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i. Introduction 

Total nonresponse and item nonresponse are 
both common in surveys. Total nonresponse 
arises from refusal or inability to participate 
and from the not-at-homes or not found. Item 
nonresponse on single questions, also called 
non-ascertained or not answered, may be due to 
refusals, to "don't knows", to omissions, or to 
voided answers. This paper is concerned with 
the efficiency of some methods of adjusting for 
such missing data. Other reasons for 
adjustments include noncoverage and post- 
stratification, our treatment does not cover 
them explicitly but has implications for them 
also. 

Weighting and imputation are two alternative 
methods for increasing the weights of the 
responses in the sample in efforts to compensate 
for the missing nonresponses. The two methods 
have the same average or the same "expected" 
value, hence the same expected residual biases 
that adjustments may not remove entirely. When 
based only on samples of the responses, 
imputation gives rise to an additional source of 
sampling variation, which we term the imputation 
variance. The reduction of this imputation 
variance is our chief objective here. 

For total nonresponses, uniform weighting 
within classes of the sample may be used to 
avoid the imputation variance, though imputation 
of a subsample of respondents" records may be 
used instead to restore self-weighting 
cases. But for item nonresponses, each item 
would need a different set of weights, and to 
avoid that complexity, imputation is generally 
preferred. Since we are concerned with 
imputation variance, we concentrate on item 
nonresponses. However, the results have 
implications also for total nonresponses and for 
other forms of adjustments. 

For simple formulation we assume epsem 
selection and self-weighting for the original 

sample, but extensions to unequal probabilities 
and weights are possible. 

Many of the imputation procedures used to 
assign values for missing responses start with a 
division of the sample into classes based on 

characteristics known for both the respondents 
and nonrespondents to the item in question. The 
imputation classes are formed to meet two aims: 
one that the missing responses can be hopefully 
treated as if missing at random within the 
classes and the other that the values for the 
item be relatively homogeneous within the 
classes. Homogeneity is usually only relative, 
and the randomness of missing values is needed 
but not believed. When the imputation classes 
have been determined, there are various ways of 
carrying out the imputations. One way is by 
mean-value imputation in which al I the 
nonrespondents in a class are assigned the class 
mean for the respondents. Another way is a 
"hot-deck" method in which sample records are 
considered sequentially, with a nonrespondent 
being assigned the value of the preceding 

respondent in the same class. If the records 
are in random order, this "hot-deck" method is 
equivalent to the selection within each class of 
an unrestricted sample (simple random sample 
with replacement) of size equal to the number of 
nonrespondents from the respondents, and then 
the random assignment of the sampled values to 
the nonrespondents (ignoring tile start-up 
problem, or treating the list of records as a 
circular one). We will consider only this 
simple case here; see Bailar and Bailar (1978) 
for a treatment of the case where the records 
are serially correlated. 

The major disadvantage of the mean-value 
imputation method is that it distorts the 
distribution of the item: the concentration of 
all the imputed values at the class means 
creates spikes in the distribution, and the 
element variance is reduced artificially and 
underestimated. For this reason, some method of 
assigning respondents" values to nonrespondents 
is often preferred. However, the selection of 
respondents for these methods gives rise to 
additional variance in the survey estimators. 
We examine the effect of the imputation variance 
on the precision of the estimator of the class 
mean, and propose two main procedures for 
sampling the respondents that reduce the 
additional variance. One procedure is improved 
sample design through selection of respondents 
without replacement (Section 3) and with 

stratification of responses (Section 4). The 
second concerns increasing the size of the 
sample base by multiple imputation and we 
present two techniques for doing this (Section 
5). 

2. Imputation Variance 

In order to examine the variance impact of 
various methods of imputing "values for missing 
responses we consider the estimation of a 
population mean from an epsem sample of size n, 
comprising r responses and m missing values, 
within a single imputation class. Throughout we 
take the variances conditional on fixed r and m. 
For simplicity we assume that the population 
comprises fixed response and nonresponse strata. 

The overall sample mean of respondents" 
values and nonrespondents" missing values is 
given by 

= 7, Yi/n = (EYri + y' Ymi )/n 

= (rYr + mYm)/n = rYr + mYm 

_ 

where r = r/n and m = m/n are the response and 

nonresponse rates respectively. The variance of 
is given by 

V(y) = VlE2(Y) + ElV2(Y) 

where E 2 and V 2 are the expectation and variance 
of ~ over the imputation scheme conditional on 
the initial sample, and E 1 and V I are the 
corresponding operators for the initial 
sampling. 
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For the mean-value imputation scheme, 

Ymi = Yr and hence Y = Yr; for the uniform 
weighting adjustment scheme y = Yralso. For 
these schemes, and indeed for any schemes for 
which Ym = Yr, V2(Y) = 0, and thus 

V(~)  = V l ( ~ r ) .  ( 1 )  

For any compensation scheme that selects m 
respondents by epsem sampling, either to serve 
as donors of values for missing item responses 
in imputation or to receive additional weights 
to represent unit nonrespondents in weighting 

adjustments, E2(~m ) = Yr and hence E2(~) = Yr" 
Also, V2(~) = V2(r~r + m~m ) = m V2(~m). Thus, 
for such schemes, 

V(y) = Vl(Yr ) + m2EIV2(Ym ). (2) 

A comparison of equations (i) and (2) shows 
that V(y) is minimized by using an imputation 
scheme in which Ym = Yr' such as mean-value 
imputation, and that the proportionate increase 
in variance from using a random epsem imputation 
scheme is given by 

I = m2E IV 2(~m )/v l(yr ) " 

In the rest of the paper we examine the 
magnitude of the proportionate increase I for 
various random imputation schemes. We will 
henceforth assume that the initial sample is a 
SRS and that the population size is sufficiently 
large compared to the sample size for the finite 
population correction factor to be ignored. The 
first assumption is justified by our desire for 
simplicity and by dealing here with responses 
within small imputation classes, results from 
these can then be summed for the entire sample. 

2 With these assumptions, V l(yr) = ~/r where S r 
is the element variance of the y-variable in the 
population of respondents. 

3. Selecting With or Without Replacement 

As noted earlier, one type of "hot-deck" 

imputation scheme may be likened to the 
selection of an unrestricted sample of size m 
within the imputation class, and the random 
allocation of the sampled respondents" values to 
the nonrespondents. With the unrestricted 
sampling scheme for imputation, V 2(ym) = s2 /m, 

where ~ = 2E (Yri - Yr~ /(r-l), and hence 
EIV2(~m)- Sr/m (we use lower case letters 
throughout for the conditional sample values, 
which become capitalized in their expected 
values) Thus for unrestricted sampling, and 
with V liyr) = S2/r, and m2EiV2(Ym) = ~2S2/r, 

2 
I = ~(I - m) = P/(I + P) 
U 

where P - m/r is the ratio of nonrespondents to 
respondents, and m = P/(I + P). 

The maximum value of I u = 1/4 occurs for its 
symmetrical curve when the nonresponse rate 

- 1/2 and P- i. This additional imputation 
variance occurs for a "hot-deck" procedure with 
replacement from a randomly ordered list; this 
procedure may be criticized for the unnecessary 
multiple use of some respondents as donors. 

The imputation variance may be reduced by 
selecting the sample of donors with SRS without 
replacement. When r > m the additional variance 
becomes reduced to 

2 
I -m(l-2m) = P(l- e)/(l + P) 
o 

(Hansen et al ~ 1953, Vol. II, pp. 139-141; 
Kish, 1965, pp. 427-428). 

The maximum increase of I = 1/8 occurs when 
O 

= 1/4 and P = 1/3. Table i shows how much 
I < 11, especially for larger values of m. 
T~ough~rare, it is possible for • > 0.5, hence 
for m > r, so that a larger sample is needed 
than the size of the population from which it is 
being drawn. To cope with this problem, we 
generalize the without replacement sampling 
schemes as follows. Let m = kr+t, where k and t 
are non-negative integers and t < r; the case 

k = 0 covers the common situation when r > m. 
Then all respondents serve as donors of imputed 
values to nonrespondents on k occasions, with an 
epsem sample of t of them being selected without 
replacement to serve as donors on one more 
occasion. With such schemes, the mean of the 
imputed values can be expressed as 

Ym = (krY-r + tYt)/m 

where Yt is the mean of the sample of t 
respondents selected for the additional 
donation, and 

V2(Ym ) = t2V2(Yt)/m 2 . (3) 

When the t respondents are selected by SRS, 

EIV2(Yt) = (I - t/r)S~/t 

so that in terms of P" = t/r, 

I = e'(l - e')/(k + I + e.)2, (4) 
o 

in terms of P = m/r = k + P', 

I = (P - k)(k + I - P)/(1 + p)2, 
O 

and in terms of m = m/n, 

__ 

I = [m (i + k) - k][(k + I) - (k + 2)m]. 
o 

As Table i shows, the gains from using the SRS 
imputation scheme are particularly great for the 
rare cases when k > 0, i.e. when m > 0.5. 

Table I. Proportionate increase in variance 
from using the unrestricted (I) and the 
SRS (I-) imputation schemes ~or various 

u nonresponse rates (N) 

5% 
15% 
25% 
35% 
50% 
65% 
75% 
85% 

I 
. . . . .  U . . . . . .  _ ~  

0.0475 
0.1275 
0.1875 
0.2275 
0.2500 
0.2275 
0.1875 
0.1275 

I 
o 

0.0450 
0.1050 
0.1250 
0.1050 
0.0000 
0.0150 
0.0000 
0 0200  
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4. Stratified Sampling for Imputation 

Sampling without replacement rather than with 
replacement is one way to reduce the imputation 
variance. Another way is to select a 
proportionate stratified sample of respondents 
to act as donors of values to the 
nonrespondents. In the usual survey sampling 
context the variable of interest is unknown and 
the strata are formed according to other 
characteristics assumed to be related to that 
variable. In the imputation situation, however, 
the respondents" values are known and can be 
employed in constructing the strata; in 
consequence stratification can be highly 
effective, reducing the imputation variance 
substantially. 

We assume that the stratified sampling scheme 
is carried out without replacement so that, with 
m - kr + t, each respondent serves as a donor on 
k occasions and t respondents are selected by 
proportionate stratified sampling to serve on 
an additional occasion. Assuming for simplicity 
that r/t is an integer so that proportionality 

may be obtained strictly, V 2(Ym ) for this scheme 
is given by (3) with 

V2(Yt) = (I - t/r)S2rw/t 

where s2 w~ is the average within-stratum 
variance. The ratio of this conditional 
imputation variance to that pertaining when the 
SRS imputation scheme is used is thus 

2 2 d = Srw/S r. If respondents are stratified into 
several strata according to their y-values, this 
ratio can be small. 

One simple scheme for stratifying respondents 
by their y-values is to divide them into s 
equal-sized strata, with the first stratum 
containing the r/s respondents with the largest 
y-values, the second stratum containing the r/s 
respondents with the largest y-values among the 
remainder, etc. (assuming for simplicity 
that r/s and t/s are integers). Then a SRS of 
t/s respondents is selected from each stratum to 
serve as donors on the additional occasion. 
This stratification by the variable of interest 
is closely related to the problems of grouping 
and matching, and results in these areas show 
that the ratio can be very small even for small 
values of s (see Aigner et al., 1975 the source 
of Table 2; Kish and Anderson, 1978; Anderson et 
al., 1980). To utilize the results from these 
o-ther areas, d may be expressed as 

d = 
( r - l )  
(s-l) 

Y Y(Yrhi - Yrh )2 F <r-i)] ~i V(Yrh) ] 

Y~Y~(Yrhi - Yr )2--~(r--~s)J V~hi)J 

= [ (r-l) / (r-s) ] (I-B) (5) 

where Yrhi is the value of the y-variable for 
respondent i in stratum h (i = 1,2,...r/s; 

h = 1,2,...s), Yrh = s YYrhi/r is the respondent 
mean in stratum h, V(~h) = ~ (Yrh- Yr) /s, and 

V(Yrhi ) = EE (Yrhi - yr)2 /r. The ratio 
B = V(Yrh)/V(Yrh i ) has been termed the "relative 
explanatory power". The magnitude of B depends 
on the distribution of the y-variable, on the 

way the strata are formed and on the number of 
strata. Table 2 presents values of (I - B) for 
the division of uniform, normal, exponential and 
beta (1/2, 1/2) distributions into equal-sized 
strata, with the number of strata rat Bit B from 2 
to 7. 

Table 2. Values of (I - B) for the division of 
four distributions into equal-sized strata 

Distribution Number 
of 

strata 
(s) Uniform 

0.25 
0.ii 
0.06 
0.04 
O.03 
0.02 

Normal 

0.36 
0 21 
0.14 
0.I0 
0.08 
0.06 

Exponen- 
tial 

0.52 
0.35 
0.26 
0.21 
0.18 
0.15 

Beta 
(1/2,1/2) 

0.19 
0.09 
0.05 
0.03 
0.02 
0.02 

Source Aigner et al. (1975). 

If r is large so that the factor (r-l)/(r-s) 
in (5) can be ignored, (i - B) represents the 
multiplier to be applied to the SRS conditional 
imputation variance to reflect the effect of the 
stratified sampling scheme described above. As 
the results in Table 2 indicate, even with only 
two strata the multiplier is less than 0.5 for 
many distributions~ and with five strata it is 
generally 0.I or less. By applying the multiple 
of 0.i to the proportionate increases in 
variance for the SRS imputation scheme, I for 
various nonresponse rates given in Table°~ , it 
can be seen that the imputation variance 
decreases to a ne~oligible quantity, the maximum 
value of I o is 0.125 when the nonresponse rate 
is 25%, and this falls to 0.0125 when multiplied 
by 0.i. Providing r is large and five or more 
strata (s > 5) are used, the stratified 
imputation scheme can thus effectively eliminate 
the imputation variance. For dichotomous and 
polychotomous variables the case for 
stratification is even stronger because the 
imputation variance can be reduced toward zero 
to the extent that each stratum contains 
respondents from a single category. 

The provisos that r is large and that s > 5 
deserve comment since they may not hold within 
an imputation class Imputation classes are 
formed by subdividing the total sample according 
to characteristics known for both respondents 
and nonrespondents , and often many 
characteristics are available for this purpose; 
as a result, numerous imputation classes may be 
formed, and many of them may be small in size. 

If r is not large, the factor (r-l)/(r-s) in 
(5) will not be n~ligible. With r = 9 and 
s = 5, for instance, this factor is 2, and t~e 
0.i multiplier discussed above increases to 0 2. 
Even with this increase, the imputation variance 
for the stratified imputation scheme remains 
negligible. For smaller values of r, it is 
likely that fewer strata would be used (i.e., 
s < 5). It is, however, generally unwise to 
divide the sample into very small imputation 
classes because the resulting variability in the 
item nonresponse rates effectively creates large 

148 



variation in the weights for different classes 
(this is the same point as applied with forming 
strata for post-stratification - see, for 
instance, Kish, 1965, pp. 90-92). 

The maximum number of strata that can be used 
in an imputation class is s = t, the number of 

respondents needed to serve as donors on an 
additional occasion (m = kr + t). As Table 1 
demonstrates, the imputation variance is 
negligible with the SRS scheme if k > O, so that 

the significant benefits of the stratified 
scheme occur when k = 0 i.e. when m = t. In 

this case, the number of strata that can be 
formed in an imputation class is limited to be 

no greater than the number of nonrespondents in 
that class. It may be appropriate to combine an 
imputation class containing only one or two 

nonrespondents with an adjacent class in order 

to be able to employ several strata in the 
stratified imputation scheme, and hence reduce 
the imputation variance. Such a procedure, 
however, involves a subjective assessment of the 

trade-off between a reduction in imputation 
variance and an increase in nonresponse bias. 

The preceding discussion has assumed for 
simplicity that r/s and t/s are integers, but 
this will not usually be so. In order to use 
the explicit stratification scheme described 

above, s could be chosen to be the highest 

common factor of r and t, but this would often 

result in a very small number of strata. A 
simple alternative is to use systematic sampling 
to obtain implicit stratification. The r 

respondents" y-values are listed in order of 
their sizes, and then a systematic sample of t 
respondents is selected from the list, using a 

procedure of random elimination, fractional 
intervals or a circular list if r/t is not an 
integer (see, for instance, Kish, 1965, p. 116). 

The systematic sampling scheme should also serve 

to make the imputation variance negligible 

providing m is not small. 

5 Multiple Imputations Two Techniques 

In usual sampling situations a standard way 

to reduce variance is to increase sample size. 

In the imputation context the sample size is the 
number of nonrespondents m, but this number can 
be increased. The first technique, which we may 
designate as the fractional imputation technique 
(FIT), consists of dividing each of the 

nonrespondents" records into c parts, and 
assigninz a weight of i/c to each part. Then a 
sample of cm respondents can be selected to 

donate y-values to each of the parts. In this 
way each nonrespondent receives c imputed 

values. A second technique (described in detail 

in an appendix by Kish to a report by Kalton, 

1981) consists of replicating all sampled 
elements c times, then selecting cm respondents 
to assign y-values to the cm nonrespondents so 
created; the sample of cm may be selected from 

the r respondents by the SRS scheme described in 

Section 2. The disadvantage of this second RRIP 
technique (RRIP, repeated replication imputation 
procedure) over the first FIT technique is the 

creation of a larger deck of cases. Its 
advantage is that it maintains a self-weighting 

deck of cases given that this exists initially. 
Both techniques reduce variances by decreasing 

the ratio of weights of imputed/nonimputed 
respondents from 2/1 to (c + l)/c. As shown 

below the reductions are dramatic even for 
c = 2, and the variance tends to vanish for 

c= 3or4. 
The use of multiple imputations has been 

advocated by Rubin (1978, 1979) for measuring 
the total variance of survey estimators 
including the imputation variance, for assessing 

the sensitivity of results to the imputation 

model, and for reducing the magnitude of the 
imputation variance. We are concerned here only 
with the last of these objectives, and will 

consider selection without replacement rather 
than the scheme with replacement proposed by 
Rubin, because the former yields lower 

variances. For multiple imputation without 
replacement m = kr + t becomes cm = ckr + c t, 
with the possibility that c t > r. Let 
ct = ar + u, with a and u int~ers and u < r, so 
that cm = (ck + a)r + u. Then (r-u) respondents 

donate values (ck + a) times to parts of 

nonrespondents and u respondents donate their 
values on (ck + a + I) occasions. 

An alternative, equivalent procedure with 

r~ard to estimating the population mean is to 

carry out single imputations for kr of the 
nonrespondents, and to use c multiple 

imputations only for the remaining t; with this 
procedure each respondent donates a value 
(k + a) times, and u respondents donate their 

values on an additional occasion. The advantage 

of this alternative is that it reduces the size 
of the file of records for analysis from 

[r (I + ck) + ct] to [r (i + k) + ct]. 
With either scheme the overall sample mean 

can be expressed as 

= {rYr[l + k + (a/c)] + (u/C)Yu}/n 

where Yu is the mean of the sample of u 

respondents. Hence the imputation variance with 
a SRS of u respondents is 

EIV2(Y) -- u(l - u/r)S2/c2n2r 

and the proportionate increase in variance from 

this imputation scheme is 

I = ru(l - u/r)/c2n 2. 
m 

With n - r[l + k + (a/c)] + (u/c) and letting 

P" = u/r, I m becomes 

2 
I = P"(l - P")/[c(l + k) + a + P"] . 
m 

For given g = c(l + k) + a, the maximum value of 

I m occurs when P" = g/(l + 2g). The absolute 
maximum occurs when g is a minimum, i.e. when 
k = 0 and a = 0, and with c = 2 imputations per 

nonrespondent (with a single imputation per 
nonrespondent, c = I, P" = P = 1/3, as noted 
above). In this case, P" = 2/5 (corresponding 

to P = 1/5 and N = 1/6) and I m = 1/24 or 4.2%. 
When k- O, a = 0 and c = 3, the maximum value 

of I m is attained with P" = 3/7 (i.e. P = 1/7 
and •- 1/8), when I m = 1/48 or 2.1%. 

In general, when a- 0, I m can be expressed 

in terms of P" = t/r as 
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2 
I - P'(I - cP')/c(k + i + P') 
m 

= [N(k + i) - k][l - ck - ~(i + c- ck)]/c 

Comparison of I m with I o for the SRS scheme in 
(4) shows that ~ is smaller than I o by the 
f ac t or ( i / c) and by the factor 
(i- cP')/(l- P'). The first factor comes 
about because of the increase in the sample size 
from m to cm and the second factor because of 
the decrease in the finite population correction 
term. 

The reduction in imputation variance through 
the use of multiple imputations is most 
important in the range 0% < m < 50%, since this 
is where the imputation variance is sizeable 
with the SRS scheme. In this range k = O, and 
if a = 0, I m reduces to 

I = m[1 - m(1 + c ) ] / c .  
m 

T a b l e  3 c o m p a r e s  t h e  v a l u e s  o f  I o and  Im f o r  

c = 2 i n  t h i s  r a n g e .  I t  shows  t h a t  t h e  u s e  o f  
o n l y  two i m p u t a t i o n s  p e r  n o n r e s p o n d e n t  m a r k e d  l y  
r e d u c e s  t h e  i m p u t a t i o n  v a r i a n c e .  T h e  u s e  o f  
three or four imputations per nonrespondent 
makes it practically vanish. 

Table 3. Proportionate increase in variance 

from using the SRS imputation schemes with 
c = i (I~) and c - 2 (I~) imputed values for 
each nonrespondent for various nonresponse 

rates (~) 

5% 
10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 

I I I 
O m 

0.04500 I 0.02125 
0.08000 I 0.03500 
0.10500 I 0.03125 
0.12000 I 0.04000 
0.12500 I 0.03125 
0.12000 I 0.01500 
0.10500 I 0.00750 
0.08000 I 0.02000 
0.04500 I 0.01750 

6. Discussion 

The results in the preceding sections have 
demonstrated that substantial reductions in 
imputation variance can be achieved by selecting 
donors from the respondents by simple random 
sampling without replacement, by stratified 
sampling, and by the use of multiple imputations 
as compared with unrestricted sampling. The 
commonly-used "hot-deck" imputation procedure 
most closely resembles the unrestricted sampling 
procedure, and it appears that the use of the 
alternative procedures would yield considerable 
improvements on it. It should, however, be 
noted that in practice the order of the data 
file for the "hot deck" is not a random one, and 
the order may produce some additional 
"closeness" of match between respondents and 
nonrespondents. However this "closeness" may 
well be ex~gerated for imputation classes which 
denote small subclasses in the sample. On the 
other hand, imputation variance may often have 
been neglected. 

It should also be pointed out that the "hot 
deck" procedure can be carried out very simply 
with a single computer pass of the survey 
records, whereas the alternative procedures need 
more computer processing. Sampling without 
replacement schemes require the survey records 
first to be separated into imputation classes, 
and within classes into records with responses 
to the item in question and records without such 
responses. The stratification scheme requires 
that the respondents" records then be sorted 
into strata according to their y-values, or 
listed in order of their y-values for systematic 
sampling. While these requirements make the 

procedures more expensive in computer time, they 
can nevertheless be carried out at reasonable 

cost with efficient programming. Coder (1978) 
and Welniak and Coder (1980), for instance, 
describe a complex imputation scheme used with 
the income supplement to the March CPS which is 
based on a sorting and matching operation for 
respondents and nonrespondents. 

It should be further noted that for 
simplicity we have discussed imputation in terms 
of only a single item with missing data, whereas 
in practice survey records often contain many 
missing values. When the survey objectives 
include the estimation of the interrelationships 
between a set of items, it is useful to replace 
all of a record's missing values in the set by 
the responses of a single donor. The use of 
joint imputation also avoids inconsistencies 
among the imputed values. No problems arise in 
incorporating joint imputation into the SRS and 
multiple imputation schemes, but it is less 
easily handled with the stratified scheme. For 
instance, if the donors are selected by 
systematic sampling from the list of respondents 
ordered by their values on one item, the 
reductions in imputation variance from this 
implicit stratification for the other items 
depend on the strengths of the correlations 
between the one item and the other items; 
sizeable correlations are needed if the 
reductions are to be appreciable. The items 
chosen for joint imputatiorLare in fact often 
closely related, but this need not always be so. 

A cost in using a multiple imputation scheme 
is that the data file has to be enlarged from 
r + m to r + cm (or at leas t to 
r + m + (c - l)t) records with the FIT technique 
and to c(r + m) records with the RRIP technique. 
The enlarged data file has then to be used for 
all the survey analyses. 

The stratified and multiple imputation 
schemes have been discussed separately as 
alternative methods for reducing imputation 
variance, but they can also be combined. As 
described in Section 4, the u respondents 
selected in the multiple imputation scheme to 
serve as donors on the additional occasion were 
drawn by SRS but they could equally have been 
drawn by stratified or systematic sampling: in 
this way, the gains from stratification and 
multiple imputation would be combined. Another 
possibility would be to employ the stratified 
imputation scheme in imputation classes in which 
there are sufficient numbers of nonrespondents 
to enable several strata to be formed (say 4 or 
more) and to use multiple imputations (perhaps 
with stratification) in other strata. 
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