F2, and that F is two dimensional such 
that (X,Y) ~ F. We shall be concerned with 
estimating R=EY/EX. If (Xj,Yj) ~ Fj, j=l,2, 

then we can write 

R=[ ~EY I +(i-~) EY2] / [~EX I +(l-a) EX2] . (4 .I) 

Let (XjI,Yjl) ..... (Xjn ,Yjn.) be a random 

sample from F°(x,y), jJi,2, j then the usual 
J 

estimate of R is given by 

R0=[~YI+(I-~)Y2]/[aXI+(I-~)X2]. (4.2) 

Now assume that Xj ~ N(l,hj), where 

h. =0(n~ I) j=l 2 and that Yj=yj+BXj+ej where J ] ' , 

Ee.=0 and cov(Xj,ej)=0, j=l,2, in which case 
we j ha ve 

R=~+[ayl+(l-~)y2] / [~EXI +(i-~) EX2] , 

and hence 

RO=~B+{ [c~y~+(~-~)Ye + ae~+(1-~)e~]}/ 
_ 

bx~+(~-~)x2]. 

Thus 

(4.3) 

(4.4) 

ER 0= B+ [~yl+ (i-~) y2] E [aXl+ (I-~)X2] -I . (4.5) 
^ 

To obtain the bias in ER 0 we proceed as follows: 
_ 

let ~I =I-XI, and ~2=I-X2, thus e~Xl+(l-a)X 2 
- - -n~l n. 

=l-(a~l+(l-a)~2) , where ~j J ZiJl~ji , j=l,2, 

and hence 

E (~i +(i_~)~2)-I=E [i_ (~ I+ (l_a)~ 2)]-i 

= l+E(e~l+(l-~) ~2)2+E(~l+(l-e)~2)4 

+ E(~I+(I-~) ~2) 6+0(n-4), 

where n=min(nl,n2). Obtaining the above expected 
values and simplifying we get 

Bias (R0) =E (R0-R) 

= [~yl+(l-~)y2] [~2h i+(I-~) 2h2+3~4h2 

+3 (i-~) 4h2+6~2(i-~ ) 2h ih2+15~ 6h 13 

+15 (i-~) 6h23+36~2 (l-a) 4h I h 2 

+36a 4 (l-~)2h2h2+0(n -4) ]. (4.7) 

As for the variance of R0 we obtain after some 
calculations, that 

Var R 0= [~yl+ (l-~) y2] 2 [~2h i+ (l-a) 2h2+8 ~4h~ 

+8 (l-a) 4h 2+16a 2 (i-~) 2h I h 2 

+69a6h13+69 (l-a) 6h32+168a2 (i-~) 4h iN2 

+168~ 4 (l-a) 2h2h2+0 (n-4) ] 

+[~261+(i-a) 262] [3a2h I +3 (i-~) 2h2+15~ 6h 2 

+15 (l-s) 4h2+30~ 2 (l-a) 2h i h2 

+i 05 a 6h 3+10 5 (i-~) 6h 23+25 2~ 2 (l-a) 4h i h 2 

+252~ 4 (l-~)2h2h2+0(n -4) ], (4.8) 

-2 where 6.=Ee. , i=1,2. Now, to obtain the multi- 
] J 

sample Jacknife estimate of R we use definition 
(2.6) of Section 2 and get 

Rj - - =B+[~y l+(l-~)Y2] { [nln2/(~Xl+(l-~)X2) ] 

nl (~ I+ (l_a)~2)-i 
-[ (nl-l)n2/nl ] Eil=l 

_i -i 
in2 (~XI+(I-~)X2 2) -[n l(n2-1)/n2] i2= 1 

n n 2 _i 
+[nl-l) (n2-1)/nln2]E. lll=lli2=l (oXI 1 

_i -i 
+(1-a)xe 2) } 

+{ [nln2 (~el+(l-~)e2) / (~I+(I-~)X2) ] 

n -i - -i 
-[ (nl-l)n2/nl ] Ell [ (ae i I+ (i-~) e2)/(~XI 1 

i=i 

+(l-a)X2) ] 

n 2 _ _i 2 
-[nl(n2-1)/n2]li2=l[(~el+(l-~)e2 )/(~I 

_i2 n n 2 
+ (I-~)X 2 ) ] +[ (nl-l) (n2-1)/nln2] Ell l=iZi2=l 

_i 2 -i -i 
[(~ell+(l-~)e2 )/(~XII+(I-~)X22)] }. 

(4.9) 

Straightforward but lengthy algebra leads to the 
following expression of the bias and the variance 
of Rj" 

Bias (R j) =E (Rj-R) 

=[ayl+(l-~)y2 ] {-3~4h2[nl/(nl-l) ] 

-3 (i-~)4h2 In2/(n2-1) ] 

-i5~6h13[nl (2nl-l)/(nl-l) 2] 

-15 (i-~) 6h32 In 2 (2n2-i) / (n2-1) 2] +0 (n -4)}. 

It is evident from (4.7) and (4.10) that the bias 
of Rj is smaller than the bias of R0' and 

the bias of Rj attains its minimum at n.=N 
J J 

(i.e., kj=l), j=l,2. Next, we obtain the 

variance of Rj as follows: 

VarRj= [ayl +(l-a) Y 2] 2 { ~2hl +(1-~) 2h I + 

+[2n I / (nl-l) ]~4h2+[2n2/(n2-1) ] (l-~)4h 2 

-[6n I (4n~-14nl+ll) / (nl-l) 3]~6h~ 

- [6n2(4n2-14n2 +II ) / (n2-1) 3] (l-a) 6h~} 



+[0, 2~51+(1_0,) 2(~2 ] { l+ [n l  / (nl-1) ]0,2hl 

+[n2/(n2-1) ] (1-0,) 2h2- [2nl (2n2-9n1+8) / 

(n1-1)3] c~4h~ 
- [2n 2 (2n2-9n2+8) / (n2-1) 3 ] (1-0,) 4h 2 

-[3n 1 (28n41-149n~+260n2-173n1+32) / 

(n1-~)Sc~h~-[Bn~(28n~-~49n~+260n~ 
_173n2+3 2) / (n2_ 1) 5] (1-0,) 6h23+O(n-4) }. 

(4.11) 

Note that when 0,=0 or 0,=1 expressions (4.10) 
and (4.11) reduce to the one sample case of Rao 
(1965). It is clear from (4.8) and (4.11) that 
the multisample Jacknife estimate in this case 
reduces the variance. 

To illustrate the difference between @j and 

@j defined, respectively, in (2.6) and (2.12)we 

calculated each one of them and their correspond- 
ing variance estimates o and ~ as given 

in (2.13) and (2.15), respectively, using the 
data given in the illustration of Jones (1974). 

The results are as follows: @j=2.834, @j=2.911, 

^2 -2 
oJ=0.5788, and oJ=0.7630. Since the usual 

estimate of R tends to be positively biased 
then the bias reduction of @j is better due 

to the elimination of the cross product term. 
Note also that o is smaller than o . 

5. DISCUSSION. From previous sections we have 
seen that when extending Quenoulli's method of 
bias reduction to multisample case there are more 
than one way to do so. Two methods have been 
discussed in the present investigation. Since 
the bias representation would include cross-pro- 
duct terms, the method we proposed here eliminates 
the first order bias as well as the cross product 
term, while in the definition of Cox and Hinkley 
(1974), and Jones (1974) only the bias of the 
first order is eliminated. The variance estimate 
based on our definition is smaller than that 
based on the definition of the above mentioned 
authors. 

We did not attempt to answer all the questions 
pertaining to all aspects of theory and applica- 
tions of the proposed multisample Jacknife and 
evidently not a few open questions are left which 

will, hopefully, stimulate some more interest in 

the subject. A few open questions that are 
obvious include: (i) How can higher order 
multisample Jacknife estimates be obtained? (ii) 
How can one obtain multisample generalized 
Jacknife statistics (for generalized Jacknife 
see Section 2.2 of Miller (1974))? Can the multi- 
sample Jacknife be applied to the maximum likeli- 
hood estimation in a rigorous way? Computational 
aspects of the subject need also be investigated. 
This writer is now working on a general solution 
to calculate the multisample Jacknife with arbit- 

rary group sizes. 
In Remark (ii) following Theorems 3.1 and 3.2 

we pointed out that an application of Theorem 
3.1 would be to estimate functions of populations 
means by sample means. As done in Arvesen (1969), 
it is possible to extend this remark to cover 
functions of parameters that are estimable by 
U-statistics. The interested reader may find it 
useful exercise to put down the details. 

In closing, the review of Miller (1974) carries 
very many areas of potential applications and 
further research for multivariate Jacknife sta- 

tistics. 
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