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ABSTRACT

In agricultural crop acreage surveys based on
satellite-acquired data, the derived estimates
ultimately depend on a probabilistic classifica-
tion of small area units into a number of differ-
ent ground cover classes. The goal is to assign
the small area units to crop classes in such a way
that the resulting crop proportion estimates are
as accurate as possible. The statistical problem
is that of assessing the quantity of information
which the Landsat reflectance measurements supply
about the unknown crop proportions, assuming the
most efficient utilization of the data. This
report provides a discussion of Fisher information
theory and its application to crop proportion
estimation using satellite-acquired data. The
theoretical results are illustrated with examples
based on data from 1978 Large Area Crop Inventory
Experiment photointerpreter classifications of
small grains segments. These examples indicate
that a considerable information loss occurs during
the photointerpretation process.

1. INTRODUCTION

In agricultural crop acreage surveys based on
satellite-acquired data, the derived estimates
ultimately depend on a probabilistic classifica-
tion of small area units into a number of differ-
ent ground cover classes (ref. 1). These classi-
fications are usually made by examining the change
through time of the Landsat reflectance measure-
ments that are associated with the small area
unit. In addition, other information concerning
the practice of agriculture in the general region
is important in the classification process; how-
ever, ground observations are assumed unavailable
except for test purposes since applications are to
foreign areas. These data sets are referred to as
the spectral-temporal data and the spectral-tem-
poral-ancillary data, respectively.

Historically, a great deal of effort and ingen-
uity has been devoted to the theory and methodol-
ogy associated with making these probabilistic
crop class determinations. Although not always
clearly expressed, the goal has always been to
assign the small area units to crop classes in
such a way that the resulting crop proportion
estimates are as accurate as possible. Latent in
this goal is the question: Is the precision of
the results limited by the classification tech-
niques employed or by the intrinsic value of the
satellite data used in the classification process?
In other words, in obtaining an accurate estimate
of the crop proportions for a specified area, are
we limited by the procedures we employ or by the
amount of information concerning the unknown crop
proportions that 1is contained 1in the associated
spectral-temporal-ancillary data?

From a purely statistical standpoint, the prob-
lem s that of assessing the quantity of
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information which the Landsat reflectance measure-
ments supply about the unknown crop proportions,
assuming the most efficient utilization of the
data.

The measure of information used in this report
was introduced by R. A. Fisher (ref. 2) and is
generally referred to as Fisher information. As
motivation for his information measure, a part of
the introductory remarks given to the subject in
reference 2 are included. Fisher introduces the
definition of information with the sentence:

“1f, therefore, any such average is determined

with a sampling variance V, we may define a

quantity I such that I = 1/V, and I will meas-

ure the guantity of information supplied by the
experiment in respect of the particular value
to which the variance refers."

(Ref. 2, p. 185)

Later in the context of estimation theory, he
states:

"The amount of information to be expected in

respect of any unknown parameters, from a given

number of observations of independent objects
or events, the frequencies of which depend on
that parameter, may be obtained by a simple
application of the differential calculus."

(ref. 2, pp. 215-216)

Fisher continues with a sequence of examples. The
first of these examples is included for its in-
structive value and also to share with the reader
the beauty in Fisher's expression of the basic
idea.

"Let us suppose that only two kinds of objects
or events are to be distinguished, and that we
are concerned to estimate the frequency, p,
with which one of them occurs as a fraction of
all occurrences; or, what comes to the same
thing, the complementary frequency, q(= 1 - p),
with which the alternative event occurs. We
might, for example, be estimating the propor-
tion of males in the aggregate of live births,
or the proportion of sterile samples drawn from
a bulk in which an unknown number of organisms
are distributed, or the proportion of experi-
mental animals which die under well-defined
experimental conditions. The experimental or
observational record will then give us the num-
bers of the two kinds of observations made, a
of one kind and b of another, out of a total
number of n cases examined. We wish to know
how much information the examination of n cases
may be expected to provide, concerning the
values of p and q, which are to be estimated
from the data.

"A general procedure, which may be easily ap-

plied to many cases, is to set down the fre-

quencies to be expected in each of the distin-
guishable classes in terms of the unknown para-
meter. For each class we then find the differ-
ential coefficient, with respect to p, of this
expectation., The squares of these, divided by
the corresponding expectations, and added
together, supply the amount of information to



be anticipated from the observational record.
That such a calculation will give a quantity
of the kind we want, may be perceived at once
by considering that the differential coeffi-
cients of the expectations, with respect to p,
measure the rates at which these expectations
will commence to be altered if p is gradually
varied; and the greater these rates are,
whether the expectations are increased or
diminished as p is increased, or in other
words, whether the differential coefficients
are positive or negative, the more sensitively
will the expectations respond to variations of
p. Consequently, it might have been antici-
pated that the value of the observational rec-
ord for our purpose would be simply related to
the squares of these differential coeffic-
ients.

"We may now set out the process of calculation
for the simple case of the estimation of the
frequency of one of two classes.

TABLE 36
Observed Expected Differential 2
A I {dm
Frequency, | Frequency, | Coefficient, w\do
{x) (m) dm/dp P
a pn n n/p
b gn -n n/q
n n 0 n/pq

"The frequencies expected are found by multi-
plying the number of observations, n, by the
theoretical frequency, p, which is the object
of estimation, and by its complementary frequ-
ency, q. The differential coefficients of
these expectations with respect to p are sim-
ply n and -n. The sum of these is zero, as
must be the case whenever, as is usual, the
number of observations made is independent of
the parameter to be estimated. It is obvi-
ously, therefore, not the total of the differ-
ential coefficients which measures the value
of the data, but effectively the extent to
which these differ in the different distin-
guishable classes, as measured by their squa-
res appropriately weighted, as shown in the
last column.

“The total amount of information is found to
be

=n_
Pq’

and we may now note the well-known fact that,
if our sample of observations were indefin-
itely increased, the estimate of p, obtained
from the data, tends in the Timit to be dis-
tributed normally about the true value with

variance B3."  (ref. 2, pp. 216-218).

2. THE MATHEMATICAL FORMULATION OF FISHER
INFORMATION AND THE CRAMER-RAC LOWER BOUND

A summary of the basic theoretical results
utilized in the remainder of this report is pre-
sented in this section. The theorems are presen-
ted without proof. For a thorough discussion of
the theory, see reference 3.

Even though redundant, the theory is divided
into two cases: (1) the case where the under-
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lying probability distribution depends on one
real parameter 6 and (2) the case where the
distribution depends on a vector of parameters

= (04,0,°+,0,)+ Perhaps this approach will

be helpful to those who are unfamiliar with the
subject.

2.1 THE CASE OF ONE REAL PARAMETER
Throughout this section, we assume that the
data X from an experiment are generated by an
underlying probability process with a probability
density function from the one parameter family of
densities {f(X;0)l|o is a real number}; i.e., X is
a random sample from a population having a prob-
ability density function f(X;0), where o is a
real number.
Theorem (2-1)
a. Definition: The Fisher information regarding
the parameter © in the experiment that yields
the sample X is defined by

> ]2
Ix(e) = E [ﬁj 1n f(X;0)

b. Theorem: The information can be computed by
the alternative formula

1, (0) EFZ 1 ﬂxoﬂ
= n 5

X 202

Theorem (2-2)

Information is additive over
Thus, if X and Y are

a. Theorem:
independent experiments.
independent, then

IX(O) + IY(O) = I(X,Y)(G)

b. Corollary: The information in a random sample
of size n is just n times the information in a
single observation

Iy(e) = nIy(e)
Y = (XI;XZ"’°9XH)
Theorem (2-3

where

The information provided by a sufficient
statistic T = t(X) is the same as that in the
sample X

11(0) = Iy (o)
Theorem (2-4)
If T = t(X), then
I1(0) < Iy(0)
with equality holding if and only if the
statistic T is sufficient.
Theorem (2-5
a. Theorem: For any statistic T = t(X), the

relationship between the information IX(o)

and the variance of the statistic T is given
by the information inequality

[v(0)1° [+ brE)1°

Var(T) >
ar( ) - Tx(o) Ix(o)
where WT(O) = E(T|o) and bT(e) is the bias in
the estimator T at o. The information

inequality is also known as the Cramer-Rao
inequality or the Freche inequality.



b. Corollary: The information 1inequality can
also be expressed in terms of the mean squared
error (MSE).

[1 + bp(e)1°

var(T) + b%(@) Z——W)——+ b%(@)

c. Corollary: In the class of unbiased estima-
tors, the information inequality provides a
lTower bound that is independent of the esti-
mator; this bound is just the reciprocal of
the information in the data.

MSE(T) =

MSE(T) = Var(T) 2 T—UFY
X

This_ lower bound is usually referred to as the
Cramer-Rao Tower bound. Generally, an esti-
mator T is said to be efficient if it obtains
this bound.

2.2 THE CASE OF SEVERAL PARAMETERS
As in the case of a single parameter, we
assume that the data X are generated b prob-
ability function from the family {f{X; 6 |5}
Now, however, O is a k-dimension real vector and
hence no longer required to be a real number. In
this setting, the Fisher information number
becomes the information matrix.
Theorem (2-6)
a. Definition:
the parameter

The information matrix regarding
= (01,02,---,Ok) in the exper-

iment that yields the samg]e X is defined to
be the matrix I, (0) = [I 1,5 = 1,2,000,k

ije
where J

Lo g% f(x3)
13 aoiaej
If appropriate changes are made in the nota-
tion, most theorems for the single parameter case

remain valid 1in the more general setting of
several parameters. These changes wusually
involve:

1. Substitution of the information matrix
IX(6) for the Fisher information number

Iy (0)

2. Interpretation of the real inequality A ¢ B
to mean the matrix B - A is positive
semidefinite

3. Replacement of the variance of T, var(T),

with the variance covariance matrix V.
4, Replacement of the real number,

[\yT'(o)]2 + IX(o), by the analogous wmatrix
expression, 4 IX(ES)'1 AT,

The following theorems and corollaries summar-

jze the major results in the several parameter

setting. For a more complete discussion of the

general theory, see reference 3, pages 326 to 331.

b. Theorem: Let hl(X),h
statistics such that

LooEhy) = g 8)

i

Z(X)""’hr(x) be r

= 1,2,000,r

2. V = [Vij]
where
Vij = E[(“j - 91) (hj - gj)] and 1,J = 1,2,¢+4,r
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‘75‘ =‘§“

29,
3. ‘/}11%x 0)dX = ~/. ﬂiﬂl&illi-

where A is the r by k matrix
Bgi

20, °
J

Then, the matrix
V- 1@t aT

i-= 1,2"'°ar 5 j = 192,"‘,k

is positive semidefinite. If the information
matrix 1is singular, then its inverse in the
above expression is replaced with the gen-
eralized inverse.

c. Corollary: Suppose I™ are the elements of
the matrix inverse of the information matrix
I,@). Then

k k 39:\ /39,
Vg2 3 T <5al> (561
m=1 n=1 m; n

This is a generalization to the many param-
eter case of theorem (2-5). It shows that
the variance of any estimator of 91(5) is

greater than or equal to a quantity which is
independent of the method of estimation. When
gi(o) = 04, the above equation reduces to

1y (1.7}

Vo> i

ii
The Tast inequality

Vig 2 (L)

-1

gives a lower limit for the Cramer-Rao lower
bound of the second corollary in theorem (2-5).
Theorem (2-7
a. Theorem: In addition to conditions 1 and 2
of theorem (2-6), suppose T is a sufficient
statistic for the vector G. Then, there exist
r functions kl,kz,---,kr of the sufficient

statistic T such that
E(k;) = g;(8) 5 1= 12,0000y

Furthermore, if
U=1"[U

1‘

1J]

= E[k1 - 91)(kj - gj)] and
i,j = 1,2,v¢¢,r, then the matrix V - U is
positive semidefinite.

b. Corollary: Since the matrix (V - U) is
positive semidefinite, it follows that

Vig 2 U5

Hence, estimators with minimum variance are
explicit functions of a sufficient statistic.

where Uij

i = 1,2,...’r

3. INFORMATION AND MIXTURES OF TWO DENSITIES

This section presents a review of B. M. Hill's
1963 paper, "Information for Estimating the Pro-
portion 1in Mixtures of Exponential and Normal
Distributions" (ref. 4), followed by a discussion
of the implications of Hill's results to agricul-
tural surveys based on remotely sensed data.
Hi11's basic expansion of the information Ix(p)



in the mixture density f(X) = pfy{X} + (1 - p)
f,(X) motivates similar result for the general

mixture model. Familiarity with the derivation
of basic expansion will facilitate of the theo-
retical development in the general setting.
Hil1l's paper is concerned with the information
Iy(p) for estimating the proportion p in a mix-

ture f(X) = pfy{X) + (1 - p)fp(X) of two densi-
ties f1(X) and fy(X). The main qualitative
result is that, even in very simple situations,

such as a mixture of two exponential or of two
normal distributions with all parameters except p
known, the expected precision in estimating p is
very low unless the distributions in the mixture
are well separated. Quantitative results include
approximations for the information in mixtures of
exponential and normal distributions. For exam-
ple, in the case of two normal distributions,

N(ul,c) and N(uz,o), where [(“1 - “2) + o] is

small, one may use the approximation

171 2
) ®\=——
Theorem (3-1)
Let X be a random variable and let
f(X), = pfi(X) + (1 - p)fy(X) be a mixture densi-

ty associated with the probability density func-
tions f1(X) and fp(X). Then the Fisher informa-

tion regarding the proportion p in a random sam-
ple of size n from a population with probability
density function f(X) is given by

m 1 (x)f,(x)dx
M |1 -
p(1 - p) pf () + (T - p)f,(x)
Proof: The Fisher
sample regarding p is
(p) = -E j@fﬁnfgﬁxlll
[ »"
Computing the derivatives yields

information in a single

Iy

2
f(X) - £,(X)
_ 1 2
Tlp) = E [}——*—?777"“] }
Taking the expected value and simplifying gives
[f,(x) - £,(x)7?
[t 2 7 |pf; (x)
\Tof, () + (1 - p),(x)]

+ (1 - p)f,(x)1dx
. 1 LF(x) - ()] [f(x) - f,(x)] i
p(l - p) fix}

fo(x) fo(x
1 1 2
TR ) [1 f {6y dx]

where integration is replaced with summation for
discrete distributions. Applying the corollary
to theorem (2-1) establishes the theorem.

Since [p(l - p)17! is the information regard-

Iy (p) =

X

~ o~ Lt

ing p in a pure binomial situation, the addi-
tional uncertainty as to the population from
which an observation comes 1in the mixture

pf1(X} + (1 - p)fp(X) is reflected in the factor

74

f1(x) fy(x)

S(p,fl,fz) = [1 - .-_T—(—)T)—_ dx}
Clearly, 0 < S(p,fl,fz) < 1. Thus, if the densi-
ties f; and f, do not overlap, then the full

binomial information is obtained, whereas if f;
and f, are identical, the information in the mix-

ture concerning p is zero.

Theorem {3-1) can be applied at two different
levels in agricultural surveys based on satellite-
acquired data. One level of application is to the
spectral-temporal data which is discussed in ref-
erence 5. The other level is to the classifica-
tion results and the discussion follows.

Suppose that a random sample of n pixels is
selected from a sampling cluster. (The cluster
can be a segment, a full frame, or any other
specified collection of pixels.) Further, sup-
pose the crop class of each sampled pixel can be
ascertained only according to the following prob-
ability functions.

a for x = s
P(x) =
1l - o forx=o0
and
1 -8 for x=3s
Polx) =
g for x = 0
where s denotes the crop of interest, and o
denotes all other crops. Setting

P(x) = pP(x) + (1 - p)P (x)
and applying theorem (3-1) yields
I(p) = n [p(1 - P)I7F S(p.P P )

where
P_(x)P _(x)
S(p.PP) = 1 - 2 e

xe{s,0}

1 - afl - 8)
pa + (1 - p)(T - 8)

]

+ g(l - o)
pP(1 - o) + (T - pjg

This expresses the information available in
the classified sample regarding the crop propor-
tion p in terms of the classification probabili-
ties. Equivalently, the Cramer-Rao lower bound
for any estimator T of p based on the classified
sample is given by

Var(T) > p(1 - p)Lup(p)I2Ins(p,P P )17t

As a numerical example, we consider the
results from an analysis of the Large Area Crop
Inventory Experiment (LACIE) sample segment 1664,
located in North Dakota. The analysis was per-
formed at the National Aeronautics and Space
Administration (NASA), Lyndon B. Johnson Space
Center (JSC), on December 20, 1978, using spec-
tral-temporal-ancillary data from the 1978 crop
year. In the analysis, 142 pixels (good type-2
dots) were Tlabeled by a photointerpreter. Table
3-1 shows a two-way classification of the photo-
interpreter's attached pixel 1labels versus the
true ground cover crop classes.



Combining the entries of table 3-1 for wheat
and barley, we obtain

a = 0.70, 8 = 0.83, and p = 0.33
and
S(P’Ps’Po) = 0.28

where s indicates wheat or barley and o indicates
neither wheat nor barley.

TABLE 3-1.- PHOTOINTERPRETER PIXEL LABELS
VERSUS THE THREE GROUND COVER CROP CLASSES

Photointerpreter
True ground classifier labels
cover classes
Wheat Barley Other
Wheat 22 4 13
Barley 0 7 1
Other 12 4 79

This means that, for this set of data, there
is, on the average, only 28 percent as much in-
formation in a photointerpreter label as there is
in a true ground cover label for use in estimat-
ing the crop proportion p. Furthermore, the var-
iance of any estimator T of p must be greater

than or equal to 3.58[w+(P)]2 times the corre-

sponding binomial variance.

Figures 3-1 and 3-2 display the relationship
{or lack of a relationship) between the average
field size and the quantity S(p,Pg,P,) for all

1978 LACIE segments located in Montana, South
Dakota, North Dakota, and Minnesota, for which
ground cover data were collected. A simple count
reflects an information loss of more than 80 per-
cent in slightly over one-half of the results
from these segments.

4. TINFORMATION AND MIXTURES OF SEVERAL DENSITIES

Results similar to those for mixtures of two
densities can be developed in the general setting
(ref. 5).

The information matrix for a mixture of sev-
eral densities furnishes an example (ref. 6). It
is analogous to the second equation in the proof
of theorem (3-1).

Theorem (4-1)

Let X be a random variable and let
f(X) = olfl(x) + osz(X) + oees + em—lfm-l(x)

+ (1 - By = cee - enkl)fm(X)

be a mixture density associated with the prob-
ability density functions fl(X),fZ(X),---,fm(X).
Then the information matrix regarding the propor-
tions 015995250 1 for a random sample of size
n from a population with probability density
function f(X) is given by the (m - 1) by {m - 1}
matrix I = n[Iij], where

S(p,Pg,Po)
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Figure 3-1.- Plot of field size versus quantity
using type 1 dot data.
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Figure 3-2.- Plot of field size versus quantity
using type 2 dot data.

X

: =/[fi(x) - Fp00ILE5 (0 - £ (0]
ij F{x)

for i,j = 1,2,¢¢e,m - 1.

The proof is similar to the one given for the
Theorem (3-1)

Theorem (4-1) is a partial generalization of
theorem (3-1); and, 1ike theorem (3-1), it has
two applications. To demonstrate the basic
ideas, the application to the classification data
is developed.

Suppose a random sample of n pixels is selec-
ted from a cluster. Further, suppose that the
crop class of a pixel can be ascertained only
according to the probability functions

P21 for x =1
P,, for x = 2
_ )2
P¥) =4
le for x = m

where £ = 1,2,+++,m denotes the m crop classes.



Setting
P(x) = 03P (x) + 0Py (X) + eee + -1 -1 (X)
+ (1 -0y - eee -0, 1)PL(X)

and applying theorem (4-1) yields

1) = n 1) 5 6,5 = L,2,e0em -1
where
- zm: [P_i(X) - Pm(X)][Pj(X) - Pm(X)}

i & P{X)

-j% [Pix B me][ij i me]
=1 Olplx + ees + (1 - 91 — ese - 0O

nkl)me

This expresses the information matrix in terms
of the probability matrix P and the crop propor-
tions ©1509s%°:0p 1~ To complete the analogy,

suppose T = (Ty,Tp,«++,T 1) is an estimator of
the crop proportions & = (015095 °2,0, 1) based

solely on pixel labels. Further, assume that T
satisfies the normality condition of theorem
(2-1) and denote the expected value of T;

by v;(8). Then, an application of the second
corollary in theorem (2-6) shows

n-1 m-1 3v.\ (99
k [°Y] i
Var(T.) > 3. . 1* (_-— (———)
VA kA 99,7 \%%
for i = 1,2,¢ee,m - 1. This result and other

generalizations are interpreted numerically in
reference 5.

5. CONCLUSIONS

a. The theory of Fisher information applied to
mixture densities provides an appropriate and
useful measure of the information in the
Landsat data available for estimating crop
proportions.

b. The examples indicate that considerable loss
of information concerning the crop propor-
tions occurs during the photointerpretation
process.

c. If there is a relationship between average
field size and information loss (photointer-
preter labeling), then it dis not apparent
using the data set consisting of the 1978
LACIE segments located 1in Montana, South
Dakota, North Dakota, and Minnesota.
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REPLY TO DISCUSSANT'S COMMENTS

This work was developed only for the case
where ground observations are unavailable, and
applications are to foreign regions where ground
collection of data is impossible. There is no
“ground truth" except for small historical test
data sets in the United States. Hence, the
discussant's remarks regarding double -sampling
completely missed the point. This fact is
pointed out on the second page of the discuss-
ant's reference: "When it is impossible to obtain
the true classifications of the units in the
sample, the above sampling scheme is not applica-
ble.” Thus in this setting, the discussant's
quantity K (the square of the correlation
coefficient between the true and the classified
unit labels) suffers from the same questions of
appropriateness as other measures of information.



