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ABSTRACT

Given a data base and a system of inter-
variable constraints that acceptable data
records are required to satisfy, it is of
interest to determine the specific combination
of incorrect components in each failing record.
The determination of the components is error
localization and it is shown that in theory the
statistically optimal means of error localiza-
tion is maximal posterior probability error
location (MPPEL). Properties of MPPEL are
stated, and connections to minimal fields to
impute (MFI), minimal weighted fields to impute
(MWFI), and maximal prior probability error
localization are made. Simulation resuits are
presented. The tentative conclusion is
suggested that for practical application, MPPEL
is not significantly superior to MFI.

1. Introduction

Error localization is the process of
inferring which components of a multivariate
datum record are responsible for the record's
failing a given system of constraints.
Constraints may be specified in many ways. A
system of linear constraints is one such, and
could be written for data records x and
constraint matrix M as

Mx < b (1)

x>0 (2)

(This paper will deal exclusively with discrete
data so the additional constraint "x; integer”
must be appended. However, many of the results
of this paper have straight-forward extensions
to the continuous case.) Generally, the viola-
tion of constraints does not unambiguously spe-
cify which of the components is (arel wrong.

For example, given two constraints c! and ¢
clixp + xp + x3 <2 (3)
c?: X2 +2xg <3 (4)

and the datum record y0 = (1, 2, 0, 1), the
record fails both constraints, but it is unclear
which components are wrong.

A plausible heuristic for error localization
is to specify as wrong, the set of components
with smallest cardinality, such that changes in
exactly those components will render the record
acceptable. This is called the minimum fields
to impute (MFI) error localization. Again, with
the constraints and datum record of the previous
example, a change of yQ from 2 to 0, renders
the record acceptable “and is the only single
component change that will do so.

A generalization of the MFI error localiza-
tion is the minimum weighted fields to impute
(MWFI) error Tocalization: given constants
¢y (usually non-negative) and an unacceptable
record yO, find the index set s to minimize

Lci 8 (eq) (5)
subject to yO + ¢ is acceptable (6)
0ifej=0
§(eq) = (7)
1ifej#0
€i = 0 <=> i¢s (8)
2. MPPEL

Statistical error localization requires a
data model, that is, the modelling of the
observed datum record as the true value plus an
error term:
y=x+e (9)

Given this model of the data process, error
localization could be implemented by specifica-
tion as wrong, a set of components which has
maximal posterior probability of error (MPPEL).
Formally, let yO = (y? s sees yg) be an unac-
ceptable datum record, S the collection of all
2N subsets of {1, ..., n}. Then MPPEL can be
specified as

maximize ) p(x | y°) (10)
seS w(s, y°)

with w(s, y9) defined as
w(s,y0) = { x| x acceptable and
Xj = y? for igs
X # y? for des}. (11)
In theory, MPPEL is the optimal error localiza-

tion procedure in the sense specified by thorem
1.

Theorem 1. For the ith observation, let yO be

an unacceptable record, t(y©, i) the true

error localization, and L the family of error
lTocalization procedures. Let S be the collec-
tion of all 2" subsets of {1, ..., n} and s and
t, elements of S, Let &(s, t) =1 if only if

s = t. Then the expectation

E {(s[x(y0), t(y°, 1) (12)
£ e L

is maximized by MPPEL.

Proof. The proof is almost a tautology and

proceeds in two steps.
Step 1. MPPEL dominates any constant
localization.
Step 2. Any localization is a (stochastic)
convex combination of constant localizations.
Theorem 1 states that MPPEL is the optimal
localization procedure, but gives no indication
of how significantly it dominates other
procedures, what its performance is, and how its
performance is a function of the data model, and
more desirably, how its performance is a func-
tion of observables of the data process. Little



is known about these issues, though a few
insights seem to be supported by limited
simultion results and theoretical investigation.

For further development it is useful to
assume independence of errors in components,
that is

pilej =0 |aj # 0} #ple; # 0} =
pi for i # j (13)

If the additional assumption is made that ali
the prior probabilities p;j are equal and have
value p, then for a given data set and erroneous
datum record yO, the probability of MPPEL
correctly localizing the error becomes solely a
function of p. The conjecture is that the func-
tion is (essentially) convex with local maxima
at p = 0 and p = 1. Another conjecture is that
MPPEL deteriorates as the number of components
increases.

Any attempt to evaluate MPPEL seems to
require Bayes' theorum

p(x ¥0) = p(y9 x) p{x) (14)
p(y°)

Hence, for a given failing record y©, an equiva-
lent formulation of MPPEL is

maximize ; D(yq x)p(x)
seS w(s, yo) (15)

Without loss of generality, it can be assumed
that the data space A is a hypercube, that is A
is a cartesian product:

A=A X oue x Ap (16)

If in addition, it is assumed that e has uni-
form distribution over its possible values, then
MPPEL can be evaluated up to a constant.

Set sy, x}) = { i: x5 # y5 }. Then

p(yoix) = I ___Ei_* il (1-p1)
s(y9,x) (lAil'l) ~ s(y%,x) (17)

where | Aj s the cardinality of the allowable
entries in the ith component.

Let [w(s, y°) =, p (x). [If all the probabil-
ities p (x) are equal, then | w(s, yO) is just
the cardinality of w(s, y©®).] Then, with the
assunptions (13) of independence of errors in
components and uniform distribution of component
errors, MPPEL can be written as (18)

maximize ) p(x |y0) = maximize k x

s e S wis,y0) se S

[ w(s,y0)| mpi 0 (1-pj) (18)
—_——e s ~3

it J Ajl-l)

s
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3. Maximal Prior Probability Error Localization
Given only the assumption

p(e; ¢0| ey # 0) = p(ej # 0) = pij, the prior

probability that exactly the components indexed

by the set s are in error is given by

Js = T pj T (1-pj) (19)
S ~S

whenever s is a feasible localization, and zero
otherwise. This can be rewritten as

n
Jg = 1T (1-pj) I pj/ 1 (1-pj) (20)
i=1 S S

The negative log transform yields a constant
plus

L log (1-pi) - ) log pj (21)
S S

Set ¢j = Tog (1 - pj) - Tog pj. It follows that
maximization of Jg, €S is equivalent to minimiza-
tion of

L ci 8{eq), se$S

s
Thus with appropriate choice of coefficients,
MWFI error localization can be interpreted to be
maximal prior probability error localization.
Moreover, it follows immediately that if

| w(s,y0)

nq Ag -1)
S

is constant for feasible localizations {s}, then
maximal prior probability error localization is
MPPEL. Similarly, if for any index sets t and s
related by {t} = {s, k} - that is, t has one
more index than s - it holds that

‘ W(S,y)‘ (l'pk)
— (| Ad -1)
| w(t,y) Pk

> 1 (22)

whenever s is a feasible error localization,
then MPPEL will be a MFI error localization.

4, Evaluation

It must conceded at the outset that MPPEL has
proven to be difficult both to analyze theoreti-
cally and to evaluate by simulation (a good
experimental design is lacking.) Nonetheless, a
limited attempt has been initiated.

To gain computational experience with the
performance of MPPEL, it was applied to two
relatively small simulted examples. In the
following, direct performance comparison to
minimal fields to impute (MFI) 1is provided.

The first simulated example is a 6 component
example with the following possible variable
entries:

A = {0,1} A = 10,1,2,3} (22)
Ao = {0,1,2  Ag = {0,1,2}
Az = (0,1} A = 10,1,2,3)



The locus of points not acceptable is defined by
the explicit edits

e1 = Ap x {0,1} x {0} x Az x {0,1} x Ag

ep = 11} x Ap x {1} x {0,1} x A5 x {2,3} (23)
e3 = {0} x {1,2} x A3 x {1,2,3} x A5 x Ag

eq = A x 10,2} x Az x Ag x Ag x {0,1}

es = {1} x Ap x A3 x {0} x {1,2} x Ag

These edits imply 422 of the 576 points in
AixAox...xAg are unacceptable,

The second simulated example is a 4 component
example with the following possible variable
entries:

A1 = {0,1,2,...,27,28} Az =

(0,1} (24)

{0,1,2,3,4,5}

I\
i

Ar = {0,1,2} Agq
This structure was chosen to compare with (22)
to examine the effect of having one component
(here A1) with much larger cardinality than the
other components. The explicit edits in this

case were

e; = {1,2,3,...,28} x {0} x A3 x {0,1,2}

ep = {16,17,...,28} x Ay x {1} x Ag

ey = {0,1,2,...,10} x {0} x A3 x Ag (25)
eq = {1,2,3,...,28} x {1,2} x A3 x {0}

es = A x Ap x {0} x {3,4,5}

The edits imply 749 of the 1044 points in
A1xApxA3xAgq are unacceptable. The edits were
structured so that the proportion 749/1044 would
be about the same as the proportion 422/576 in
the example of (22) and (23).

The simulation process in a given case produ-
ces 10,000 unacceptable records by the following
means:

1. Generate a record within the given accep-
tance region employing a uniform distri-
bution over this region.

2. Perturb the above record with errors
generated with specified prior probabili-
ties for each field, independently
between components and uniformly within
components.

3. Does the perturbed record fail one or
more explicit edits? If so, proceed. If
not, go to step 1.

4, Localize error according to MWFI and
MPPEL.

In the cases reported, specified prior proba-
bilities of error for individual components were
all equal. For each example, the probabilities
were varied over the values .05, .10, .20, .40,
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.60, .80, .90, .95. When the prior probability
of error is high ("high" depends on the
dimension, but generally .60 or more) it is
indicative of the actual proportion of error
introduced in most components of the 10,000
records. When it is Tow, however, the actual
proportion of error in most components will be
greater than this probability (because at least
one error must be introduced to each record to
put it outside the given acceptance region).

5. Simulation Results

The simulation results for Examples 1 and 2
are given in Tables 1 and 2, respectively.
Method 1 is the MFI method (with equal
ci coefficients) and method 2 is the MPPEL.
summary statistics in these tables have the
following definitions:

The

True proportion of error: The proportion of
the variables in the 10,000 records that were
actually in error. This statistic is clearly
related to performance, and it may be quite
different from the prior probability of error
in each component.

Success index: The proportion of components
correctly dealt with over all solutions (both
methods of localization can produce multiple
solutions for a given record). Components
suggested to be in error that were, or com-
ponents suggested not to be in error that
were not are "correctly dealt with".

Matches/solution: The average number of
exact matches of localized components to com-
ponents actually in error per solution over
the 10,000 records simulated. (For example,
if three alternate solutions are suggested by
error localization and one is the true error
pattern, then one exact match is added to
exact matches and three solutions to
solutions,)

The later two statistics are measures of
performance, while the first statistic
establishes a potential for performance.

Table 1. Simulation Results for Example 1
Summary Method Probability of Error tach Component = p
Statistics .05 .10 .20 .40 .60 .80 .90 .95
True Prop. .198  ,230 .295 .448 .617 .79% .899 .948
Error
Success 1 .798 771,712,588 ,462 ,334 .267 .237
Index 2 .788 761 .706 .586 .512 ,496 .493 ,494
Matches/ 1 .358 .296 .193 066 .014 ,001 .000 .00Q
Solution 2 .385  .315 .211 ,074 ,022 .006 .00l .00O
Tatle 2. Simulation Results fo~ Example 2
Summary Method Probabiiity of Error Each Component = p
Statistics M5 .10 .20 .40 .60 .80 .90 .95
True Prop. .385 .412 .465 .583 .709 .838 .,908 ,941
Error
Success 1 .786  .759 .701 .593 ,489 .397 .353 .,332
Index 2 570 .566  .556 .529 .529 .595 .659% .683
Matches/ 1 .333 .292 .222 .117 .050 .013 .004 .002
Solution 2 L1100 .,105 .095 .072 .073 .080 .087 ,089




Let us first examine the results purely in
terms of MPPEL, i.e. method 2. It is
interesting to note that this method's perfor-
mance varies greatly with the general error
level in Example 1, but is relatively constant
in Example 2. Example 2 may be pathological in
that even when p is as low as .05, more than 80%
of the simulated records have an error in com-
ponent 1, the component with relatively large
cardinality.

Is performance of MPPEL a convex function of
p as conjectured? In Example 1, degraded per-
formance as p increases is reversed only between
.90 and .95 in the success index, and is not
reversed in the matches/solution. In Example 2,
degraded performance is reversed between .40 and
.60 in both measures of performance. Thus, per-
formance is suggested to be a convex function of
p, but the specific functional form seems to
depend significantly on the problem
characteristics.

What is the effect of the number of com-
ponents, which was 6 in Example 1 and 4 in
Example 2? One must take care to compare at
points where the general error level in the
simulation was similar, i.e. "true proportion of
error" was similar. This means levels of .385
or more, since .385 was the minimum observed in
Example 2. At the lower available levels, one
sees little difference. At levels of .8 and
more, performance is better in Example 2 with
fewer components.

How does the performance of method 1, i.e.
MFI, compare to method 2, i.e. MPPEL? Both per-
formance statistics tell about the same story
here. In Example 1, MPPEL appears significantly
better for p > .5, but the two methods look
similar for p < .5. In Example 2, MPPEL appears
significantly better for p > .5, but signifi-
cantly worse for p < .5. Overall, since the
realistic range of p values in a real problem is
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surely p < .5, the simulation results seem to
suggest that MFI does not appear to perform
significantly worse than MPPEL and should
receive serious consideration as a means of
error localization.

In examining individual records in some of
the simulations, it was noted that MPPEL often
localized error to one component whereas there
were frequently two or more components in error.
This pattern is one that might be expeted if the
prior probabilities pj are generally lower than
the true probabilities of error. In effect,
that is what happens. Records outside the given
acceptance region contain more error than is
implied by the p level in Tables 1 and 2, at
least for the lower p levels. Multiple errors
also occur more frequently than the low p levels
might suggest.

Conclusions. With appropriate assumptions MPPEL
is equivalent to maximal prior probability error
localization, and with slightly weaker assump-
tions, equivalent to MFI. In theory, MPPEL is
statistically the optimal error localization
procedure, but the examples simulated suggest
that for practical problems, MPPEL does not per-
form significantly better than MFI. A good
experimental design is reguired but not
presently available to thoroughly test the
various localization techniques.

Reference

I. P. Fellegi and D. Holt (1976), "A Systematic

Approach to Automatic Edit and Imputation,"
Journal of the American Statistical Associatijon,

7T, 17-35.

Research sponsored by the Energy Information
Administration, U.S. Department of Energy, under
contract W-7405-eng-26 with Union Carbide
Corporation.



