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i. In trod uc tion 
Most research on imputation in surveys has 

examined its effects on means, totals, and other 
unlvariate statistics (see, for example, Bailar 
and Bailar, 1978; Ford, 1976; Kalton, 1981). 
Although regression analysis with missing data 
has been examined extensively, the effect of 
imputing missing data on bivariate statistics 
such as covariances, correlations and regression 
coefficients has not been widely treated in 
survey literature. Since regression analysis is 
frequently used in survey analysis, there is a 
need to assess the biases of estimated 
regression coefficients from imputed data. 

The purpose of this paper is twofold. First, 
the large sample biases incurred by estimating 
regression coefficients with imputed data are 
examined theoretically in a finite population 
sampling framework. This investigation studies 
several imputation techniques and employs two 
missing data models. Secondly, the paper 
investigates empirically the impact of 
regression coefficient estimation from imputed 
data via a simulation study. Data from the 
first two waves of the 1978 Income Survey 
Development Program (ISDP) Research Panel, a 
prototype panel of the Survey of Income and 
Program Participation, are used for this study. 

Before presenting the results, it is 
important to emphasize several limitations. The 
theoretical results assume a simple random 
sample design and specific nonresponse 
generating models. The empirical results rely 
on a specific nonresponse model and all results 
are obtained via simulation. Thus, 
interpretations must be made with caution and 
are suggestive. 

2. Theoretical Framework 
Consider a finite population of N units, in 

which each unit would either respond or incur 
missing data for a specified variate Y with 
probability I, if a census was taken of the 
population. Thus, over repeated trials a uni t 
always responds or always does not. The 
population may then be partitioned into 
"response" and "nonresponse" strata. Let R and 
M (where R+M=N) be the numbers of units in the 
response and nonresponse strata, respectively, 
and let the subscripts "r" and "m" be indicators 
of the respondent and ~onrespondent 
subpopulations (e.g. , Y , S , S , etc.). 
Finally, assume that N, Rrand ~Yare ~aX~ge. 

Throughout we assume that a simple random 
sample without replacement (SRS) of size n has 
been drawn from the population. Three survey 
variables are to be recorded: X, Y, and Z. The 
data for X and Z are observed for all units in 
the sample; however, the values of Y are 
obtained for r of the n sample units (assume 
P{r>l}=l); m = (n-r) y-values are missing. 
Imputation of survey data yields a "complete" 
sample data set with no apparent missing data. 
Let y* denote the imputed value of the variable 
Y for all sample units for which Y is missing. 
Define the variable Y" as being the actual 

1 

value y~, if the unit is a respondent, and as 
an imputed value y* if not. Then the 

i' 
estimator of the element covariance may be 
expressed as 

Sxy = Z(x i - x)yi/(n- i). (2.1) 

The regression coefficient of interest in the 
theoretical portion of this paper is the 
regression slope obtained fro M the regression of 
Y on XI defined by B. = S /S x and estimated by 
b = Sx /SZ'x Thus, ~t wi~ suffice to consider 
t~e biases of s due to imputation, since s is 
based on the to~l sample, x 

3. Imputatio n Sc heroes 
As illustrated below, many imputation schemes 

may be construed as regression predictions. In 
the most general setting, the value assigned to 
a missing datum is determined by the model 

Yi = BO + Z BjZji + E i, (3.1) 

where the Z. (j=l,...,p) are available auxiliary 
variables. JThe "respondent" sample data are 
employed in the estimation of the regression 
coefficients, providing the imputations 

* + Z b .Z + ~ (3 2) Yi = br0 r3 ji i " 

where E*(~ i) -- O. Here E* denotes expectation 
over the generation of the estimated residual 
terms. As we will see later, the residual term 
plays an important role in retaining the 
variation found in the respondent data. The 
subscript r in the above coefficients reminds us 
that the estimated coefficients are based on the 
respondent sample data. 

"Deterministic" imputations are covered in 
equation (3.2) by settimg ~.=0 for each unit 
with missing data. "Stochastic" imputations are 
readily derived from the regression prediction 
schemes by simply appending an appropriately 
determined random residual. 

Various randomization schemes can generate 
the residual errors but presently we will 
consider only the following scheme: "observed" 
residuals ~ = Yi - y*" for respondents will be 

ri a~pended the reg i n randomly sampled and to Tess o 
pred ic t ions. 

The following discussion describes several 
common imputation techniques: 
a. Do Nothing (DN), For completeness we 
consider the popular "imputation procedure" 
which rejects all incomplete cases in the sample 
and calculates estimators from the r remaining 
units. 
b. Grand Mean (GM). This imputation scheme 
assigns the overall observed mean of the 
respondents to all missing data. The tacit 
model is Y. - B^ + E., with imputations made by 

i U -- 1 
specifying b ^ = y . This scheme and the Do 

ru 
Nothing technlque ~o not utilize the auxiliary 
information, Z, specified in the problem 
formulation (Section 2). 
c. Cell Mean (CM). This imputation scheme 
partitions the sample into nonempty imputation 
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cells determined by the auxiliary data, Z, 
available for all sample units. Each sample 
unit in class h with missing data is imputed the 
value y , = Y Y h'/r" . Suc h a scheme 
implicitly n assumes a r ~leternministic r eg r ess ion 

model of the form Yi = B0 + Z B.DI i ±+ E., where 
the variates D are dumm"yJvarlables 
corresponding to ~hie H classes• 
d. Random Cell Imputation (RI). Instead of 
imputing the class mean, one might assign the 
value recorded from a randomly selected 
respondent within the same imputation cell. For 
m nonrespondents in cell h, random cell 
h 

imputation involves taking a SRS size m h from 
the r. observed units. The y-values of the 
selected units are randomly imputed to the 
missing data. Adjustments to this procedure may 
be made when m>r , although this situation is 
highly undesiAb~e. The RI scheme employs 
respondent residuals ~ . . which are selected at 

.rnl . 
random within imputation classes. That is if 
unit i in class h has a missir~ y-value, i t is 

imputed by Yrh +fro her , where Yrh denotes the 
respondent mean the imputation cell to 
which unit i belongs and @ is a randomly 
chosen respondent residual ta~hn from the same 
cell. 
e. Simple Regression Prediction Imputation 
(RG). This imputation method utilizes the 
observed data (z.,y~), to estimate regression 

~ - _ I I - coefficients, yie~dlng b r = Yr b and 
b . = s /s ; pr°edicted rvafues 
rl r y rz 

~. = b • ~ ]z are imputed to e missing th 
i r• r i 

values• (See Buck, 1960•) 
f. Simple Regression Prediction Plus Random 
Residual (RR). Instead of imputing missing 
values directly from the estimated regression 
line, one might wish to randomly disperse the 
regression predictions by adding a random 
residual error term with zero mean. The 
imputations are defined by y* - ~. + ~ where 

+ l 
-b b z and ~ is randolmly isampled 

i o rl i i 
from t~e "observed" residuals eri = Yi - Yi" 

4. Missing Data Models 
The biases of element covariance and variance 

estimators obtained from imputed data depend on 
the nature of the missing data. While general 
formulae for the biases can be derived, there 
are no clear conclusions without makin~ 

o 

assumptions about the relationships between the 
respondent and nonrespondent populations. For 
these reasons, two alternative missing data 
models will be assumed, and the corresponding 
biases of the various2imputation schemes in 
estimating S and S will be investigated 
within the cX~text of Yeach model. 

First, the data will be assumed to be 
"missing at random," the respondents being a 
SRS of size R from the population. For very 
large values of R and M, univariate and 
bivariate subpopulation parameters can be 
assumed equal, i.e. , Y = Y = Y , 

m 
S = S = S x , etc. Altho~h the assumption 
o~X~ando~X~y missing data across the total 
population is usually untenable, the use of this 
model provides useful insights into the effects 
of the various imputation schemes• 

A less restrictive nonresponse model assumes 
that the data are randomly missing (in the sense 
described above)within certain subclasses of 

the population. This is the second model which 
we will consider. The classes within which the 
data are missing (at differing rates) are 
assumed to be the imputation classes defined by 
the Cell Mean Imputation technique. Thus, 
within the subgroups formed by the variate Z, 
the population parameters for respondents and 
nonrespondents are approximately equal: 

h = = Yh' Srxyh- Smxyh- Sxyh' etc., for rh I Yah H 
,•••, • 

5. Covar lance Biases 

Theorem I. Assuming the formulation of the 
s and exc lud ing missing data proble~ in Section 'es o f s as 

terms of order O(n ), the bia 
defined in (2.1)for the various imputX~ion 
schemes mre: 

Bias(SxyDN ) = 0, (5.1) 

Bias(SxyGM) -- -MSxy , (5.2) 

Bias(SxyCM) = Bias(SxyRl) -- -M I WhSxy h (5.3) 

Bias(SxyRG) - BiaS(SxyRR) 

= R-MSxSy(I - R2xz)1/2(1 - R2yz)l/2 
• (5.4) 

xy. Z 

where M = M/N, W h - Nh/N and R is the 
partial correlation between X and YX~3Zusted for 
Z. Derivations are given in Santos (1981). 

The DN scheme yields an approximately 
unbiased estimator of S ; the present missing 
data model implies thatX~he complete data are a 
random sample of a reduced size. Imputation of 
the grand mean estimates the covariance o f the 
nonrespondents by zero and hence ylelds 
estimators of S with a negative relative bias 
of M. The c~Yscheme, on the other hand, 
estimates the covariance of the nonrespondents 
by the "between class" component of the 
covariance. This accounts for the negative 
relative bias of Mp, where p is the proportion 
of the covariance attributed to the "within 
class" cov~riance. The Bias(s ~..) vanishes to 

. XV~FI. 
terms 0(n -) when the imputation classes account 
for all of the covariance between X and Y (i.e., 
when S , = 0 for h = i,... H) The Bias(~xRl ) 
is identical to that of the Cell 
Imputations; the reason is due to an average 
zero residual and an uncorrelated (with X) error 
term. 

The relative bias for the Simple Regression 
Prediction (or Regression Prediction Plus Random 
Residual) vanishes when either I R I - i, 
I R I -- i, or when R - R R x~i. e. , 

xy x ~z 
R yz -- 0). Thus, s R ~ an~ are 
x .z x R 

approximately unbiased w~ ~he regression o f Y 
on X is used for imputations or when Z and X are 
highly correlated. Also, they are roughly 
unbiased for S when either Z and Y are highly 
correlated orXYwhen R -- 0. The former 
condition arises whenX~'Znd Z are linearly 
related. The latter condition is fulfilled when 
the XY correlation can be fully explained by the 
XZ and YZ correlations. 

Theorem 2. Suppose that the data for Y are 
randomly missing within the cells (determined by 
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the auxiliary variable Z) defined by the Cell 
Mean Imputation scheme. Furthermore, assume the 
missing data problem outlined in Section 2. 
Using the notation ~f Theorem I, and excluding 
terms of order O(n--) or smaller, 

Bias(SxyDN) = -M Z (Wmh - Wrh) [Sxy h 

+ (X h - X)(Y h - Y)] 

- M2(X r - Xml(Y r - 7m). (5.5) 

Bias(SxyGM) = -M y. Wmh[Sxy h + (Xh - ~) (~h - ~) ] 

- ~2(X r - Xm)(Y r - ~m); (5.6) 

Bias(SxyCM) = Bias(SxyRl) =-M Z WmhSxyh; (5.7) 

- S 2 for Bias(SxyRG) = Bias(SxyRR) = (Bry x By x) x'(5.8 ) 
X= Z; 

Here, W . = R. /R, Wmh = Mh/M , and R = R/N. 
Equation (~.8) concerns the special case 

where the cells within which the data are 
assumed to be missin% at random and the 
predictor auxiliary variable are the same. The 
regression imputation schemes will yield 
unbiased estimators of S if the respondent and 
population regression s~pes coincide. The 
expression for the bias when a different 
variate, Z, determines the randomly missing data 
classes is complex and hence not included. 

The bias of the Cell Mean (and Random Cell) 
Imputation is analogous to that attained when 
the data were completely missing at random. The 
difference here is the weights, Wmh , instead of 

W h • 
The Grand Mean assignments show the dang ers 

of ignoring the response model when adjusting 
the data. Assuming all of the components in 
(5.6) are of the same sign, the Bias(s x GM ) will 
be larger than that of the imputati~ class 
schemes. The last term in equation (5.6) 
reflects the differing response rates within the 
subgroups assumed to have data missing at 
random. 

The Do Nothing technique yields a bias which 
is a function of the differences between the 
respondent and nonrespondent subclass_weights, 
W h - Wr " When the response rates, Rh, differ 
h~ghly ~etween the missing data model's 
subgroups, the bias will tend to be large. 
However, when the response rates are fairly 
similar, the bias will be reduced substantially. 
Note that the bias is zero when the response 
rates among the missing data model's subgroups 
are uniform, i.e. R h = R. This corresponds 
approximately to ranHomly missing data across 
the total population. 

6. Element Variance Biases 
The previous section demonstrated the biases 

of estimating the element covariance (using the 
standard formula) for several imputation 
schemes. We now briefly consider the element 
variance estimator. 

Theorem 3. Assume the mis~ing data problem 
ouu~ined in Section 2; let s be the element 
variance based on the i~puted da ta set 
(analagous to 2.1). Also, suppose that the data 
are missing at random. Using the notation of 
the ~revious section and ignoring terms of order 
O(n--) or smaller, 

2 2 2 
Bias(syDN ) = Bias(syRl ) = Bias(syRR ) = 0 (6.1) 

2 -MS2 (6.2) Bias (SyGM) = 
Y 

2 - 2y 
Bias(SyCM ) = -M ~WhS h (6.3) 

2 -M(I - R 2 S 2 (6.4) Bias (SyRG) = yz ) Y 

The "de terminis tic" imputation s tra teg ies all 
understate the true variance. The regression 
prediction imputation yields a bias equal to -M 
times the residual variance obtained from the 
regression of Y on Z. Thus, the Simple 
Regression Prediction scheme understates t~e 
true variance by M(I - R- ) relative to S • 
Since the Cell Mean and G~aZnd Mean techniques 
are special cases of the general regression 
prediction techniques their relative biases are 

-- ,, 

equal to-M times the proportion of variance 
unexplained" by the regression model. 

An important reason for adopting a randomized 
imputation technique (RI and RR) is that the 
randomization scheme can be devised to re tain 
the observed variation in the data. If the 
regression predicts well, ~he res~uals will be 
small and the estimators s R-' s RI will not 
differ subs tan ~ially f~o~ ~hei~ respective 
counterparts, S-RG and S-c " However, if the 
correlation be~een Z an~ ~ is low or moderate, 
addition of the residuals to the regression 
predictions will increase the variation of the 
imputed data, yielding improved estimates of the 
element variance as seen in equation (6.1). 

Theorem 4. Suppose that the data for Y are 
randomly missing within cells defined by the 
Cell Mean Imputation scheme. Also, assume the 
missing data problem as defined in Section 2 
Using the notations of the previous theorems, 
and ignoring terms of order O(n--) or smaller, 

2 -M E )iS 2 2 
Bias(syDN) = (Wmh- Wrh 'yh + (Yh- ~) ] 

- M2(y r - L) 2 (6.5) 

2 -MS 2 - RM(Y r (6.6) Bias(syGM) = my - Ym )2 

2 
Bias(SyCM) = -M Z W S 2 

mh yh 
(6.7) 

Bias(s 2 yRl ) = 0 (6.8) 

2L+ (Y h fYomr) ]t • 
Here, S 2 = I W L[S _ - 2 

Th~ resul ~n{L~iases he simple 
regression imputations are incomplete and thus 
are not included. Except for the unbiasedness 
of the Random Cell Imputation scheme, the 
results of Theorem 4 mimic those of Theorem 2 
for covariances. 

142 



7. EmPirica! Investlg ation. 
Two small scale studies were conducted to 

examine the effects of estimating regression 
coefficients uslr~ imputed data. The first 
investigation imputes missing hourly rate of pay 
for those jobs paid hourly in the July wave of 
the 1978 Income Survey Development Program 
panel; the second study involves quarterly wage/ 
salary income as reported from records in the 
April wave of the 1978 ISDP panel. Both 
investigations are confined to the area sample 
portion of the survey. Data set s were 
constructed by taking all the cases with valid 
data for the variable concerned and deleting 
some of the recorded values (using a specified 
nonresponse generating model), then applying 
several imputation schemes to form an "adjusted" 
data set. The imputed item is the dependent 
variable in all regressions below. Results are 
compared to the regressions using the real 
values in place of the imputed ones. 

The nonresponse models used to create missing 
data mirror the actual patterns of missing data 
observed in the full sample. For hour ly wag e, 
data were randomly deleted (at differing rates) 
within 4 cells defined by crossing levels of sex 
and interview status (self report v. proxy). 
Cells defined by a crosstabulation of household 
income and interview status were utilized in 
deleting quarterly earnings. Full details of 
the methodology may be found in Kalton (1981). 
For hourly wage, nonresponse rates ranged 3.6% 
to 16.5% in the four cells, averaging 10.1%, 
while nonresponse rates for quarterly earnings 
ranged from 45.2% to 78.9%, averaging 55.0%. In 
order to reduce the variability due to randomly 

,, 

determining cases as "missing, the deletion 
process was replicated ten times, producing ten 
replicate simulation data sets. The imputations 
were performed separately within each replicate 
data set; regression statistics were then 
derived separately and aver~ ed. 

Table I presents estimated element variances 
for several imputation procedures. Presented as 
percentages of the true value, the quantities 
appear for the set of sample cases with missing 
data and the set of all sample cases. The first 
column reveals a 14-60% understatement of the 
hourly wage element variance within the 
nonresponse stratum (i.e., s- ) for imputation 
schemes c-f. Of coursemYthe Grand Mean 
imputation exhibits no variability in the 
nonresponse stratum. The Cell Mean Imputation, 
which employs 8 imputation classes defined by 
the crosstabulatlon of union membership, 
occupation, and industry, displays the next most 
severe bias. The cell means accounted for 40% 
of the variation for hourly wage in the 
nonresponse stratum and hence the scheme 
understates the variance by 60%. The regression 
prediction imputation, which imputes a predicted 
value from the regression of hourly rate of pay 
on union membership, occupation, ag e,soSex~ and 
hours worked per week, underestimated almost 
as badly. (The regression employed in ~e above 
multiple regression imputation scheme produced 
an R statistic of 0.53 among the responders.) 
The "stochastic" imputation schemes, d and f, 
show modest2decreases in the magnitude of the 
bias of s m , yet their biases remain 
substantlal;Ythe random cell imputations perform 

best, producing a lower estimate of s 2 by about 
14%. The regression/residual scheme ~Yetains a 
negative bias of about 17%. 

A possible explanation can be given as to why 
a sizeable element variance bias in the 
stochastic imputation schemes occurred. First, 
the data are not missing at random across the 
total population. In consequence, a zero bias 
would be expected (for the Random Cell 
Imputations) if the cells used to delete data 
and those used in the Random Cell Imputations 
coincided. However, this was not the case. The 
upshot is a nonnegllglble bias. The use of 
imputation cells which differ from the missing 
data model's cells was intentional, since in 
reality one never knows with certainty the true 
nonresponse model. The second column of ~able I 
shows the effect of imputation on s , the 
overall element variance. Note that all 
estimates understate s by about 2-12%. The Do 
Nothing approach exhibits a relative bias of 
-2.5%. Apart from the Grand Mean imputations, 
the Cell Mean and Regression Prediction scheme~ 
retain the worst biases, with estimates of s 
about 7% below the true value. The Do No thin~ 
and stochastic imputations perform best, 
yielding an overall negative bias of about 2% of 
the true element variance. 

The last two columns of Table I show the 
severe biases incurred for estimating the 
element variance of quarterly earnlngs when the 
rate of nonresponse is high (m- 55%). For the 
imputation of quarterly earnlngs, the cell me an 
technique and the random cell imputation scheme 
employed 8 cells defined by the crosstabulation 
of sex, household income in March (<$900, >$900) 
and work status (full-time, part-tlme). The 
regression prediction used the regression of 
quarterly earnings on age, hours worked per 
week, occupation, household income, sex and 
whether job wa~ held full quarter or not, 
yielding an R statistic of 0.~8 fo~ the 
respondent data. The biases of s m , s are 
varied, with the deterministic scheme~ (bYc,e) 
understating the true values severely and their 
randomized counterparts (d,f) understating the 
true values2slightly. The Do Nothing technique 
estimated s best, yielding a relative bias of 
-0.7% whi~e the stochastic schemes (d,f) 
incurred a slightly larger negative relative 
bias. 

The results of Table I support the 
theoretical findings of Theorems 3 and 4. If 
the data for Y were mlsslng at random (even 
though they are not), we would expect the 
relative bias of the Grand Mean scheme to be 
about -M; this is approximately true in Table i. 
Also, we would expect the Do Nothing and the 
stochastic imputations ~o yield approximately 
unbiased estimates of S • This is approximately 
true, but not quite; perhaps the reason is that 
the data are missing at random within cells and 
not missing at random across the total sample. 

Table 2 gives the regression slopes for 
simple regressions of hourly wage on union 
membership and sex, respectively, and for the 
multiple re~oression of quarterly earnings on age 
and number of hours worked per week and the 
simple r~resslon of quarterly earnings on 
weekly w~e. Union membership (Column I) is 
interesting because it was used in all 

143 



imputation schemes (but not in the generation of 
missing data). The union membership coefficient 
is understated for schemes a, c-f by 2-3% of the 
true value. The understatement o f the 
regression coefficient suggests a reduction of 
the element covariance in the imputed data set. 
The Grand Mean Imputation incurs a negative bias 
of about 14% for the regression slope. 

The second column is of interest because sex 
was used to create missing data; further'more, 
sex was used in the regression imputations (e,f) 
but not in the other schemes. The impact of 
this latter point shows clearly in the better 
estimation of the sex regression coefficient for 
schemes e, f compared to techniques b,c and d. 
Procedures a, e and f yield the least biased 
regression statistics. 

The third and fourth columns (Regression 
Analysis 3) present the regression slopes which 
correspond to a multiple regression of quarterly 
earnings on age and number of hours worked per 
week. Age was ~tilized only in procedures e and 
f; hours worked was used in all imputation 
schemes (except a). Note the severe 
understatement of the age coefficient in the 
grand mean and imputation class techniques 
(b,c,d). Comparing this to the hours worked 
coefficient (c,d), one might conject that 
failure to include age in the imputation class 
scheme incurs a large relative bias. The 
relatively good estimation of the ag e 
coefficient for the regression imputations tends 
to support this claim. The Do Nothing technique 
produces multiple regression coefficients which 
are within 6% of the true values, while the 
regression imputations (e,f) yield coefficients 
within 4% of the true values. 

The last column of Table 2 shows a simple 
regression of quarterly earnings on weekly w~e, 
a variable constructed by multiplying hourly 
wage by hours worked per week. The regression 
is based on the subclass of persons paid an 
hourly wage. Unlike the other variables, weekly 
wage is highly correlated with quarterly 
earnings (r = .903). Note that the weekly wage 
coefficient is substantially understated for 
p~ocedures b-f by 18%-54%. The previous results 
suggest that s is deflated due to the fact 
that weekly ~age was not utilized in the 
imputations. The Do Nothing approach provides 
the best estimates of the weekly wage 
coefficient. 

The weekly w~e coefficients in Table 2 are 
intuitively consistent in the following sense: 
If the correlation between weekly wage and 
quarterly earnings was perfect (i.e. r = i), 
then the biases of the regression coefficient 
should approximately mimic the biases of the 
element variances in Table I. This, indeed, is 
roughly the case. 

The constant terms in the regression analyses 
(not shown) were estimated well (within 1-2% of 
the true value) for all imputation schemes when 
the dependent variable was hourly wag e. 

However, the quarterly earnings regression 
analyses yielded extremely biased estimated 

constant terms. The discrepancies in the 
constant term biases between regressions with 
hourly wage and quarterly earnings as dependent 
variables can be attributed to the disparity in 
nonresponse rates and the superior estimation of 
regression slopes for hourly wage regressions 
over those for quarterly earnings. See Santos 
(1981) for further details. 

Overall, the empirical results of Table 2 
support the theoretical findings of Theorems I 
and 2. Theorems I and 2 indicate that the 
biases of the regression slopes will be equal 
for the deterministic regression prediction 
schemes and their randomized counterparts. This 
is confirmed by the empirical results. (Compare 
the regression slopes between procedures c and 
d, or between procedures e and f in Table 2.) 
Furthermore, the bias of the element covariance 
under the assumption of randomly missing data 
implies that the maximum relative bias of the 
general regression prediction imputation is -M. 
(This occurs, for instance, when s is 
estimated by zero.) The regression slopem~ases 
adhere to these bounds. 

In conclusion, the empirical results suggest 
several properties of imputations on regression 
coefficient estimation. First, one must realize 
that all imputations will alter the variance- 
covariance structure of the data set. The 
actual impact on estimated r eg r ession 
coefficients depends on the extent of missing 
data, the differences between the respondent and 
nonrespondent populations and the use of the 
independent variable(s) in imputing the 
dependent variable. Deterministic imputations 
will tend to understate the element variance; 
their stochastic counterparts will recapture 
some of the variance. Covariances will tend to 
be attenuated, especially between imputed 
variables and items not utilized in the 
imputation scheme. 

A full treatment of the theoretical and 
empirical results in this paper may be found in 
Santos (1981). 
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Table 1 Element variances of hourly wage and quarterly 
income by several imputation procedures for 
the imputed cases only and for all sample units 

Real Data 5 

Adjusted Data; 

a .  Do 

Nothing 

b. Grand 
Mean 

c. Cell 
Mean 

d. Random 
Cell Imp. 

e. Regression. 
Prediction b 

f. Regression/ 
Residual- 

I 
Element Variances 

Hour ly Wag e [ Quarterly Earnings 
[ (in millions) 
! 

Imputed [All sample[ Imputed 
cases only[ cases [cases only 

nffil05 I nffi1036 [ n=220 
+-- ....... -+- ........ -+- ........ ~ .......... 

64192 
(100%) 

39.8% 

86.5% 

45.7% 

82.9% 

52796 
(100%) 

97.5% 

87.6% 

92.6% 

98.3% 

93.3% 

97.9% 

4.103 
(100%) 

42.4% 

96.0% 

54.5% 

98.2% 

All sample 
cases 
n=400 

4.078 
(i00%) 

99.3% 

44.6% 

68.1% 

97.7% 

74.7% 

98.8% 

(See footnotes for Table 2.) 

Table 2: Comparison of Regression Slopes in Four Regressions for Several Imputation 
Schemes where the Dependent Variables are Hourly Wage and Quarterly Earnings 

Est imated Regress ion  Slopes 1 (as  percentage  of t rue  va lue)  

Dependent Variable 

Regression Analysis 

Independent Varlable(s) 

Real Data 5 Slopes 

Adjusted Data Slopes: 

a. Do Nothing 

b. Grand Mean 

c. Cell Mean 

d. Random Cell Imputatlon 6 

e. Regression Prediction 

f. Regresslon/Resldual 6 

Hourly Wage 

1036 

union mbr. 

155.6 
(100%) 

97.4% 

86.4% 

97.9% 

97.7% 

97.8% 

98.0% 

1036 

83.44 
(100%) 

age 

29.92 
(100%) 

98.8% 96.6% 

88.8% 42.3% 

95.8% 52.9% 

95.9% [ 51.S% 
l 

99.7% [ 97.9% 
I 

99.4% I 97.9% 

Quarterly Earnings 

395 of 4002 

hours worked 

82.01 
(100%) 

105.7% 

47.8% 

91.6% 

91.9% 

103.8% 

103.6% 

217 of 2393 

4 
weekly wage 

0.1262 
(100%) 

102.8% 

46.4% 

79.6% 

79.4% 

82.3% 

81.6% 

IThe regression statistics are averaged over ten replicates of the simulation data set. 

2Five cases were deleted because of missing data on the independent variables In the "respondent" portion of the 
sample. 

3Twenty-two cases were excluded due to missing data on either hourly wage or usual number of hours worked. 

4Weekly wage is a derived (constructed) variable obtained by taking the product of hourly wage and usual number of 
hours worked per week. The regression is conducted within the subclass of those with hourly paid Jobs. 

5Except for the "real data" row, all entries are percentages of the parameters to which they refer. 

6Results for the stochastic imputation schemes are first averaged over ten Iterations of the Imputation scheme; 
then they are averaged over ten replicates of the simulation data set. 
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