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1. Introduction 

Estimates of some population parameter can 
usually be improved when supplementary informat ion 
is used. For example, i f  we are est imating average 
hourly earnings at a given t ime we can usually improve 
the sample survey measurement  at that  t ime by 
averaging it with an updated es t imate  from the 
preceeding t ime (or times). This technique is used by 
the Bureau of the Census in their retail  t rade 

survey. (1) This type of improved est imator  usually 
takes the form aY + bX where X and Y are 2 
est imators  of the same thing and a and b are fixed 
real numbers. 

The mean square error of Z is denoted as M(Z) 

: E(Z-w)2 : V(Z)+B2(Z) 

where B(Z) = E(Z)-w is the bias of Z in 

est imating w. 

Thus from the covariance matr ix  of D the mean 

square error of Z is: 

M(Z) = a2V(Y)+b2V(X)+2abCxy+(agY+bEX-w) 2 

where EY denotes the expected value of Y. Given the 

covariance s t ructure  of X and Y, M(Z) is a function 

of a and b. It can be wri t ten as 

This type of composite es t imator  often results 
from empirical Bayes est imation,  for example,  the 

games-Stein e s t ima to r . ( l l )  Another example is the 
empirical Bayes es t imate  of variance that  was derived 

in order to improve sample allocation. (9) 

This paper examines the least res t r ic ted case of 
composite est imation.  Let's s tar t  with two quite 
arbi trary real valued random variables,X and Y, 

defined on a probability space (X, B, p).(8) The only 
restr ict ion placed on X and Y is that  their second 
moments exist.  

Then let w be any real number. How should2we 
choose real numbers a and b so that E(w-aY-bX)  is 
minimized? When does a solution exist? What is the 
Inf )2 

(a,b) E(w-aY-bX and how does this minimum 

compare to the minimum when a and b are res t r ic ted 

as: a=l -b ,  0 < a < l ?  What happens if EX = w or EY = 
w or both? How robust is Z(a,b)= aY + bX when a 
and b deviate from their optimal values? This paper 
examines these questions using geometr ic  and tabular 
presentat ions.  

M(Z) = a2Ey 2 + b2EX 2 + 2abEXY 

-2awEY - 2bwEX + w 2 . 

Thus M(Z) is a continuous differentiable function of 
a a n d  b which gets large a s a  or b or both get large 
in absolute value. It is also clear that  it has an unique 
minimum which can be found by solving the system: 

~ M(Z) 
=0  --., 

.~j a 

-~j M(Z) 

G b 
=0  

(2.1) 

The solution of this system of linear equations is 
the point (a ~, b ~) in the (a,b) plane given by: 

a* : w(EYEX 2 -  EXEXY)/F 

b* = w(EXEY 2 - EYEXY)/F 
(2.2) 

where F =  EX2Ey 2 -  (EXY) 2 >f0 by the 
Cauchy-Schwar t z inequality. 

2. Mathematical  Structure 

Let X be the composite est imator. That is Z = 
aY + bX and let the covariance matr ix  of the vector 
D = (Y, X, Z) be: 

E(D'D) - E'(D)E(D) = 

V(Y) C x y  C y z  

C x y  V(X) C X Z  

C y z  CXZ V(Z) 

This matrix can be writ ten as a function of the 

variances and covariance of X and Y as: 

V(Y) C x y  aV(Y) + b C x y  

CXy V(X) a C x y  + bV(X) 

a V ( Y ) + b C x y  a C x y + b V ( X ) a 2 V ( Y ) + b 2 V ( X ) + 2 a b C x y  

The one restr ict ion is F ~ 0 which is equivalent to 
the linear independence of X and Y. 
Let Z* = a*Y + b*X. We studied the properties of Z* 
via computer  simulation. These computer  studies gave 
rise to the following conjecture.  
(Note that  - w B(Z) = w (w-aEY-bEX) is a planar 
surface in the (a,b,u) coordinate system.) The point 
(a*, b*, M(Z*)) is contained in the intersection of the 
surface M(Z)and -wB(Z). The proof of the conjecture 
is a routine computat ion.  Thus we get theorem 1. 

THEOREM 1: M(Z* )=  - wB(Z*)  
where Z ~ = a*Y + b*X  . 

(2.3) 

The consequences of this theorem are. 

COROLLARYI: IEZ ~1 <-. t w l (2.4) 
COROLLARY 2: v/-V(Z ~) ~< l w/21 (2.5) 

PROOF: Corollary o~e is trivial.  To see corollary 2 
write M(Z*)=V(Z*)+B~(Z *) and substi tute -wB(Z *) for 
M(Z*). This quadratic in B(Z *) then yields 
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B(Z*) = (-w +_ 7W 2---ttv(z*) ) /2  this implies 
2 w - 4V(Z*) ) 0 and this implies 

t . . . . . . . . . . .  

.~'v(z*) ~ !wl2i. 

Corollary 1 is another example of the well known 
fact  that by shrinking an unbiased estimator toward 
the origin its mean square error can be reduced. 
corollary 2 gives an unconditional upper bound on the 
Relative Error of I/2. 

These results on the composite of two est imators 
can be general ized to any f in i te  number of est imators. 
If we are given random variables, X I ,  X?, . . . .  ,X and 
wish to choo2se real numbers, a l ,  a2,*-----a n suchnthat 
E(w-~--.-aiX i) is minimized we get: 

A" = w M-1EX where. 
-X- -X- -X-) 

/~'= (a I , a  2 , ...... a n 
M = E(X X') 

& x,=(x1,  x2 ...... 'Xn) 

The corr~osite est imator wi th opt imal weights is 
then, Z*  = A'X and its expected value is w-EX 'M-~EX.  
Theorem I and its two corol lar ies obtain in this case 
as wel l  as in the case of two r a n d y ,  variables~ A 
short computat ion gives: M(Z* )  = w (I - E X ' M - ' E X )  
= - w B ( Z * ) .  

3. An Empirical Investigatio n 

This general composite est imator  was tested 
empir ica l ly  on a sampling problem. Samples of various 
sizes were drawn f rom Normal populations according 
to the fo l lowing model: 

~ j = 1,2,---,5 
xij = f + g j + t  i for  : i 1,2,---,N 

r j = 1,2,--- ,5 
xij =f  +gj +t i j  I o @ =  N+I,N+2, . . . .  ,N+M 

where the t. and t.. are independent N(0, I )  var iates 
1 

Thus exact ly  N lhdependent normal var iates are 
generated for  the f i rs t  set of x'sand 5M are generated 
for  the second set of x's. This model can be thought of 
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Mean Square Error Surface for Z = aY + bX 
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as two independent samples of x's for each of f ive 
t ime periods• The f i rst  set of x's can be thought of as 
the overlap portion of the sample. That is, the units 
which remain in the sample  for all f ive t ime periods. 
Note  tha t  the t ime  period to t ime period cor re la t ion  
within this group is 1 since the same normal va r i a t e  is 
used for all f ive t ime periods for any g i v e n i ,  l~<i~N . 
Saying this another  way we have j~(Xik,Xil) = 1  

The second set  of x's can be thought  of as the  M 
sample  members  which are  drawn anew at each t ime  
period. All the var ia tes  in this group a re  independent  
for all i > N  and j, l~<j<.5. Thus the sample  mean for 
t ime  period j can be wr i t t en  as: 

xj = (II(N+M))(N XNj + M XMj) 

where x N. is the sample mean at t ime period j of the 
N units l~ the f i rst  group of x's. 3•.. is sample mean 
of the second group at t ime period j ~ q o t e  that, XNl + 

g = XN2, XN2 + g = XN3, e t c .  We compared  es t imators ,  
~ - _ 

k a k x k , w i t h  xj for j = 2, 3, 4, and 5. The measure  

of comparison is an e s t ima te  of ave rage  mean square 
er ror  for 20 repl icat ions  of the exper iment .  

0.1 
\ 

c 

These simulations were done using a variety of 
sample sizes for tile 2 portions of the sample at each 
t ime period. N, the size of the overlap portion, ran 
from 25 to I00 and M, the size of the independent 
portion ran from N/2 to 2.5 N, for each dif ferent N 
that was used. 

When the covar iance  matr ix  of the x. is known then 
the s imulat ions showed tha t  the compJs i t e  e s t ima to r  
provides substant ia l  gaines. When this matr ix  must  be 
e s t ima ted  from the sample  da ta  the general  compos i te  
e s t ima to r  did poorly . This lack of robustness with 
respec t  to es t imat ing  the covar iance  mat r ix  is a 
serious drawback,  it would cer ta in ly  present  a 
problem in sample survey applicat ions where  the  
covar iance  matr ix  must be es t ima ted .  

The three dimensional plots show very clearly why 
this estimator can be very sensitive to minor 
deviations from the optimum weights. These are 
graphs of the truncated mean square error surface as a 
funct ion of the weights  in the two component  case  of 
the  general  compos i te  e s t ima to r .  The two plots shown 
here  a re  views of the  same sur face  f rom d i f fe ren t  
angles.  They show the mean square error  surface  in 
the case  when V(X) = 1.2, V!Y)= .8, CXY = .6, 
E X =  4.2 a n d E Y  = 3.8 a md v~= ~ .  
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This visual aid shows very clearly that restr ict ing 
the weights to the line, a + b = I,  can have a very 
positive ef fect  on robustness. If the equation of the 
straight l ine lying direct ly under the "gut ter"  can be 
estimated wi th confidence then one should restr ict  
(a)b) to l ie on i t .  In any case whenever the bias of the 
components is not large then a + b = I as a good rule 
of thumb. 

More simulations were done while using the 
restr ict ion that the weights l ie on a hyperplane. The 
equation of this hyperplane was estimated from the 
generated data. These restr ict ions provided some 
improvement in the performance of the general 
composite est imator but more needs to be done to 
improve their robustness. 

it. Conclusions 

In the cases where the general composite estimator 
is robust it 's use should certa in ly be considered 
because of it's s impl ic i ty compared to the more usual 
methods of adjusting each component of a composite 
est imator for bias ( I -8) .  These bias adjustments in the 
general composite estimator are unnecessary as they 
are done automat ical ly by the weights. 

One measure of robustness (in the n - component 
case) is the second derivat ive of M(Z) wi th respect to 
a. evaluated at a.* for i=l)2,...)n. These values 
• I • 

mdlcate how f la t  t~e mean square error surface is at 
the point (a* l )a*2, . . . )an) .~ A short computation shows 

that these values E(X~) for i=l ,2,. . . ,n. Thus when are 

E(X 2 ) are small for i=l,2,.. .)n then the general 

composite estimator should be considered. 

I would like to express my thanks to Alfreda 
Reeves who typed the final paper. 
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