George Kattakkuzhy, Health Care Financing Administration

1. INTRODUCTION: In sample survey we faced the dilema of choosing one of several estimators available. Here we are comparing a combined estimator and a separate estimator to see which one is more stable under a large change in one finding. In Medicaid Quality Control (MQC) program, the State takes a sample of size n to review. Out of these n cases the Federal takes a subsample of size n^{\prime} and re-reviews them. The results are combined using a regression. An error payment percentage is calculated from the regression results as the ratio of the error amount to the total payment amount. The MOC program has cases in three strata - MAO, AFDC and SSI. For the combined estimator the error payment percentage is derived as the ratio of a combined error amount of three strata to the combined total payment of three strata. For the separate estimator, an error payment percentage is calculated for each stratum and the rates are joined together nsing the weight of each stratum. 2. NOMATION: The combined estimator
$r_{c}=w_{i} y^{\prime \prime} / w_{i} m_{i} "$ where w_{i} is the stratum case weight (J),
y_{i} " is the straturn average cror amount
(remression),
m_{i} " is the stratum average total payment amount
(regression);
The separate estimator $r_{s}=v_{i} r_{i}$ where w_{i} is the stratum payment weight (2);
$r_{i}=\bar{y}^{\prime \prime}{ }_{i} / \bar{m}_{i}$ is the stratum error rate and,
$\bar{y}_{i}^{\prime}=\bar{y}_{i}+b\left(\bar{x}_{i}-\bar{x}_{i}^{\prime}\right)$,
$\bar{m}_{i}=\bar{m}_{i}+c\left(\bar{u}_{i}-\bar{u}{ }_{i}\right)(3) ;$
where \bar{y}_{i}, \bar{m}_{i} are subsample average amounts accor-
ding to Federal re_reviews; b, c are regression coefficients; \bar{x}_{i}, \bar{u}_{i} are State averages for full sample and $\bar{x}_{i}{ }^{\prime}, \bar{u}_{i}{ }^{\prime}$ 'are State averages for the subsample part. X and Y are error amounts while m and u are total payment amounts.
2. SIMULATTON: This is an empirical study of the two estimators given above. In actual practice, this occurs when either the Regional Office finds an entry error or the State finds an error. For the study purposes wo consider a state with full sample sizes of 428 in MAO, 984 in AFDC, and 1217 in SSI and subsample sizes of 137 in MAO, 193 in AFDC, and 134 in SSI. We assume that there is no change in the total payment amount. The change is in the error amount designation.

One case could be in the following situations. (1) The case is in subsample and only $y_{i j}$ changed.
(2) The case is in subsample and only $x_{i j}$ changed.
(3) The case is in subsample and both $x_{i j}$ and
$y_{i j}$ changed. (4) The case is not in subsample but is in full sample and $x_{i j}$ changed. The only changing error amount is assumed $\$ 669$ for one case in MAO stratum. (669 to 0). The effect is same if the change occurred in any other stratum.
(We did study changes under a larger and smaller amounts but results are similar.)
4. OBSERVATIONS: Table 1 gives the full sample mean and subsample means under the changes.

The regression coefficient b has to be calculated for the changing conditions. The results are given below.

Table 2
Regression Coefficient

	MAO	AFDS	Both
separate	separate	combined	
No change	.97363	1.0095	.97867
Y only	.50914	1.0095	.51779
X, X^{\prime} only	.96429	1.0095	.96574
$X, X \& Y$.97509	1.0095	.97619
X only	.97863	1.0095	.97867

There was no change assumed for the total payment.
The $\overline{\mathrm{m}}$ " for MAO is 307.33 , for $A F D C$ is 101.91 and the combined is 188.54 for the two strata together. Table 3 gives the MAO error rate along with the 2 stratum Combined and Separate estimates. Table 3
Error Rates

(separate)			
	MAO only	$\mathrm{r}_{\mathrm{c}} \%$	r ${ }_{\text {s }}$
No change	7.9915_{5}	5.9903	6.2319
X only	6.3414_{4572}	4.8990	5.0794
X and X^{\prime} on ${ }^{\prime} \mathrm{y}$	$9.0314{ }_{37445}$	6.7311	7.0014
X, X^{\prime} and Y	7.45560469	5.6170	5.8366
X only	7.49384938	5.6484	5.8697

It can be seen from the above table that r_{c} is more closer together than r_{s}. This is the true even if we look at the percentage of change in number r_{s}. However, the variance of these estimates show much variation. Variance of combined estimate is almost double that of separate estimate. The variances are given in Table 4. Table 4

Varia	e and	rd D	iation	
	Com-	Sep-	Com-	Sep-
	bined	arate	bined \%	arate \%
No change	. 0005137	. 0002616	2.26\%	1.62\%
Y only	. 0005843	. 0002722	2.42\%	1.65\%
X and X only	. 0007445	. 0003490	2.73\%	1.87\%
$\mathrm{X}, \mathrm{S}^{\prime}$ and 4	. 0006036	. 0002647	2.46\%	1.63\%

This shows that separate estimate has interval estimate shorter than the combined estimate. But if we look at the point estimate only then the combined estimate looks better under the condition we are checking.

