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INTRODUCTION 

The Current Population Survey (CPS) is a prob- 
ability sample survey of the U.S. population con- 
ducted monthly by the U.S. Bureau of the Census 
for the U.S. Bureau of Labor Statistics. Its 
primary purpose is to provide monthly estimates 
of labor force characteristics. The sample 
design is a stratified multistage design. This 
paper is an analysis of various techniques 
investigated for stratifying the primary sampling 
units (PSUs), also known as first stage units. 

The current stratification of PSUs is based on 
a national stratification that was formed by hand 
in the early 1950's using 1950 Decennial Census 
data. Since then it has been periodically 
revised and expanded to provide at least some 
coverage in every state and to reflect changes 
in population size and distribution and changes 
in industrial mix among areas. (See Technical 
Papers 7 and 40.) The strata were formed to 
provide national and regional estimates of labor 
force characteristics. As a result, most of 
these national strata cross state boundaries. 

However, in the mid 1970's, the data needs 
changed significantly when estimates were 
required at the state and substate level. In 
order to obtain state and substate estimates with 
sufficient reliability, about three-quarters of 
the states were either supplemented, restrati- 
fied, or both. The between-PSU variances for 
state estimates are very large in those states 
that were not restratified, but even in the 
states that were restratified, the variances are 
not as small as they could be. This is because 
of the severe constraints that were imposed upon 
the restratification process to retain all exist- 
ing sample PSUs. 

When the changes in requirements are consid- 
ered together with the general deterioration in 
the national strata caused by demographic and 
labor force shifts, it becomes clear that con- 
siderable gains in efficiency could be obtained 
by restratifying all of the states. Since 
computer time is less expensive now, and new data 
from the 1980 Decennial Census will soon be avail- 
able, it was decided to do this as part of a 
general redesign of the CPS and other surveys 
conducted by the Bureau. 

After reviewing several methods, it was 
decided that an appropriate approach would be to 
modify a clustering algorithm developed by 
Friedman and Rubin (1967). (The modification is 
described in the section, "Definition of a Good 
Stratification.") Work was begun on the modi- 
fications in the summer of 1980. Since it was 
then unclear whether the modifications could be 
completed within our time constraints, we decided 
to simultaneously compare some additional methods 
in greater detail. There was also the consid- 
eration that until the modifications had been 
completed and the algorithm had been tested, it 
could not be determined whether the algorithm 
would adequately fulfill our needs. Thus the 
primary purpose of this study was to identify 
alternate methods in case the modified 
Friedman-Rubin Algorithm was not ready or did 

not work satisfactorily. 
While the study was in progress, it became 

apparent that it would be possible to modify at 
least the major section of the Friedman-Rubin 
Algorithm. So the scope of the study was 
expanded to also determine whether it was suf- 
ficient to modify the major section (the hill- 
climbing pass) or it was necessary to modify 
two additional sections (the forcing and reassign- 
ment passes) as well. (For a discussion of these 
passes, see the section, "Non-Hierarchical 
Algorithms .") 

STRATIFICATION METHODS AND CLUSTER ANALYSIS 
In this ~ Section We first discuss ' what seems to 

be the traditional approach to stratification and 
our reasons for not using it. We then discuss 
cluster analysis and how it has come to be used 
as a tool for stratification. 

Aside from using personal judgment, the method 
of stratification referred to most often in the 
texts on sampling theory is what we refer to as 
rectangular stratification. (See Cochran (1977) 
and Kish (1965).) The range of each stratifica- 
tion variable is partitioned. Then the Cartesian 
product of the partitions is formed. Each 
n-dimensional cell which contains at least one 
of the sampling units is then defined to be a 
stratum. In the case of a single continuous 
variable and optimal or proportional allocation 
of sample, the optimal boundary points were deter- 
mined by Dalenius (1950). His work has been 
extended to two continuous variables by Ghosh 
(1963) • A non-linear programming approach for 
several continuous or discrete variables has been 
developed by Schneeberger (1970). 

It was decided that the rectangular methods 
are inappropriate for our problem for several 
reasons. The first is that the minimum number of 
strata that can be formed is quite large if there 
are very many stratification variables. Suppose 
that ~ere are J variables and that the range of 
the j variable is to be partitioned into L. 

J 
cells. Then the number of strata to be formed is 

(LI)(L2)-.-(Lj) > 2 J. This is too'many strata 

for most states. (One possible solution to this 
problem might be to take the principle components 
of the data matrix as suggested by Hagood and 
Bernert (1945) and to stratify using the factor 
scores of the units.) The second reason is that 
there are not enough PSUs in most states for the 
distribution of the stratification variables to 
be considered approximately continuous. This 
condition is more likely to be satisfied when 
stratifying second or third stage units. The 
final reason is that roughly equal stratum popu- 
lations are necessary in order to have both equal 
weights and efficient utilization of interviewers. 
This would have been difficult to achieve with 
rectangular strata. 

Cluster analysis is a collection of techniques 
for exploratory data analysis. It works with 
sets of objects and tries to find natural group- 
ings among them. After it has been performed, 
other types of analysis can be performed on the 
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groups to see if they are really different and 
to better understand the whole population. The 
origins of cluster analysis are to be found in 
taxonomy. With the development of high speed 
computers, a number of algorithms were developed 
in the sixties by MacQueen (1967), Johnson 
(1967), Beale (1969), Friedman and Rubin (1967), 
as well as by numerous others. Though the pur- 
pose of cluster analysis is to identify natural 
groupings of objects, it frequently occurs that 
if the objects are taken to be PSUs and the clus- 
ters to be strata, then the between-PSU vari- 
ances resulting from sampling are small. This 
effect of cluster analysis is what led us to con- 
sider using it as a method of stratification. 

After we started work, we discovered that we 
were not the first to try this approach. Start- 
ing in the late sixties there have been several 
previous applications of cluster analysis to the 
problem of stratification of sampling units. 
The first efforts were made by marketing scien- 
tists, Green, et al. (1967), Day and Heeler 
(1971), and Golder and Yeomans (1973). The 
first effort by sample survey statisticians was 
the work of DahmstrSm and Hagnell (1974, 1978) 
with the Swedish Labor Survey as an example. The 
modified Friedman-Rubin algorithm is quite simi- 
lar to the one they developed in 1978. The modi- 
fications to Friedman and Rubin's algorithm were 
completed despite the similarity because of the 
uncertainty in how long it might take to obtain 
a copy of their program. 

THE ALGORITHMS 

For the reasons cited above, it was decided 
that using a clustering algorithm to stratify 
is the most promising approach. After research 
and consultation, we decided on the algorithms 
which we wanted to test. The main criteria were 
potential effectiveness, availability and ease 
of implementation. The main sources were 
Mezzich (1975), Hartigan (1975), and Anderberg 
(1973). There are many algorithms described in 
these sources in addition to the ones studied. 
None of the authors were interested, though, in 
using clustering algorithms for stratification 
purposes. So we give below brief descriptions 
of the algorithms from the point of view of 
stratification. 

There are two principal types of clustering 
algorithms : Hierarchical and Non-hierarchical. 
The hierarchical algorithms seek a family of 
stratifications such that there is a stratifica- 
tion for every possible number of strata and 
such that every stratum in each stratification 
is contained in exactly one stratum of every 
higher stratification, i The non-hierarchical 
algorithms seek only one stratification with a 
prespecified number of strata. 

Hierarchical Algorithms 

The hierarchical algorithms which we studied 
were linkage algorithms. We chose them because 
of their availability and simplicity of use as 
part of BMDP. The linkage algorithms start out 
assuming that each PSU is self-representing. 
They then collapse the most similar strata, two 
at a time, until there is only one stratum. 
They differ only on the definition of similarity. 

The complete linkage algorithms (also known 
as farthest neighbor and maximum distance 
algorithms) define the similarity of two strata 
to be the similarity of the two least similar 

PSUs contained in them. The average linkage 
al~oritb~s define the similarity of two strata 
to be either the similarity of their centers 
or the average similarity of their PSUs. The 
single linkage algorithms (also known as nearest 
neighbor and minimum distance algorithms) define 
the similarity of two strata to be the similarity 
of the two most similar PSUs contained in 
them. 

The similarity of PSUs is defined in a number 
of ways. Define for each PSU a vector consist- 
ing of the values of the stratification vari- 
ables for the PSU. The most common measure of 
similarity between PSUs is the squared euclidean 
distance between their vectors. Also used are 
a measure of association between vectors 2, the 
absolute value of this association between 
vectors, the angle between vectors, as well as 
others. We studied complete, average, and 
single linkage using both squared euclidean dis- 
tances and associations between vectors. Results 
are presented in Table 2. 

Non-hierarchical Algorithms 

The two non-hierarchical algorithms which we 
studied were an algorithm by Beale (1969) called 
euclidean cluster analysis, and Friedman and 
Rubin's algorithm (1967), without any of our 
modifications. 

Both algorithms are characterized by the iter- 
ative reallocation of PSUs to strata in such a 
way as to optimize some criterion function. We 
give a brief description of the algorithms below. 
For more detail, we refer you to the respective 
articles. 

Friedman and Rubin's algorithm can optimize 
any one of three different criteria, two of which 
are invariant under non-singular linear transfor- 
mations of the data. It has three different 
methods for determining which reallocations to 
try. These methods are referred to as the hill- 
climbing pass, the forcing pass, and the reas- 
signment pass. Use of the hill-climbing pass 
guarantees the finding of a "one move local 
optimum" of the criterion function. A "one move 
local optimum," hereafter referred to simply as 
a local optimum, is a stratification which 
cannot be improved by the reailocation of any 
single PSU. The forcing and reassignment passes 
are heuristic devices for "getting past" inferior 
local optima. None of the three methods guar- 
antees the finding of an absolute optimum. 

Beale's algorithm optimizes a criterion that 
is the same as one of the three criteria opti- 
mized by Friedman and Rubin's algorithm using 
a method of reallocation similar to the hill- 
climbing pass. At this point it will be 
helpful to set forth some notation. 

Let g be the number of strata, n k be the 

number of PSUs in the k-th stratum, and Y'i be 
the population and U.ki be the estimated k 

3 
number of inhabitants who have the j-th char- 
acteristic in the i-th PSU of the k-th stratum. 
Let a dot signify summation on a subscript. 
Then the within stratum sum of squared errors 
(WSS) for the estimated average proportion of 
the population which have the j-th character- 
istic is 

12 ~nk 1 ~ g nk / Ujki I Ujk i i 
S 2 , __ 
J = k E=l ~iE--I \ Yki - nk iE--I Yki !" 
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Let J be the number of stratification vari- 
ables, and let m. be a scale factor for the j-th 

J 
variable. (This can be used to equalize the 
total sums of squared errors or to stress one 
variable over another.) Let 

J 
S2 = E m. S 2 . 

j=l J J 

This is one of the criterion functions which 
Friedman and Rubin's algorithm minimizes. (The 
other two criterion functions are of less inter- 
est to us and were not tested.) It is also the 
criterion function which Beale's algorithm 
minimizes. Let me stress that S 2 is of no 
intrinsic interest to us; it is merely a function 
which is used in these and other clustering algo- 
r i t hms. 

DEFINITION OF A GOOD STRATIFICATION 

As mentioned earlier, the purpose of strati- 
fication is to minimize between-PSU variances. 
Using the same notation, the between-PSU vari- 
ance for the j-th variable is 

g n k 2 
Yki / Yk- 

V 2 = E E ---- ____ u - uj , 
J k=l i=l YE. ,.Yki jki k'/ 

where it is assumed that one sample PSU is chos~ 
from each stratum with probability proportionate 
to size (PPS). (Note the similarity between 
S 2 and V 2.) Since PPS sampling is used for the 
J J 

CPS, it is clear that the best criterion function 
to minimize is 

J 
V2 = ~. m. V 2 . 

j=l J J 

This is in fact the principal modification 
made to Friedman and Rubin's algorithm. Instead 
of minimizing S 2 or one of the other two cri- 
terion functions, the modified algorithm mini- 
mizes V 2. (See Kostanich, et al.) The original 
purpose of this study though was to find pos- 
sible alternatives, should the modifications not 
be completed in time. Thus, in comparing the 
algorithms, we evaluated the performance of each 
by how much it reduced V 2. 

Once it became clear that the hill-climbing 
pass of Friedman and Rubin's algorithm would be 
modified in time to minimize V 2, our efforts were 
directed towards determining whether the forcing 
and reassignment passes should be modified to 
minimize V ~ as well. We did this by evaluating 
how effective the forcing and reassignment 
passes were at reducing S 2 beyond the amount it 
was reduced by the original hill-climbing pass. 
We then used this information as an indication 
of how effective modified forcing and reassign- 
ment passes might be in reducing V 2 beyond the 
amount it is reduced by the modified hill- 
climbing pass. 

PROCEDURES 

The testing was done on Colorado, 
Pennsylvania, and Mississippi. These states 
were chosen to have representation from three 
of the four census regions and to have a mix of 
demographic characteristics. Portions of each 
state were excluded because they are major pop- 
ulation centers which would be selected with 
certainty in the sample design. Each county 

was treated as a separate PSU. The number of 
strata was somewhat arbitrarily taken to be 12 
in Colorado, I0 in Pennsylvania, and 12 in 
Mississippi. Estimates of population and numbers 
of inhabitants with specific characteristics were 
taken from the 1970 Decennial Census. The char- 
acteristics used for stratification in Colorado 
were unemployed, civilian labor force (CLF), 
Spanish unemployed, and Spanish CLF. In 
Pennsylvania and Mississippi, black unemployed 
and black CLF were substituted for the Spanish 
characteristics. Total population 16 years and 
older was used to calculate proportions and PSU 
probabilities of selection. The data was 
initially scaled to equalize the total sum of 
squared errors for each characteristic. 

To test the linkage algorithms, we used the 
BMDP 77 package. We had to transpose the data 
since the BMDP programs are meant to cluster 
variables, not cases. To test Beale's algorithm, 
we used a FORTRAN subroutine written by Sparks 
(1973). To test Friedman and Rubin's algorithm, 
we used the program written by Rubin. We 
obtained a copy of it from the IBM Program 
Information Center. For a detailed description 
of the program, see Rubin (1967). 

Both Beale's and Friedman and Rubin's algo- 
rithm require an initial stratification as input. 
We felt that the most valid comparison between 
the two would be to input the same random initial 
stratification to both. Unfortunately, this was 
not possible. Sparks' version of Beale's 
algorithm assumes that each PSU belongs to the 
stratum that has the closest center in 
J-dimensional euclidean space, whereas Rubin's 
program allows each PSU to belong to any stratum. 
It happens quite frequently that the center of a 
randomly generated stratum is not close to any 
PSU in J-dimensional euclidean space. This 
leads to an empty stratum, to which PSUs are 
never allocated by Sparks' program. Thus, if 
we input the same 12 random strata to each, the 
comparison of final stratifications would be 
invalidated by the fact that one stratification 
might have only I0 or Ii strata instead of 12. 
It is, of course, easier to minimize V 2 with 12 
strata than with I0 or II. 

We decided that the best solution was to use 
random sets of PSUs as initial stratum centers 
for Sparks' program and to use random stratifica- 
tions for Rubin's program. (Rubin's program 
generates these internally.) The problem 
does not arise with the linkage algorithms since 
they do not require an initial stratification. 
Given a fixed number of strata, each of them 
usually generates a unique stratification. (The 
only exception is when two pairs of strata have 
identical similarity measures. This leads to 
ambiguity as to which pair to collapse first.) 

RESULTS AND ANALYSIS 

Comparison of Algorithms 

We obtained 30 stratifications using Beale's 
algorithm and about 60 using Friedman and 
Rubin's algorithm in each of the three states. 
We discuss the forcing and reassignment passes 
in the next section. For purposes of comparison 
with Beale's algorithm, we were most interested 

in the hill-climbing pass. The method of 
reallocation is similar, but there is at least 
one difference. Friedman and Rubin's algorithm 
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tries to reallocate each PSU to every other 
stratum. Beale's algorithm, as written by 
Sparks, tries to reallocate each PSU only to the 
stratum with the closest center in J-dimensional 
space (excepting the stratum to which the PSU is 
currently allocated). There may be other dif- 
ferences which we could not detect due to the 
size and complexity of Rubin's program and time 
constraints. We calculated the sum of scaled 
between-PSU variances, V 2, for all of the strati- 
fications produced by Beale's algorithm and for 
30 of the produced by the hill-climbing pass of 
Friedman and Rubin's algorithm. Table I shows 
the average V 2 produced by each algorithm in 
each of the three states. 

Since we suspected that Friedman and Rubin's 
algorithm might be better than Beale's, we also 
calculated two-sample t-statistics to test this 
hypothesis in each state. In computing the 
t-statistics, we treated the values of V 2 as 
independent observations from two distributions 
in each state. We then followed standard pro- 
cedures and appealed to the Central Limit 
Theorem to assume that the t-statistics are 
approximately normally distributed. (It is 
difficult to say how good the approximation is 
with thirty observations; it may be rather 
rough.) The t-statistics and the corresponding 
approximate tail areas are given in the fourth 
and fifth columns of Table I. The null hypo- 
thesis that the two algorithms produce strati- 
fications with equally small between-PSU vari- 
ances can be rejected at the level of signi- 
ficance 0.01 in both Colorado and Pennsylvania. 
In Mississippi the difference is not large enough 
to conclude that Friedman and Rubin's algorithm 
is better. 

Table 2 shows the sum of scaled between-PSU 
variances, V 2 for stratifications produced with 
the linkage algorithms for Colorado. These 
values of V 2 are far larger than those for 
stratifications produced by Beale's or Friedman 
and Rubin's algorithms, as can be seen by com- 
parison with Table i. For this reason, we 
dropped the linkage algorithms from consideration 
and did not test them on the other states. 
Though they may be excellent tools for explora- 

tory data analysis, they seem to be ill-suited 
to the task of stratification. 

Forcing and Reassignment Passes 

To assist us in deciding whether to modify 
the forcing and reassignment passes, we eval- 
uated how useful the original versions are at 
reducing S 2, the sum of scaled within stratum 
sums of squared errors. We ran Friedman and 
Rubin's program a total of 201 times on the test 
states. We then calculated for each run how 
much of the total reduction in S 2 was due to the 
forcing and reassignment passes. The results 
are summarized in columns (i) through (3) of 
Table 3. Column (I) gives various potential 
reductions in S 2. Column (2) shows how many 
times each potential reduction was realized. 
It can be seen from column (3) that the two 
passes did not reduce S 2 at all 33.3% of the 
time. The reduction was less than 2% for 52% 
of the runs. The maximum reduction was 25%. 

These results indicate how much reduction in 
S 2 could be achieved by using the forcing and 
reassignment passes if the program is run a 

single time. However, it is a good idea to run 
the program more than once since the quality of 
the stratifications produced by the program 
varies quite a bit from one run to the next and 
does not depend on the quality of the initial 
stratifications (see Table 4). 

To simulate how useful the forcing and reas- 
signment passes would be if the program was run 
several times, we randomly grouped the runs into 
groups of five, ten and twenty. From each group 
we compared the best stratification produced 
by just the hill-climbing pass with the best pro- 
duced by all three passes. The percent reduction 
in S 2 between the two stratifications is the 
reduction due to the forcing and reassignment 
passes. Columns (4), (6) and (8) of Table 3 
show how many times each potential reduction was 
realized when the group sizes were five, ten 
and twenty, respectively. The maximum reduction 
in S e that is achieved by using the two passes 
decreases as the number of runs in a group 
increases: 25% for one run, 9% for five runs, 
5% for ten runs, and 3% for twenty runs. 

Since the number of groups in the analysis 
is very small, the results are not conclusive. 
However, they do give an indication of how the 
usefulness of the forcing and reassignment passes 
decrease as the number of initial stratifications 
increases. Conversely, they provide some infor- 
mation on the potential design efficiency that 
might be lost if only the hill-climbing pass 
is used on a small number of initial stratifica- 
tions instead of all three passes. 

SUMMARY 

Testing in the concurrent paper by Kostanich, 
Judkins, Singh, and Schautz as well as testing 
not published has shown us that there are at 
least two methods of stratification superior 
to those considered in this paper. These methods 
are to use the algorithm developed by Hagnell 
and Dahmstr~m or to use the modified hill- 
climbing pass of Friedman and Rubin's algorithm 
developed here at the Bureau to directly mini- 
mize V 2. If neither of these methods is avail- 
able, then we would rank the alternatives 
presented in this paper in the following order: 
(I) Friedman and Rubin's original algorithm, 
(2) Beale's algorithm, and (3) the various link- 
age algorithms. The difference between the first 
two is slight but seems to be nonetheless pres- 
ent. We have not ranked the rectangular methods 
since they were not easily applicable to the 
problem of stratifying small numbers of PSUs 
using several stratification variables. A more 
appropriate problem for comparison of the 
rectangular methods with the cluster analysis 
methods would be one involving large numbers 
of sampling units. 

Our testing of Friedman and Rubin's algorithm 
showed that most or all of the reduction in S 2 
achieved by using the forcing and reassignment 
passes could also be achieved by using the hill- 
climbing pass on a number of initial stratifica- 
tion. The Bureau chose, therefore, not to 
modify or use the forcing and reassignment 
passes. It is our feeling that under most 
conditions it would not be worthwhile to modify 
and use them in conjunction with the modified 
hill-climbing pass. The only conditions under 
which it might be worthwhile to modify the two 
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passes would be when the numbers of PSUs, 
strata, and characteristics are so large as to 
make prohibitive the cost of using the modified 
hill-climbing with a number of initial stratifica- 
tions. 
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FOOTNOTES 

iHierarchical methods may be of the greatest 
interest to biologists since not only species, 
but also genera, classes, families, etcetera 
may be identified. 

2Note that this association between vectors 
can be used in the BMDP package by specifying 
the correlation option with a transposed data 
matrix. 
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State 

Colorado 
Pennsylvania 
Mississippi 

TABLE I. Comparison of Beale's and Friedman and 
Rubin's Algorithms 

Average V 2 Obtained 
from 30 starts 

Beale ' s 
Algorithm 

8.351xi07 
4.095xi0 s 
4.074xi08 

Friedman & Rub in's 
Algorithm 

(Hill-climbing Pass 
only) 

6.814xi07 
3.669xi0 s 
4.051x10 s 

Test the hypothesis that 
both perform equally well 
against the hypothesis that 
Friedman & Rubin's performs 
better 
Two-Sampie ..... ~Appr~oxima t e 
t-Statistic Tail Area 

-3.62 0.0002 
-2.48 0.0065 
-0.15 0.44 
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Table 2. V 2 Obtained with Linkage Algorithms in Colorado 

li e o~ a t um______~S imi i a____~r i ty 

Complete Linkage 
Average Linkage 
Single Linkage 

Measure of PSU 
Similarity Euclidean 

Distance 

1.5353xi0 s 
5.3534xi0 s 
2.7633xi09 

Association 
Measure 

7.2328xi08 
7.4116xi0 s 
2.6188xi09 

TABLE 3. REDUCTION IN S 2 DUE TO FORCING AND REASSIGNMENT 
PASSES OVER HILL-CLIMBING PASS 

(Colorado, Mississippi and Pennsylvania Combined) 

Percent 
Reduction 

in 
S 2 

(i) 

0.0 
0.0-0.5 
0.5-1.0 
1.0-2.0 
2.0-3.0 
3 .O-4.0 
4.0-5.0 

5 .O-6.0 
6.0-7.0 
7.0-8.0 
8.0-9.0 
9.0-I0.0 

10.0-14.0 
14.0-18.0 
'18.0-22.0 
22.0-26.0 

Total 

Single Runs ! Groups of 
° 5 Runs 

Cumu I a t ive 
Number Percent 
(2) (3) 

Groups of 
I0 Runs 

Cumu i a t ive Cumu I a t ive 
Number Percent Number Percent 
(4) (5) ; (6) (7) 

67 33.3 
16 41.3 
8 45.3 

13 51.8 
6 54.8 

13 61.3 
i0 66.3 

16 74.3 
8 78.3 

II 83.8 
6 86.8 

I0 91.8 

9 96.3 
4 98.3 
3 99.8 
1 100.3 

201 100.3 

8 20.5 
7 38.4 
2 43.5 
8 64.0 
6 79.4 
0 79.4 
6 94.8 

1 97.4 
0 97.4 
0 97.4 
1 I00.0 

39 I00.0 

Groups of 
20 Runs 

I Number 
(8) 

i I 
i 2 II .8 i 

l 

5 41.2 I 
i 0 41.2 

7 82.4 
2 94.2 
0 94.2 
1 I00.I 

17 I00.I 

Cumulative 
Percent 

(9) 

II.I 
44.4 
44.4 
77.7 
99.9 

99.9 

TABLE 4. SUM OF SCALED WITHIN STRATUM SUMS OF SQUARED 
ERRORS (S 2) FOR VARIOUS STAGES OF STRAT- 

IFICATION FOR COLORADO DATA 

Value of S T 
S. No. For Initial After Hill-Climbing After All 

S trat i ficat ion Three 
Pass Only Passes 

4 
5 
6 
7 
8 
9 

i0 

3.2590 
3.4349 
2.9385 
3.3734 
2.6566* 
2.9644 
3.3550 
3.1575 
3.1466 
3.0848 

.44363 

.45302 

.45807 

.45480 

.47285 

.44586 

.43539* 

.48545 

.46615 

.47729 

.44363 

.45302 

.45807 

.43535* 

.45664 

.43535* 

.43539 

.45775 

.45199 

.47729 
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