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ABSTRACT 

In agr icu l tu ra l  crop acreage surveys based on 
sa te l l i t e -acqu i red  data, the derived estimates 
u l t imate ly  depend on a p robab i l i s t i c  c l ass i f i ca -  
t ion  of small area units i n to  a number of d i f f e r -  
ent ground cover classes. The goal is to assign 
the small area units to crop classes in such a way 
that the resul t ing crop proport ion estimates are 
as accurate as possible. The s t a t i s t i c a l  problem 
is that of assessing the quant i ty of information 
which the Landsat ref lectance measurements supply 
about the unknown crop proport ions, assuming the 
most e f f i c i e n t  u t i l i z a t i o n  of the data. This 
report provides a discussion of Fisher information 
theory and i t s  appl icat ion to crop proport ion 
estimation using sa te l l i t e -acqu i red  data. The 
theoret ica l  results are i l l u s t r a t e d  with examples 
based on data from 1978 Large Area Crop Inventory 
Experiment photoi nterpreter  c lass i f i ca t ions  of 
small grains segments. These examples indicate 
that a considerable information loss occurs during 
the photo in terpretat ion process. 

1. INTRODUCTION 

In agr icu l tu ra l  crop acreage surveys based on 
sa te l l i t e -acqu i red  data, the derived estimates 
u l t imate ly  depend on a p robab i l i s t i c  c l ass i f i ca -  
t ion of small area units into a number of d i f f e r -  
ent ground cover classes ( re f .  i ) .  These c lass i -  
f i ca t ions  are usually made by examining the change 
through time of the Landsat ref lectance measure- 
ments that are associated with the small area 
un i t .  In addi t ion,  other information concerning 
the pract ice of agr icu l ture  in the general region 
is important in the c lass i f i ca t i on  process; how- 
ever, ground observations are assumed unavailable 
except for test  purposes since appl icat ions are to 
foreign areas. These data sets are referred to as 
the spectral-temporal data and the spectral-tem- 
po ra l -anc i l l a ry  data, respect ively.  

H i s t o r i c a l l y ,  a great deal of e f f o r t  and ingen- 
u i ty  has been devoted to the theory and methodol- 
ogy associated with making these p robab i l i s t i c  
crop class determinations. Although not always 
c lear ly  expressed, the goal has always been to 
assign the small area units to crop classes in 
such a way that the resul t ing crop proport ion 
estimates are as accurate as possible. Latent in 
th is  goal is the question: Is the precision of 
the results l imi ted by the c lass i f i ca t i on  tech- 
niques employed or by the i n t r i n s i c  value of the 
s a t e l l i t e  data used in the c lass i f i ca t i on  process? 
In other words, in obtaining an accurate estimate 
of the crop proportions for a specif ied area, are 
we l imi ted by the procedures we employ or by the 
amount of information concerning the unknown crop 
proportions that is contained in the associated 
spectral -tempora I -anci I I ary data ? 

From a purely s t a t i s t i c a l  standpoint, the prob- 
lem is that of assessing the quant i ty of 

information which the Landsat ref lectance measure- 
ments supply about the unknown crop proport ions, 
assuming the most e f f i c i en t  u t i l i z a t i o n  of the 
data. 

The measure of information used in th is report 
was introduced by R. A. Fisher ( ref .  2) and is 
generally referred to as Fisher information. As 
motivation for his information measure, a part of 
the introductory remarks given to the subject in 
reference 2 are included. Fisher introduces the 
de f i n i t i on  of information with the sentence" 

" I f ,  therefore,  any such average is determined 
with a sampling variance V, we may define a 
quant i ty I such that I = I /V, and I w i l l  meas- 
ure the quant i ty of information supplied by the 
experiment in respect of the par t i cu la r  value 
to which the variance re fers . "  
(Ref. 2, p. 185) 

Later in the context of estimation theory, he 
states" 

"The amount of information to be expected in 
respect of any unknown parameters, from a given 
number of observations of independent objects 
or events, the frequencies of which depend on 
that parameter, may be obtained by a simple 
appl icat ion of the d i f f e r e n t i a l  calculus."  
( re f .  2, pp. 215-216) 

Fisher continues with a sequence of examples. The 
f i r s t  of these examples is included for i ts  in-  
s t ruc t ive  value and also to share with the reader 
the beauty in Fisher's expression of the basic 
idea. 

"Let us suppose that only two kinds of objects 
or events are to be dist inguished, and that we 
are concerned to estimate the frequency, p, 
with which one of them occurs as a f ract ion of 
a l l  occurrences; or, what comes to the same 
thing,  the complementary frequency, q(= I -  p), 
with which the a l te rnat ive  event occurs. We 
might, for example, be estimating the propor- 
t ion of males in the aggregate of l i ve  b i r ths ,  
or the proportion of s t e r i l e  samples drawn from 
a bulk in which an unknown number of organisms 
are d is t r ibu ted ,  or the proportion of experi-  
mental animals which die under wel l -def ined 
experimental condit ions. The experimental or 
observational record w i l l  then give us the num- 
bers of the two kinds of observations made, a 
of one kind and b of another, out of a to ta l  
number of n cases examined. We wish to know 
how much information the examination of n cases 
may be expected to provide, concerning the 
values of p and q, which are to be estimated 
from the data. 
"A general procedure, which may be easi ly ap- 
pl ied to many cases, is to set down the f re -  
quencies to be expected in each of the d i s t i n -  
guishable classes in terms of the unknown para- 
meter. For each class we then f ind the d i f f e r -  
ent ia l  coe f f i c i en t ,  with respect to p, of th is  
expectation. The squares of these, divided by 
the corresponding expectat i ons, and added 
together, supply the amount of information to 
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be anticipated from the observational record. 
That such a calculat ion wi l l  give a quant i ty 
of the kind we want, may be perceived at once 
by considering that the d i f f e r e n t i a l  coe f f i -  
cients of the expectations, with respect to p, 
measure the rates at which these expectations 
w i l l  commence to be altered i f  p is gradually 
varied; and the greater these rates are, 
whether the expectations are increased or 
diminished as p is increased, Or in other 
words, whether the d i f f e r e n t i a l  coef f ic ients  
are posi t ive or negative, the more sens i t i ve ly  
w i l l  the expectations respond to var iat ions of 
p. Consequently, i t  might have been an t i c i -  
pated that the value of the observational rec- 
ord for our purpose would be simply related to 
the squares of these d i f f e r e n t i a l  coef f ic -  
ients.  
"We may now set out the process of ca lcu la t ion 
for the simple case of the estimation of the 
frequency of one of two classes. 

TABLE 36 

Observed 
Frequency, 

(x) 

a 

b 

Expected 
Frequency, 

(m) 

pn 

qn 

Differential i{dml2 
Coefficient, m~dpl 

dm/dp 
,, 

n n/p 
-n n/q 

m 

0 n/pq 

"The frequencies expected are found by mul t i -  
plying the number of observations, n, by the 
theoret ica l  frequency, p, which is the object 
of estimation, and by i ts  complementary frequ- 
ency, q. The d i f f e r e n t i a l  coef f ic ien ts  of 
these expectations with respect to p are sim- 
ply n and -n. The sum of these is zero, as 
must be the case whenever, as is usual, the 
number of observations made is independent of 
the parameter I to be estimated. I t  is obvi- 
ously, therefore,  not the tota l  of the d i f f e r -  
ent ia l  coef f ic ients  which measures the value 
of the data, but e f f ec t i ve l y  the extent to 
which these d i f f e r  in the d i f f e ren t  d i s t i n -  
guishable classes, as measured by the i r  squa- 
res appropr iately weighted, as shown in the 
last  column. 
"The tota l  amount of information is found to 
be 

_ n 
I - ~ - ~ ,  

and we may now note the well-known fact that ,  
i f  our sample of observations were indef in-  
i t e l y  increased, the estimate of p, obtained 
from the data, tends in the l im i t  to be dis- 
t r ibuted normally about the true value with 

variance nP--~. '' ( re f .  2, pp. 216-218). 

2. THE MATHEMATICAL FORMULATION OF FISHER 
INFORMATION AND THE CRAMER-RAO LOWER BOUND 

A summary of the basic theoret ica l  resul ts 
u t i l i zed  in the remainder of th is report is pre- 
sented in th is  section. The theorems are presen- 
ted without proof. For a thorough discussion of 
the theory, see reference 3. 

Even though redundant, the theory is divided 
into two cases: (1) the case where the under- 

ly ing p robab i l i t y  d i s t r i b u t i o n  depends on one 
real parameter @ and (2) the case where the 
d i s t r i bu t i on  depends on a vector of parameters 

= (O l ,O2, - . . ,0n) .  Perhaps th is  approach w i l l  

be helpful to those who are unfamil iar  with the 
subject.  

2.1 THE CASE OF ONE REAL PARAMETER 
Throughout th is  section, we assume that the 

data X from an experiment are generated by an 
underlying p robab i l i t y  process with a p robab i l i t y  
density function from the one parameter family of 
densi t ies { f (X;¢) Io  is a real number}; i . e . ,  X is 
a random sample from a population having a prob- 
a b i l i t y  density funct ion f (X;e) ,  where o is a 
real number. 
Theorem (2- I) 
a. Def in i t ion"  The Fisher information regarding 

the parameter o in the experiment that y ie lds 
the sample X is defined by 

IX(O) = E In f(X;o 

b. Theorem- The information can be computed by 
the a l ternat ive formula 

I x(O) : -E In f(X;o 

Theorem (2-2) 
a. Theorem- Information is addi t ive over 

independent experiments. Thus, i f  X and Y are 
independent, then 

IX(O) + I V ( O ) :  l (x ,y ) (O)  

b. Corol lary" The information in a random sample 
of size n is just  n times the information in a 
single observation 

Iy(O) = nix(e) 

where Y = (X I ,X2 , - - . ,Xn)  

Theorem (2-3) 
The information provided by a su f f i c i en t  

s t a t i s t i c  T = t(X) is the same as that in the 
sample X 

IT(O ) : IX(O ) 

Theorem (2-4) 
I f  T = t (X) ,  then 

I T (o) _< I X (o) 

with equal i ty  holding i f  and only i f  the 
s t a t i s t i c  T is s u f f i c i e n t .  
Theorem (2-5) 
a. Theorem: For any s t a t i s t i c  T = t (X) ,  the 

re la t ionship  between the information IX(O ) 

and the variance of the s t a t i s t i c  T is given 
by the information inequal i ty  

[ ~ ( e ) ]  2 [1 + b~(o)] 2 
Var (T )>  = 

- IX / (O  ') I X ( e )  

where ~T(O) = E(TIO ) and bT(O ) is the bias in 

the estimator T at o. The i nfor~mation 
inequal i ty  is also known as the Cramer-Rao 
inequal i ty  or the Freche inequa l i ty .  



b. Coro l lary :  The informat ion i nequa l i t y  can 
also be expressed in terms of the mean squared 
error  (MSE). 

[1 + b+(c))] 2 2 p 
MSE(T) = var(T) + b~(c)) _> IX(C)) + b~(C)) 

c. Coro l lary :  In the class of unbiased estima- 
to rs ,  the informat ion inequa l i t y  provides a 
lower bound that is independent of the es t i -  
mator, th i s  bound is just  the reciprocal  of 
the information in the data. 

I MSE(T) = Var(T) > 
- IX(O ) 

This lower bound is usual ly  referred to as the 
Cramer-Rao lower bound. General ly,  an es t i -  
mator T is said to be e f f i c i e n t  i f  i t  obtains 
th i s  bound. 

2.2 THE CASE OF SEVERAL PARAMETERS 
As in the case of a s ingle parameter, we 

assume that the data X are generated by a prob- 
a b i l i t y  funct ion from the fami ly  {f(X;~)IC~}. 
Now, however, ~ is a k-dimension real vector and 
hence no longer required to be a real number. In 
th is  se t t ing ,  the Fisher informat ion number 
becomes the informat ion matr ix.  
Theorem (2-6) 
a. De f i n i t i on :  The informat ion matr ix regarding 

the parameter ~ = (Ol,O2,. . . ,c)  k) in the exper- 

iment that y ie lds  the sample X is defined to 
be the matr ix IX(~) = [ l i j ] ;  i , j  = 1 , 2 , . . - , k  
where 

I = - E l  22 In f ( X ; ~ ) ]  
i j  ~ei~e j 

I f  appropr iate changes are made in the nota- 
t i on ,  most theorems for  the s ingle parameter case 
remain va l id  in the more general se t t ing  of 
several parameters. These changes usual ly  
involve:  
I .  Subst i tu t ion  of the informat ion matr ix 

IX(~) for the Fisher information number 

Ix(O) 
2. In te rp re ta t ion  of the real i nequa l i t y  A < B 

to mean the matr ix B - A is posit#ve 
semidefi n i te  

3. Replacement of the variance of T, var(T) ,  
with the variance covariance matr ix V. 

4. Replacement of the real number, 

[ ~ ( o ) ] 2  _ IX(C)), by the analogous matr ix 

expression, A I x ( ~ ) - I  AT. 

The fo l lowing theorems and co ro l l a r i es  summar- 
ize the major resu l ts  in the several parameter 
se t t ing .  For a more complete discussion of the 
general theory, see reference 3, pages 326 to 331. 
b. Theorem: Let h l ( x ) , h 2 ( X ) , , , . , h r ( X )  be r 

s t a t i s t i c s  such that 

1. E(hi) = gi (~) ; i = 1 , 2 , . . . , r  

2. V = [ V i j ]  

where 

V i j  = E[(h i - gi) (hj - gj) ]  and i , j  = 1 ,2 , - . . , r .  

~c)j~gi ~c)j~ I f(X;c))dX = f hi ~f(X'C))dX 3. - h i ~c)j 

where A is the r by k matr ix 

~gi 
~c). ; i = 1 , 2 , . - . , r  ; j = 1 , 2 , . . . , k  

J 
Then, the matr ix 

- A I X ( ~ ) - I  A T V 

is  pos i t i ve  semidef in i te .  I f  the informat ion 
matr ix is s ingular ,  then i t s  inverse in the 
above expression is replaced with the gen- 
era l ized inverse. 

c. Coro l lary-  Suppose I mn are the elements of 
the matr ix inverse of the information matr ix 
IX(~) .  Then 

- : : \~ °mJ  ~ e n  l 

This is a genera l iza t ion to the many param- 
eter case of theorem (2-5).  I t  shows that  
the variance of any est imator of g i ( ~ ) i s  

greater than or equal to a quant i ty  which is 
independent of the method of est imat ion.  When 
gi(c)) = c) i ,  the above equation reduces to 

Vi i  >_ l i i  >_ ( l i i ) - 1  

The last  i nequa l i t y  

V i i  >_ ( l i i ) - 1  

gives a lower l i m i t  for the Cramer-Rao lower 
bound of the second co ro l l a ry  in theorem (2-5).  

Theorem (2-7) 
a Theorem" In addi t ion to condi t ions I and 2 

of theorem (2-6),  suppose ~" is a s u f f i c i e n t  
s t a t i s t i c  for the vector ~. Then, there ex is t  
r funct ions k l , k  2 , . . . , k  r of the s u f f i c i e n t  

s t a t i s t i c  ? such that 

E(ki)  = gi (~) ; i = 1 , 2 , . . . , r  

Furthermore, i f  

U = [U i j  ] 

where Uij  = E[k i - g i ) ( k j  - g j ) ]  and 

i , j  = 1 , 2 , . . . , r ,  then the matr ix V - U is 
pos i t i ve  semidefi n i te .  

b. Corol lary"  Since the matr ix (V - U) is 
pos i t i ve  semidef in i te ,  i t  fo l lows that  

Vi i  >_ Ui i  ; i = 1 , 2 , - . . , r  
Hence, est imators with minimum variance are 
e x p l i c i t  funct ions of a s u f f i c i e n t  s t a t i s t i c .  

3. INFORMATION AND MIXTURES OF TWO DENSITIES 

This section presents a review of B. M. H i l l ' s  
1963 paper, " Informat ion for  Estimating the Pro- 
port ion in Mixtures of Exponential and Normal 
D i s t r i bu t i ons "  ( re f .  4), fol lowed by a discussion 
of the impl ica t ions of H i l l ' s  resu l ts  to ag r i cu l -  
tu ra l  surveys based on remotely sensed data. 
H i l l ' s  basic expansion of the information Ix(P) 
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in the mixture density f(X) - pf l (X) + (1 - p) 

f2(X) motivates simi lar result  for the general 

mixture model. Fami l ia r i ty  with the der ivat ion 
of basic expansion wi l l  f a c i l i t a t e  of the theo- 
re t i ca l  development in the general set t ing.  

H i l l ' s  paper is concerned with the information 
Ix(P) for estimating the proportion p in a mix- 

ture f(X) = pf l (X) + (I - p)f2(X) of two densi- 

t ies  f l (X)  and f2(X).  The main qua l i ta t i ve  

resul t  is that,  even in very simple s i tuat ions,  
such as a mixture of two exponential or of two 
normal d is t r ibu t ions with all parameters except p 
known, the expected precision in estimating p is 
very low unless the d is t r ibu t ions  in the mixture 
are well separated. Quanti tat ive resul ts include 
approximations for the information in mixtures of 
exponential and normal d i s t r ibu t ions .  For exam- 
ple, in the case of two normal d i s t r i bu t ions ,  
N(~l,O ) and N(~2,o), where [ (~I  - ~2 ) - o] is 

small, one may use the approximation 

~ I  - ~2 
I x (P) -~  0 

Theorem (3-I )  
Let X be a random variable and le t  

f (X),  = pf l (X)  + (I - p)f2(X) be a mixture densi- 

ty  associated with the probabi l i ty  density func- 
t ions f l (X)  and f2(X).  Then the Fisher informa- 

t ion regarding the proportion p in a random sam- 
ple of size n from a population with probab i l i t y  
density function f(X) is given by 

m [1 / f l ( x ) f 2 ( x ) d x  ] 
p(l  - p) - pfz(X) + (i p) f2(x)  

Proof: The Fisher information in a single 
sample regarding p is 

Ix(P) = - E l ~ 2 1 n [ f ( X ) ]  l ~ p 2  

Computing the derivat ives yields 

I×(p) = E " f(X) 

Taking the expected value and s imp l i fy ing  g ives  

I !  [ f l (X) - f2(x)] 2 2) 
Ix(P) [Pfl (x) 

Pfl(x) + (1 - p)f2(x)] 

+ (1-  p)f2(x)]dx 
I / [ f ( x )  - f l ( x ) ]  [ f(x) - f2(x)] 

: -  p ( Z -  p) y . . . .  f ( x )  dx 

[ / f l ( x )  f2 (x) ] 
= i I - dx 

p ( l -  p) f(x) 

where integrat ion is replaced with summation for 
discrete d is t r ibu t ions .  Applying the coro l lary  
to theorem (2-1) establishes the theorem. 

Since [ p ( l -  p ) ] - I  is the information regard- 
ing p in a pure binomial s i tuat ion,  the addi- 
t ional uncertainty as to the population from 
which an observation comes in the mixture 
pf l (×)  + (1 - p)f2(X) is ref lected in the factor 

I /rf 1(X) f2(x) ] 
S ( p, f I '  f 2 ) = - y ----i~(~X) dx 

Clearly, 0 _< S (P , f l , f 2 )  _< i .  Thus, i f  the densi- 

t ies f l  and f2 do not overlap, then the fu l l  

binomial information is obtained, whereas i f  f l  
and f2 are ident ica l ,  the information in the mix- 

ture concerning p is zero. 
Theorem (3-1) can be applied at two d i f fe rent  

levels in agr icu l tura l  surveys based on s a t e l l i t e -  
acquired data. One level of appl icat ion is to the 
spectral-temporal data which is discussed in ref-  
erence 5. The other level is to the c lass i f i ca-  
t ion results and the discussion fol lows. 

Suppose that a random sample of n pixels is 
selected from a sampling c luster .  (The c luster  
can be a segment, a fu l l  frame, or any other 
specif ied co l lect ion of p ixe ls . )  Further, sup- 
pose the crop class of each sampled pixel can be 
ascertained only according to the fol lowing prob- 
a b i l i t y  functions. 

~ f o r  x =  s 
Ps(X) : 

1 - ~ for  x = o 

and 

1 - B for  x = s 
Po(X)  : 

8 for  x = o 

where s denotes the crop of in terest ,  and o 
denotes al l  other crops. Sett ing 

P(x) = pPs(X)+ (1 - p)Po(X) 

and applying theorem (3-1) y ie lds 

l (p) = n [p(Z - p)]-Z S(p,ps,Po) 

where 

Ps (X)Po (x) 
S(P,Ps 'Po ) = 1 - P(x) 

x~{s,o} 

: I - p~ + ( I  p ) ( l  - 8 )  

8(1 - ~) ] 
+ p(l ~) + (I p)~ 

J 

This expresses the information available in 
the c lass i f ied sample regarding the crop propor- 
t ion p in terms of the c lass i f i ca t ion  probabi l i -  
t ies .  Equivalent ly,  the Cramer-Rao lower bound 
for any estimator T of p based on the c lass i f ied  
sample is given by 

Var(T) >_ p ( l -  p ) [~(p) ]2 [nS(P,Ps,Po) ] -Z  

As a numerical example, we consider the 
resul ts from an analysis of the Large Area Crop 
Inventory Experiment (LAClE) sample segment 1664, 
located in North Dakota. The analysis was per- 
formed at the National Aeronautics and Space 
Administrat ion (NASA), Lyndon B. Johnson Space 
Center (JSC), on December 20, 1978, using spec- 
t ra l - tempora l -anc i l l a ry  data from the 1978 crop 
year. In the analysis, 142 pixels (good type-2 
dots) were labeled by a photointerpreter.  Table 
3-1 shows a two-way c lass i f i ca t ion  of the photo- 
in te rp re te r ' s  attached pixel labels versus the 
true ground cover crop classes. 

74 



Combining the ent r ies of tab le  3-1 for  wheat 
and bar ley,  we obtain 

= 0.70, B = 0.83, and p = 0.33 

and 

S(P,Ps 'Po ) = 0•28 

where s indicates wheat or bar ley and o indicates 
nei ther wheat nor bar ley .  

TABLE 3-1. -  PHOTOINTERPRETER PIXEL LABELS 
VERSUS THE THREE GROUND COVER CROP CLASSES 

True ground 
cover classes 

Wheat 

Barley 

Other 

Photo i n terpr  et er 
c l a s s i f i e r  labels 

Wheat Barl  ey Other 

22 4 13 

0 7 1 

12 4 79 
, J  

,80 

.70 

.60 

.50 

s 
~. .40 
v: 

.30 

.80 

This means tha t ,  for  th is  set of data, there .70 
is ,  on the average, only 28 percent as much in- 
formation in a photo in te rpre te r  label as there is .6o 

in a t rue ground cover label for use in est imat-  
ing the crop proport ion p. Furthermore, the var- ~ .Be 
i ance of any est imator T of p must be greater  

n" .40 
than or equal to 3.58[~(p)] 2 -  t imes the corre- 

sponding binomial variance. .30 

Figures 3-1 and 3-2 display the relationship 
(or lack of a re la t i onsh ip )  between the average .2o 

f i e l d  size and the quant i ty  S(P,Ps,Po) for  al l  
.10 

1978 LACIE segments located in Montana, South 
Dakota, North Dakota, and Minnesota, for  which .~ 
ground cover data were co l lec ted .  A simple count 
r e f l e c t s  an informat ion loss of more than 80 per- 
cent in s l i g h t l y  over one-hal f  of the resu l ts  
from these segments. 

4. INFORMATION AND MIXTURES OF SEVERAL DENSITIES 

Results s im i la r  to those for  mixtures of two 
dens i t ies  can be developed in the general se t t ing  
( r e f .  5 ) .  

The informat ion matr ix for a mixture of sev- 
eral dens i t ies  furnishes an example ( r e f .  6) .  I t  
is analogous to the second equation in the proof 
of theorem ( 3 - I ) .  
Theorem (4- !) 
Let X be a random variable and let 

f(X) : Olf I(x) + o2f2(X) + .-. + 0m_Ifm_1(X) 

+ (1 - B I . . . . .  Om_l)fm(X) 
be a mixture density associated with the prob- 
ab i l i t y  density functions f l (X), f2(X),--- , fm(X). 

Then the information matrix regarding the propor- 
tions 01,02,-.-,8m_1 for a random sample of size 

n from a population with probability density 
function f(X) is given by the (m- 1) by (m- 1) 
matrix I = n [ l i j ] ,  where 
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Figure 3 - I . -  Plot  of  f i e l d  size versus quant i t y  
using type 1 dot data. 
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Figure 3-2. -  Plot  of  f i e l d  size versus quant i t y  
using type 2 dot data. 

[ f i ( x )  - f m ( X ) ] [ f j ( x )  - fm(X)] 
l i j  = f ( x )  dx 

for  i , j  = 1 , 2 , - - . , m -  I .  
The proof is s im i la r  to the one given for the 

Theor em (3- I)  
Theorem (4-1) is a par t ia l  genera l iza t ion  of 

theorem ( 3 - I ) ;  and, l i ke  theorem ( 3 - I ) ,  i t  has 
two app l i ca t ions .  To demonstrate the basic 
ideas, the app l ica t ion  to the c l a s s i f i c a t i o n  data 
is developed. 

Suppose a random sample of n p ixels is selec- 
ted from a c lus te r .  Further,  suppose that  the 
crop class of a pixel can be ascertained only 
according to the p r o b a b i l i t y  funct ions 

PAl for  x = I 

P for  x =  2 
P ~(x) = A2. 

P~m for  x = m 

where ~ = 1 , 2 , . . - , m  denotes the m crop classes• 
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Setting 

P(x) = c)IP l (x )  + c)2P2(x) + - . -  + C)m_iPm_l(X) 

+ (i - c) I . . . . .  ore_ l)Pm(x) 

and applying theorem (4-1) yields 

I(~) = n [ l  i j ]  ; i , j  = 1 , 2 , . . . , m -  1 

where 

m [Pi (x)  - Pm(X)][Pj(x) - Pm(X)] 

l i j  = x~]l P(x) 

• m [P ix - Pmx][Pjx - Pmx ] 

x= e lP ix  + " ' "  + (I - c) I - em-I )P mx 

This expresses the information matrix in terms 
of the p robab i l i t y  matrix P and the crop propor- 
t ions o1,c)2,-..,C)m_ I .  To complete the analogy, 

suppose T = (T1,T2,.--,Tm_I) is an estimator of 

the crop proportions ~ = (01,02,-'-,C)m_ I) based 

solely on pixel labels.  Further, assume that 
sa t i s f ies  the normality condit ion of theorem 
(2-1) and denote the expected value of T i 

by @i(C~). Then, an appl icat ion of the second 

coro l la ry  in theorem (2-6) shows 

m-i m-1 ~k ~ * i ~  l ~ * i ~  
Var(T i )  > ~E] ~ I 

k:1 

for i = 1 ,2, - - - ,m - 1. This resul t  and other 
general izat ions are interpreted numerically in 
reference 5. 

5. CONCLUSIONS 

a. The theory of Fisher information applied to 
mixture densit ies provides an appropriate and 
useful measure of the information in the 
Landsat da ta  avai lable for estimating crop 
proport ions. 

b. The examples indicate that considerable loss 
of information concerning the crop propor- 
t ions occurs during the photo in terpretat ion 
process. 

c. I f  there is a re la t ionship between average 
f ie ld  size and information loss (photo inter-  
preter labe l ing) ,  then i t  is not apparent 
using t h e  data set consisting of the 1978 
LACIE segments located in Montana, South 
Dakota, North Dakota, and M i n n e s o t a .  
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REPLY TO DISCUSSANT'S COMMENTS 

This work was developed only for the case 
where ground observations are unavai lable, and 
appl icat ions are to foreign regions where ground 
co l lec t ion of data is impossible. There is no 
"ground t ru th"  except for small h is tor ica l  test 
data sets in t h e  United States. Hence, the 
discussant's remarks regarding double sampling 
completely missed the point .  This fact is 
pointed out on the second page of the discuss- 
ant 's reference: "When i t  is impossible to obtain 
the true c lass i f i ca t ions  of ~ the units in the 
sample, the above sampling scheme is not appl ica- 
b le . "  Thus in th is  set t ing,  the discussant's 
quant i ty K (the square of the corre lat ion 
coef f i c ien t  between the true and the c lass i f ied  
unit  labels) suffers from the same questions of 
appropriateness as other measures of information. 


