The objective has been to reduce the four bands of Landsat spectral data to a single number for the science and art of obtaining information on field collection of data, time consuming, costly, and not generally applicable to foreign regions. An alternate approach is remote sensing - the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation.

A series of earth resources technology satellites (Landsats) have provided a way to monitor worldwide crop conditions since 1972. The sensor system onboard the Landsats, the multispectral scanner (MSS), measures the reflectance of the scene in four wavelength intervals (bands or channels) in the visible and near-infrared portions of the spectrum. The spectral measurements are influenced by the vegetation canopy, soil type, and atmospheric condition.

Investigators have developed techniques for qualitatively and quantitatively assessing the vegetative canopy from spectral measurements. The objective has been to reduce the four bands of Landsat spectral data to a single number for predicting or assessing such canopy characteristics as leaf area, biomass, percent ground cover, and plant population.

This report summarizes and references the origin, derivation, and motivation for some four dozen of these formulae which are referred to as vegetation indices (VIs). The VIs are categorized on the basis of statistical correlations and algebraic similarities. This analysis reveals the similarities of many vegetation indices.

2. LANDSAT DATA CHARACTERISTICS

Three Landsats have been launched since the summer of 1972, with Landsats 2 and 3 still operational. Each satellite is capable of providing 18-day repetitive coverage of the earth's surface. Each Landsat's onboard four-channel MSS system measures reflectance in four bands (fig. 1). The measurements are converted to digital counts and transmitted to receiving stations. Landsat MSS images cover an area of 185 by 185 kilometers and are composed of 7,581,600 picture elements (pixels).

Typical reflectance patterns for herbaceous vegetation and soil are compared in figure 1. Dead or dormant vegetation has higher reflectance than living vegetation in the visible spectrum and lower reflectance in the near-infrared. Soil has higher reflectance than green vegetation and lower reflectance than dead vegetation in the visible, whereas in the near-infrared, soil has lower reflectance than green and dead vegetation. Jackson et al. (1980), Tucker and Miller (1977), and Deering et al. (1975) provide an extensive discussion of reflectance properties. Three papers of historical interest are Jordan (1969), Knipling (1970), and Pearson and Miller (1972).

Numerous vegetation indices have been used to make quantitative estimates of leaf area index, percent ground cover, plant height, biomass, plant population, and other parameters. The formulae are based on ratios and linear combinations of the MSS bands.

The individual Landsat bands (CH4, CH5, CH6, CH7) have been used to estimate percent ground cover and vegetative biomass. The correlation coefficients reported ranged from 0.295 for CH7 with crop cover to 0.877 for CH6 with leaf area index. Similar correlations were reported by Tucker (1979).
Ratios of the Landsat bands have been used to estimate and monitor green biomass, etc. [Rouse et al. (1973, 1974), Carneggie et al. (1974), Johnson (1976), and Maxwell (1976)]. The obtained coefficients of determinations were slightly higher than those for the corresponding band differences. The twelve pairwise ratios (six of which are inverses of the other six) will be denoted by R45 = CH4/CH5, R46 = CH4/CH6, etc.

Rouse et al. (1973, 1974) proposed using the normalized difference of Landsat channels 7 and 5 for monitoring vegetation, which will be referred to as ND7. Deering et al. (1975) added 0.5 to ND7 to avoid negative values and took the square root of the result in hopes of stabilizing the variance. This index is referred to as the transformed vegetation index and will be denoted by TVI7. Similar formulae using channels 6 and 5 were proposed.

ND6 = (CH6 - CH5)/(CH6 + CH5)
ND7 = (CH7 - CH5)/(CH7 + CH5)
TVI6 = (ND6 + 0.5)^1/2
TVI7 = (ND7 + 0.5)^1/2

Our experience has been that the addition of 0.5 does not eliminate all negative values. We suggest the following computationally correct formulae:

TVI6 = (ND6 + 0.5)/ABS(ND6 + 0.5)[ABS(ND6 + 0.5)]^1/2
TVI7 = (ND7 + 0.5)/ABS(ND7 + 0.5)[ABS(ND7 + 0.5)]^1/2

where ABS denotes absolute value, and 0/0 is set equal 1. In section 6, it is shown that these formulae are equivalent for decision making to the basic ratios R65 and R75. Therefore, their use can only be justified if either they improve the regression fit or they normalize the regression errors [Draper and Smith (1966)].

Kauth and Thomas (1976) proposed an orthogonal transformation of the original Landsat data space to a new four-dimensional space. They christened this transformation the tassel cap transformation and named the four new axes soil brightness (SEI), green vegetation (GVI), yellow stuff (YVI), and non-such (NSI). The names attached to the new axes indicate the characteristics the indices were intended to measure.

SEI = .332 CH4 + .603 CH5 + .675 CH6 + .262 CH7
GVI = -.283 CH4 - .660 CH5 + .577 CH6 + .388 CH7
YVI = -.899 CH4 + .428 CH5 + .076 CH6 - .041 CH7
NSI = -.016 CH4 + .131 CH5 - .452 CH6 + .982 CH7

Wheeler et al. (1976) and Misra et al. (1977) applied principal component analysis to Landsat data. The structure of the resulting transformation and the interpretation of the principal components are similar to those for the Kauth-Thomas transformation.

SEB1 = .405 CH4 + .600 CH5 + .645 CH6 + .243 CH7
GVI1 = -.386 CH4 - .530 CH5 + .535 CH6 + .532 CH7
YVI1 = .723 CH4 -.597 CH5 + .206 CH6 - .278 CH7
NSI1 = .404 CH4 - .039 CH5 - .503 CH6 + .762 CH7

Misra et al. (1977) proposed another linear transform, based on the idea of spectral brightness and contrast. Generalizations of spectral brightness and contrast were defined in spectral density space, then transformed back to count space. The first two components of the resulting transformation are similar to the first two components of the two preceding transformations.

SSB1 = .437 CH4 + .564 CH5 + .661 CH6 + .233 CH7
SGVI = -.437 CH4 - .564 CH5 + .661 CH6 + .233 CH7
SYVI = -.437 CH4 + .564 CH5 - .661 CH6 + .233 CH7
SNVI = -.437 CH4 + .564 CH5 + .661 CH6 - .233 CH7

Richardson and Wiegand (1977) used the perpendicular distance to the "soil line" as an indicator of plant development. The "soil line", a two-dimensional analogue of the Kauth-Thomas SBI, was estimated by linear regression. Two perpendicular vegetation indices were proposed.

PV17 = ([-.355 CH7 + .149 CH5]^2 + (.355 CH5 - .852 CH7)^2)^1/2
PV16 = ([-.498 - .457 CH5 + .498 CH6]^2 + (2.734 + .498 CH5 - .543 CH6)^2)^1/2

Evidently a minor error was made in the derivation of PV16. The formula for PV16 should be:

PV16 = ([-.2507 - .457 CH5 + .498 CH6]^2 + (2.734 + .498 CH5 - .543 CH6)^2)^1/2

These formulae are computationally inefficient and do not distinguish right from left of the "soil line" (water from green stuff). The standard formula from analytic geometry for the perpendicular distance from a point to a line solves this difficulty [Salas and Hill (1978)].

PV17 = (2.4 CH7 - CH5 - 0.1)/(2.4^2 + 1)^1/2

The difference vegetation index (DVI), suggested by Richardson and Wiegand (1977) as computationally easier than PV17, is essentially a rescaling of PV17.

DVI = 2.4 CH7 - CH5

The Ashburn vegetation index [Ashburn (1979)] was suggested as a measure of green growing vegetation. The doubling of CH7 is to make the scale compatible; CH7 is 8-bit data and has one-half the range of the other three bands which are 6-bit data.

AVI = 2.0 CH7 - CH5

Colwell et al. (1979) proposed a vegetation indicator called greenness above bare soil (GRABS). This was another attempt to develop an indicator for which a threshold value could be specified for detecting green vegetation. The calculations were made using the Kauth-Thomas tassel cap transformation applied to sun angle- and haze-corrected data. The resulting index is quite similar to the GVI, since the contribution of SBI is less than 10 percent of GVI.

GRABS = GVI + .09178 SBI + 5.5899

Kanemasu et al. (1977) regressed winter wheat leaf area measurements on MSS band ratios and produced the following regression equation.

ELAI = 2.68 - 3.69 R45 - 2.31 R46 + 2.88 R47 + 0.43 R56 - 1.35 R57 + 3.07[R45 - (.5 R47)(R45)]

Pollack and Kanemasu (1979) later used a larger data set plus stepwise regression and obtained another regression equation.

CLAI = .366 - 2.255 R46 - .431(R45 - R47)(R45) + 1.745 R45 + .057 PV17
Separate regression equations were also obtained for CLAI values above and below 0.5.

\[
\text{LAI} = 1.903 - 1.138 \text{R56} - 0.071(\text{R45} - \text{R47})\text{R45} - 0.015 \text{PV16}, \quad \text{if CLAI is less than 0.5}
\]

\[
\text{LAI} = -5.33 + 0.036 \text{PVI7} + 6.54 \text{TVI6}, \quad \text{if CLAI is greater than 0.5}
\]

The Foreign Crop Condition Assessment Division (FCCAD) of the Foreign Agricultural Service (FAS), Houston, Texas uses another leaf area model. We have been unable to find any reference to the development of this model.

\[
\text{OLAI} = 41.325 \text{R45} - 42.45 \text{R46}
\]

Badhwar (1981) proposed a ratio of GVI to SBI as an indicator of crop discrimination. It will be shown in section 6 that this index is a generalization of a normalized difference.

\[
\text{GVSBI} = \frac{\text{GVI}}{\text{SBI}}
\]

Craig Wiegand (personal communication) suggested converting reflectance values to radiances. Linear transformations were used to change from reflectance to radiance values. Ratio and normalized difference formulae were also created using the radiance values.

\[
\text{RAD5} = 0.0157 \text{CH5} \quad \text{for Landsat 1}
\]

\[
= 0.0134 \text{CH5} + 0.06 \quad \text{for Landsat 2}
\]

\[
= 0.0139 \text{CH5} + 0.03 \quad \text{for Landsat 3}
\]

\[
\text{RAD7} = 0.0733 \text{CH7} \quad \text{for Landsat 1}
\]

\[
= 0.0605 \text{CH7} + 0.11 \quad \text{for Landsat 2}
\]

\[
= 0.0603 \text{CH7} + 0.03 \quad \text{for Landsat 3}
\]

\[
\text{RADK75} = \frac{\text{RAD7} - \text{RAD5}}{\text{RAD7} + \text{RAD5}}
\]

\[
\text{NDRAD} = \frac{(\text{RAD7} - \text{RAD5})}{(\text{RAD7} + \text{RAD5})}
\]

Thompson and Wehssonen (1978) proposed a technique utilizing transformed Landsat digital data to indicate when agricultural vegetation is undergoing moisture stress. The screening number or green number (GIN) was proposed to estimate the percentage of land in an area with a "healthy" cover of vegetation. A "soil line" is determined by inspecting the channel data and discarding data not considered reasonable for agricultural data. The "soil line" is then evaluated as the minimum value remaining in CH5 and subtracted from GVI to obtain GIN.

\[
\text{GIN} = \text{GVI} - \text{soil line}
\]

The data sets included in this study did not permit the computation of GIN. However, GIN is a linear transformation of GVI.

4. EVALUATION OF VEGETATION INDICES

4.1 Linear Transformations

Richardson and Wiegand (1977) correlated eight Vls (GVI, DVI, SBI, PV16, PV17, TVI6, TVI7, and K57) with four plant component variables (crop cover, shadow cover, plant height, and leaf area index). The correlation coefficients obtained by plant component with the Vls (excluding SBI) were very similar. Later, Wiegand et al. (1979) correlated leaf area indices for winter wheat fields to five Vls (TVI6, TVI7, PV16, PV17, and GVI). The correlation coefficients by field and even for fields were similar. Aaronson et al. (1979) studied the similarities and differences among seven Vls (AVI, DVI, GVI, OLAI, PV17, TVI7, and KVI). The obtained correlation coefficients ranged from 0.8 to 1.0 and were stable from spring greenup to harvest. Aaronson and Davis (1979) later used a large data set, which included vegetation measurements and several Vls, to study interrelationships. The Vls (AVI, DVI, GVI, PV17, TVI6, TVI7, and TVI17) were correlated against each other and against vegetation measures such as plant height from tillering through harvest. The correlation coefficients between the Vls ranged from 0.81 to 1.00, and those between Vls and vegetation measures were similar.

4.2 Cluster Analysis of Vls

The similarity between the Vls was first studied using the BMDP program PIN, cluster analysis of variables. The absolute value of the bivariate correlations was used as the measure of distance between Vls, and the average distance between elements was used as the between cluster distance. Similar results were obtained using other standard distance measures.

This procedure separated the Vls into two large clusters plus a number of small clusters. One large cluster contained Vls based on MSS bands 5 and 7, which included AVI, PV17, R75, TVI7, and N07. The other large cluster contained Vls based on MSS bands 5 and 6, and a few Vls involving three or all four bands, which included GRABS, CLAI, ULAI, R65, TV16, N66, GVI, MGVI, PV16, and SGVI. The Vls within these two clusters had absolute simple linear correlations greater than 0.90, with most greater than 0.95. The elements of these two large clusters are correlated at 0.8 or higher. Three smaller clusters readily apparent were: (NSI, R76), (R64, R74), and (SBI, NSB1, SSB1, SNS1). This clustering is applicable to the period from spring greenup to harvest. There are some clusters, however, which have high correlations for the whole season, especially those involving bands 5 and 7. The cluster trees on which this discussion is based are included in a detailed report by Lautenschlager and Perry (1981).

Some Vls were not used in the cluster analysis because of their known relationships to others. The inverse ratios R54, R66, R67, R56, and K57 were not used. DVI was discarded because of its relationship to PV17, as were RAD5, RAD7, RADK75, and NDRAD because of the linear relationships to CH5, CH7, R75, and N07.

5. VEGETATION INDICES EQUIVALENCE

In this section, a definition of VI equivalence will be developed. This permits a natural categorization of the Vls. Vls are functions which associate a real value to the four-dimensional Landsat reflectance measurement vector, (NSS4, MS65, MS66, MS57). Thus, it will be convenient to employ standard function notation: \(f: S1 \rightarrow S2 \) denotes a function from the set \(S1 \) into the set \(S2 \); \(f(x) \), the value of \(f \) at the point \(x \) of \(S1 \); \(\text{Dom}(f) \), the domain of \(f \); \(\text{Ran}(f) \), the range of \(f \); and \(f^{-1} \), the inverse of \(f \) when it exists. The inverse exists if, and only if, \(f \) is one-to-one and onto. The composition of two functions has an inverse if, and only if, both functions have inverses; in which case \((f \circ g)^{-1} = g^{-1} \circ f^{-1} \).
It might seem that VI equivalence should correspond to function equality; i.e., \(V_1 = V_2 \) if, and only if, \(V_1(X) = V_2(X) \) for each Landsat reflectance value \(X \). However, this requirement is too restrictive because it involves only the VIs output and ignores the decisions made on the basis of this output. Since vegetation indices are formulae used in making decisions about crop characteristics and conditions, it seems appropriate to say that two VIs are equivalent if the same decision results regardless of the VI employed. This means that two VIs, \(V_1 \) and \(V_2 \), are equivalent for making the set of decisions \(D \) if, and only if, for every decision rule \(d: \text{Ran}(V_1) \rightarrow D \), there corresponds a decision rule \(d': \text{Ran}(V_2) \rightarrow D \) such that the decision, based on \(d \) and \(V_1 \), and \(d' \) and \(V_2 \), is the same for all Landsat reflectance measurements \(X \); that is, \(d(V_1(X)) = d'(V_2(X)) \) for each \(X \). It is easy to see that the two vegetation indices, \(V_1 \) and \(V_2 \), are equivalent if, and only if, there exists a one-to-one onto function \(T: \text{Ran}(V_1) \rightarrow \text{Ran}(V_2) \) such that \(T \circ V_1 = V_2 \). This implies that a decision \(d \) results from the same set of Landsat reflectance regardless of which VI is used; that is

\[
V^{-1}[(T^{-1}(d))](T \circ V_1)^{-1}(d) = V^{-1}(d) \quad (\text{Eq. 1})
\]

for each decision \(d \) in \(D \), where the superscript \(-1\) indicates the inverse image of \(d \) under the given function. The relationship defined is an equivalence relation on the set of vegetation indices.

A number of studies have investigated the transformed vegetation indices \(TVI_6 \) and \(TVI_7 \) and the corresponding ratios \(R_65 \) and \(R_75 \) as predictors of biomass, leaf area index, plant height, and percent ground cover. The predictive ability of \(TVI_6 \) and \(R_65 \) or \(TVI_7 \) and \(R_75 \) are similar as evidenced by the estimated correlation coefficient. We now show that the transformed vegetation index and its generalizations are equivalent to the corresponding ratios. This example makes clear not only the algebraic and geometric meaning of VI equivalence but also demonstrates the utility and appropriateness of this definition.

Let \(a \) and \(b \) be positive constants, and define the functions \(f, g, \) and \(T \) by

\[
f(X_5, X_7) = \frac{(aX_7 - bX_5)/(aX_7 + bX_5)}{g(X_5, X_7) = X_7/X_5}
\]

\[
T(y) = \frac{(b/a)\left[(1 + y)/(1 - y)\right]}{1 \leq y \leq 1)
\]

for \(X_5 \) and \(X_7 \) positive and \(\text{ABS}(y) \) less than one. Observe that \(T \) is invertible; in fact

\[
T^{-1}(z) = \frac{(az - b)}{(az + b)} \quad \text{for } z \text{ positive}
\]

Thus, \(f \) and \(g \) are equivalent and the values of \(f \) can be computed from the values of \(g \) and vice versa.

\[
(T \circ f)(X_5, X_7) = g(X_5, X_7)
\]

\[
(T^{-1} \circ g)(X_5, X_7) = f(X_5, X_7)
\]

Let \(k \) and \(p \) be real, and define the functions \(G: (-1,1) \rightarrow (-k-1,k+1) \) and \(H: (k-1,k+1) \rightarrow (-1,1) \) by

\[
G(v) = v + k
\]

\[
H(w) = w|\text{ABS}(w)|^{p-1}, \quad \text{for } w \text{ between } k-1 \text{ and } k+1, L = (k-1)|\text{ABS}(k-1)|^{p-1}, \quad u = (k+1)|\text{ABS}(k+1)|^{p-1}, \quad \text{ABS}(v) \text{ less than one}
\]

and \(u/0 \) defined as 1. It is easy to verify that \(G \) and \(H \) are one-to-one and onto and that

\[
(\circ G \circ T^{-1})(x_5, x_7) = f(x_5, x_7 + k)(\text{ABS}(f(x_5, x_7 + k))^{p-1})
\]

Taking \(k = p = 1/2 \) and \(a = b = 1 \) show that the transformed vegetation index, \(TVI_7 \), is equivalent to the seven-five ratio, \(R_75 \).

\[
(\circ G \circ T^{-1})(R_75) = TVI_7
\]

Equivalence of VIs means their response surfaces determine precisely the same partition of the reflectance measurement space (equation 1). Elements of this partition are referred to as decision classes. Representative response surfaces and equivalence classes associated with \(TVI_7 \) and \(R_75 \) are illustrated in figures 2a and 2b. The nonlinear algebraic relationships exhibited above between \(R_75, TVI_7, \) and \(ND_7 \) are illustrated graphically in figure 3.

(a) Associated with \(R_75 \) (b) Associated with \(TVI_7 \)

Figure 2. Response surface and equivalence classes.

Figure 3. \(TVI_7, ND_7, \) and \(R_75 \) versus time using data listed in Lautenschlager and Perry (1981). All VI values have been rescaled 0 to 100.
As a further illustration of the utility of VI equivalence, GVSB is shown to be approximated by ND6. Thus, the more complicated GVSB can be expected to provide approximately the same information about crop condition as the simple ratio ND6. Thus, the estimate, EGVSB, is equivalent to k65 and ND6. These relationships are illustrated graphically in figure 4.

From these estimates, one easily obtains the regression equations

\[\text{ND6} = 0.6236 \text{CH5} + 6.564 \]
\[\text{GVSB} = 0.74 (\text{CH6} - 1.14 \text{CH5} + 0.03) \]
\[\text{EBVS} = 0.78 (\text{CH6} + 1.03 \text{CH5} + 2.96) \]

Using the information in the above tables pertaining to the expected range of the data, it is easy to see that a rough approximation for GVSB is:

\[\text{EGVSB} = (\text{CH6} - 1.14 \text{CH5})/(\text{CH6} + 1.03 \text{CH5}) \]

which is approximately ND6. In fact, let

\[h(y) = (b + vy)/(a - wy) \]
\[r(x,y) = x/y \]

Thus, the estimate, EGVSB, is equivalent to k65 and ND6. These relationships are illustrated graphically in figure 4.

LITERATURE CITED

Aaronson, A. C.; L. L. Davis; and G. A. Hay, 1979, "Results of the Vegetative Index Correction Study", Technical Memo. No. 6, Crop Condition Assessment Division, USDA/FAS, Houston, TX.

Rouse, J. W.; R. H. Haas; J. A. Schell; D. W. Deering; and J. C. harlan, 1974, "Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation, NASA/GSPC Type III Final Report, Greenbelt, MD.

Teppan, Gray, 1980, "The Monitoring of Green Vegetation Cover in the Kansas Flint Hills from Landsat Data", KARS, Univ. of Kansas, Lawrence.

Contribution of the Early Warning/Crop Condition Assessment (EWCCA) project within the Agriculture Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) program, a joint program of USDA, USG, NASA, and USDI. EWCCA is located at 1050 Bay Area Blvd., Houston, Texas 77058.