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I wish to thank the organiser and authors 
for the chance to discuss two well written 
papers, and for the luxury of receiving them in 
time for the meeting. 

i. General Remarks 

Before commenting on specifics, it might be 
worthwhile distinguishing the following 
approaches to handling item non-response in 
sample survey data: 

a) Discard units with data missing on some 
items, and treat non-response as a form of 
subsampling of the originally sampled items. 

b) Impute or substitute values for the 
missing items and proceed as if the imputed 
values were the true values. 

c) Leave the incomplete data matrix as it 
stands. When computing estimates from the 
data, use an efficient method of estimation 
(for example, maximum likelihood), under an 
assumed model for the item values. For a 
recent review of this approach, see Little 
(1981). 

d) Impute a set of k>l values for each 
missing value (multiple imputation). These 
sets can be used to derive nearly efficient 
estimates of population quantities, 
together with valid estimates of variance 
(Rubin, 1978; Herzog and Rubin, 1981). 

The papers we have heard today primarily 
concern strategy b), although some material is 
devoted to a) and d). Strategies a) and b) are 
relatively naive, although they may be 
acceptable for small amounts of missing data. 
Strategy a) has the disadvantage that it is 
vulnerable to bias in the survey estimates, 
arising from the restriction to responding 
units. Strategy b)may succeed in limiting the 
bias of estimates, but leads to underestimates 
of the variance of sample estimates, since these 
variances are estimated without taking into 
account non-response. Strategies c) and d) have 
the potential of avoiding both these problems, 
but require some expertise to implement. 

2. The paper by Santos. 

In his interesting paper, Mr. Santos 
distinguishes between the problem of missing 
values in estimating means of variables, and in 
estimating functions of the covariance matrix of 
a set of variables, such as covariances or 
slopes. I was a little disappointed in the 
restriction to bivariate relationships, since in 
most analyses of multivariate data partial 
rather than simple regression coefficients are 
of interest. Also~ covariances between pairs of 
variables seem to me to be of limited analytical 

interest. Perhaps the most pertinent case 
covered by the paper is the slope B 1 when x is 
a binary variable, which can be interpreted as 
the difference between the means of y for the 

two categories of x. 

The basic message of the paper is that 
following strategy b), with missing values 
replaced by respondent means or values from a 
hot deck procedure, often leads to bias in 
estimates of variances, covariances and simple 
regression coefficients. I contend that 
unbiased estimates are easier to obtain than the 
author implies. For example, unbiased estimates 
of the covariance Sxy and the slope B 1 can 
be obtained by regresslon imputation, provided 
care is taken in the choice of variables 
included as regressors for predicting missing y 
values. The following choices can be 
distinguished: 

i) Regress y on the constant term only. 
That is, impute the grand mean of y. This 
leads to Santos's (GM) method. 

ii) Regress y on z, treated as categorical 
(CM) or as continuous (RG). 

iii) Regress y on x, treated as 
continuous. This can be shown to be 
equivalent to discarding incomplete units 
(DN). 

iv) Regress y on x, treated as continuous, 
and z, treated as continuous or 
categorical. This method is not considered 
by Santos. 

As Santos demonstrates, the variable x must be 
included in the regression to avoid bias in 
sample estimates of Sxv and B I. Thus 
choices i) and ii) lea~ to biased estimates. 
Choices iii) and iv) lead to unbiased estimates 
of S x. and BI, under certain assumptions y 
about the mechanisms leading to missing data. 

Santos notes that iii) leads to unbiased 
estimates when the probability of response does 
not depend on the values of x, y or z. If we 
make the model assumption that the regression of 
y on x in the population is linear, then this 
condition can be weakened. For unbiasedness it 
is then only necessary that for fixed x, the 
probability of response does not depend on 
values of y or z. In other words, x-values in 
the sample do not need to be a random sample of 
the x-values in the population. 

The choice iv) is superior to iii) in two 
respects. Firstly, it is more efficient in 
cases when z and x jointly predict y better than 
x alone. More significantly, it is unbiased 
when the probability of response depends on the 
value of z. If the model assumptions underlying 
the analysis are correct, then it is unbiased 
provided the probability of response for fixed x 
and z does not depend on y. This condition 
allows the probability of response to depend on 
the values of z and x. More formal conditions 
for unbiasedness can be formulated~ using the 
theory of Rubin (1976). 

O(n -1) unbiased estimates of the sample 
variance can also be derived with negligible 
additional computations. For example, the bias 
in the sample variance in equation (6.4) is 
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easily removed by adding M times the residual 

variance of y given z to the unadjusted sample 
variance. This estimate can also be improved by 

including x as a regressor variable when 
predicting missing y's. 

A final remark on the paper by Mr. Santos 
concerns the illustration using S.I.P. data. It 
is certainly valuable to compare methods on real 
data. However it is important to bear in mind 
that, although the patterns of missing data 
created were designed to match the patterns 
actually encountered, this does not ensure that 
the simulations are realistic. The simulations 
are based on an assumption that the missing data 
are missing at random (in the terminology of 
Rubin, 1976), whereas in practice the 
respondents and non-respondents (and in 
particular, the slopes B 1 for these groups) 
may differ after adjusting for covariates such 
as x and z. The validity of the missing at 
random assumption cannot be addressed by the 
data. Thus the only alternative is to attempt 
to evaluate the sensitivity of final estimates 
to plausible departures from this assumption. 
Some alternative approaches to this exercise are 
discussed in Rubin (1971, 1978) and Little 
(1981). 

3. The paper by Kalton and Kish 

In the discussion of the paper by Mr 
Santos, I have concentrated on methods which 
impute means, perhaps conditional on covariates9 
although the expressions for bias in estimates 
of B 1 and Sxy carry over to hot deck 
analogs. In the paper by Professors Kalton and 
Kish, the emphasis is on hot deck procedures. 
These methods are popular among practitioners, 
perhaps because of ease of implementation, 
although recent applications like the CPS hot 
deck are computationally quite elaborate. They 
also have the advantage over mean imputation of 
preserving the distribution of the imputed 
variable y, which is a particularly useful 
property when y is grouped into categories for 
crosstabulation. 

The penalty of hot deck imputation is an 
increase in variance in the estimates. The main 
message of the Kalton and Kish paper is that the 
selection of m imputed values of y from a set of 
r candidates (perhaps in some restricted 
subclass c of the sample) is an unusual form of 
sampling, since the y-values of all the r 
candidates are known. Hence the candidates can 
be stratified by y before selecting values for 
imputation. This minimizes the additional 
variance from hot deck imputation, whilst 
preserving the distribution of y in the 
impu tat ions. 

The idea is ingenious~ and seems to differ 
from forms of stratification discussed in the 
existing literature, which are directed at 
forming subclasses c defining a set of 
candidates for each value to be imputed. I 
might add that the latter seems to me a more 
important problem, since it relates to 
minimizing bias rather than variance. 
(Incidentally, I hope the authors include more 
references to the hot deck literature in the 
final version of their paper.) 

Professors Kalton and Kish also mention an 
alternative way of reducing imputation variance, 
namely by performing multiple imputations and 
then averaging the estimates from each imputed 
data set. As noted above, multiple imputation 

has one important advantage over single 
imputation methods, namely that valid variance 
estimates can be obtained. In his discussions 
of the technique cited above, Rubin views the 
latter issue as more important than the question 
of variance reduction. In fact, he chooses the 
least efficient form of sampling, simple random 
with replacement, to select imputed values from 
the r candidates. 

Kalton and Kish mention the possibility of 
combining multiple imputation with one of their 
efficient forms of sampling. I do not think 
this is wise, since I think it will destroy the 
validity of the variance estimates from multiple 
imputation with negligible gains of efficiency. 
This point may be clarified by the following 
simple examples. Suppose that in subclass c 
there are ten candidate y-values, and ten values 
to be imputed. Any form of random sampling 
without replacement yields the same set of 
imputed values, and hence the same mean of 
observed and imputed values for subclass c. As 
a result the added variance from the imputations 
is zero, but the variance estimate is too low. 
To take a less extreme case, suppose that five 
values are to be selected from ten candidates, 
and these values are selected by systematic 
sampling from the ordered list of ten y-values. 
If two sets of imputations are carried out, 
there is a 50 percent chance of obtaining the 
same set of imputations for both draws, again 
leading to a poor variance estimate. 

Rubin deliberately chooses random sampling 
with replacement to provide unbiased variance 
estimates. The inefficiency introduced is 
negligible when two or more imputations are 
carried out, as his calculations have shown. 
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