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1. Introduction

Estimates of some population parameter can
usually be improved when supplementary information
is used. For example, if we are estimating average
hourly earnings at a given time we can usually improve
the sample survey measurement at that time by
averaging it with an updated estimate from the
preceeding time (or times). This technique is used by
the Bureau of the Census in  their retail trade

(1)

survey. This type of improved estimator usually
takes the form aY + bX where X and Y are 2
estimators of the same thing and a and b are fixed
real numbers.

This type of composite estimator often results
from empirical Bayes estimation, for example, the

James-Stein estimator.(“) Another example is the
empirical Bayes estimate of variance that was derived

)

in order to improve sample allocation.

This paper examines the least restricted case of
composite estimation. Let's start with two quite
arbitrary real valued random variables,X and Y,

defined on a probability space (X, B, P).(g) The only
restriction placed on X and Y is that their second
moments exist.

Then let w be any real number. How should,we
choose real numbers a and b so that E(w-aY-bX)“ is
minimized? When does a solution exist? What is the
Inf

(a,b)
compare to the minimum when a and b are restricted

as: a=l-b, 0 < a<1? What happens if EX = w or EY =
w or both? How robust is Z(a,b) = aY + bX when a
and b deviate from their optimal values? This paper
examines these questions using geometric and tabular
presentations.

E(w—aY-bX)2 and how does this minimum

2. Mathematical Structure

Let X be the composite estimator. Thatis Z =
aY + bX and let the covariance matrix of the vector
D = (Y, X, Z) be:

V) ¢

xy Cyz

E(D'D) - EYD)E(D) = C viX) C ‘
XY Xz

Cyz Cxz Y@

- -

This matrix can be written as a function of the

variances and covariance of X and Y as:

v(Y) Cyy aV(Y) + bCyy
aC + bV(X)

Cxy V&) 2Cxy |
av(Y)+bCyy aCXY+bV(X) a“v(Y)+b“V(X)+2abCx y !
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The mean square error of Z is denoted as M(Z)
= EZ-w)? = Vz:BA(2)
where B(Z) = E(Z)-w is the bias of Z in

estimating w.

Thus from the covariance matrix of D the mean
square error of Z is:

M(2) a?V(Y)+b2V(X)+2abC y y +QEY +bEX-w)?
where EY denotes the expected value of Y. Given the
covariance structure of X and Y, M(Z) is a function

of a and b. It can be written as

M(Z) = a2EYZ + b2EX? + 2abEXY

-2awEY - 2bwEX + w2 .

Thus M(Z) is a continuous differentiable function of
aand b which gets large as a or b or both get large
in absolute value. It is also clear that it has an unique
minimum which can be found by solving the system:

- M(Z)

— =0

~a

- (2.1)
= M(2)

—_— =0

Zb

The solution of this system of linear equations is
the point (a*, b*) in the (a,b) plane given by:
a* = wEYEX? - EXEXY)/F
2 (2.2)
b* = w(EXEY® - EYEXY)F
where F = EX?EYZ - (EXY)? 2 0 by the
Cauchy-Schwartz inequality.

The one restriction is F £0 which is equivalent to
the linear independence of X and Y.
Let Z* = a*Y + b*X, We studied the properties of Z*
via computer simulation. These computer studies gave
rise to the following conjecture.
(Note that - w B{(Z) = w (w-aEY-bEX) is a planar
surface in the (a,b,u) coordinate system.) The point
(a*, b*, M(Z*)) is contained in the intersection of the
surface M(Z) and -wB(Z). The proof of the conjecture
is a routine computation. Thus we get theorem 1.

THEOREM 1: M(Z*) = - wB(Z*) (2.3)
where Z* = a*Y + b*X .

The consequences of this theorem are.

COROLLARY1: [Ez*] < {w! (2.4)

COROLLARY 2: /V(Z*) < |w/2| (2.5)

PROOF: Corollary ope is trivial. To see corollary 2
write M(Z*)=V(Z*)+B“(Z*) and substitute -wB(Z*) for
M(Z*). This quadratic in B(Z*) then yields



B(Z*) = (-w + JwZ - 4v(z*)) /2 this implies
w? - 4v(z*) »
(zr) <

0 and this implies
fw/2;.

Corollary 1 is another example of the well known
fact that by shrinking an unbiased estimator toward
the origin its mean square error can be reduced.
corollary 2 gives an unconditional upper bound on the
Relative Error of 1/2.

These results on the composite of two estimators
can be generalized to any finite number of estimators.
If we are given random variables, Xl’ X,y--=--,X _and
wish to chogse real numbers, a;, a,,----a_ such that

-~ gse rea’ nu 1’ =2 n
E(w-ﬁ,;ﬂaixi) is minimized we get:
A =wM EX

~ * *

Al=(@) ,ay e a_)
M = E(X X1)

& X'= (X[ Xy vomvary X)

where .

Mean Square Error Surface for Z =

AXIS

il
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The composite estimator with optimal weighfs is
then, Z* = A'X and its expected value is w-EX'M™"EX.
Theorem 1 and its two corollaries obtain in this case
as well as in the case of two rand%m variables1 A
short computation gives: M(Z*) = w” (1 - EX'M™"EX)
= -wB(Z*).

3. An Empirical Investigation

This general composite estimator was tested
empirically on a sampling problem, Samples of various
sizes were drawn from Normal populations according
to the following model: .

j=1,2y---,5
xij =f+gj+ Y for {i=1,2,---,N
¢ j= 1,2,---,5

& X;; = f+gj+ ti' forii = N+1,N+2,----,N+M

J }

where the t. and t.. are independent N(0,1) variates.
Thus exactfy N i’ndependent normal variates are
generated for the first set of x'sand 5M are generated
for the second set of x's. This model can be thought of

aYyY + bX

m
|
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as two independent samples of x's for each of five
time periods. The first set of x's can be thought of as
the overlap portion of the sample. That is, the units
which remain in the sample for all five time periods.
Note that the time period to time period correlation
within this group is ! since the same normal variate is
used for all five time periods for any given i, 1<isN .
Saying this another way we have ,ﬁ(xik,xil) = 1.

The second set of x's can be thought of as the M
sample members which are drawn anew at each time
period. All the variates in this group are independent
for all i>N and j, 1¢j$5. Thus the sample mean for
time period j can be written as:

X; = (1/(N+M))N XN + M xMj)
where ;N' is the sample mean at time period j of the
N units il the first group of x's. X... |

group . is sample mean
of the second group at time period j. Note that, §N1 +

g = ENZ’ ;NZ +g= ;NB’ etc. We compared estimators,
k€ % §k, with x, for j = 2, 3, 4, and 5. The measure
& ]

of comparison is an estimate of average mean square
error for 20 replications of the experiment.
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315

<
X .l
‘\\\ ﬂJ IS
o ,
.2 £ ﬂx

P

These simulations were done using a variety of
sample sizes for the 2 portions of the sample at each
time period. N, the size of the overlap portion, ran
from 25 to 100 and M, the size of the independent
portion ran from N/2 to 2.5 N, for each different N
that was used.

When the covariance matrix of the X, is known then
the simulations showed that the composite estimator
provides substantial gaines. When this matrix must be
estimated from the sample data the general composite
estimator did poorly . This lack of robustness with
respect to estimating the covariance matrix is a
serious drawback. it would certainly present a
problem in sample survey applications where the
covariance matrix must be estimated.

The three dimensional plots show very clearly why
this estimator can be very sensitive to minor
deviations from the optimum weights. These are
graphs of the truncated mean square error surface as a
function of the weights in the two component case of
the general composite estimator. The two plots shown
here are views of the same surface from different
angles. They show the mean square error surface in
the case when V(X) = 1.2, V(Y) = .8, CXY = .6,

EX = 4.2and EY = 3.8 and w=4,



This visual aid shows very clearly that restricting
the weights to the line, a + b = 1, can have a very
positive effect on robustness. If the equation of the
straight line lying directly under the "gutter" can be
estimated with confidence then one should restrict
(a,b) to lie on it. In any case whenever the bias of the
components is not large then a + b = 1 as a good rule
of thumb.

More simulations were done while using the
restriction that the weights lie on a hyperplane. The
equation of this hyperplane was estimated from the
generated data. These restrictions provided some
improvement in the performance of the general
composite estimator but more needs to be done to
improve their robustness.

4. Conclusions

In the cases where the general composite estimator
is robust it's use should certainly be considered
because of it's simplicity compared to the more usual
methods of adjusting each component of a composite
estimator for bias (1-8). These bias adjustments in the
general composite estimator are unnecessary as they
are done automatically by the weights.

One measure of robustness (in the n - component
case) is the second derivative of M(Z) with respect to
a. evaluated at a* for i=1,2,...,n. These values
indicate how flat the mean square error surface is at
the point (a*l,a*z,...,a;). A short computation shows

that these values are E(Xiz)for i=1,2,...,n. Thus when
E(Xi2 ) are small for i=1,2,..,n then the general

composite estimator should be considered.
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