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1. INTRODUCTION 

Consider a population s t r a t i f i e d  by two 
c r i t e r i a  of s t r a t i f i c a t i o n ,  r rows and c 
columns, resu l t ing  in a two-way table of rc 
s t rata ce l l s .  A sample of size n is to be 
selected, with g. .  denoting the expected number 
of sample uni ts  i~Jthe i j - t h  ce l l .  We wish to 
l i m i t  the deviat ion of the number of sample 
units in the i j - t h  ce l l  from g<., and also l i m i t  
the deviat ion for  the row A~d column t o ta l s ,  
while s t r i c t l y  maintaining the requirements of 
p robab i l i t y  sampling. This w i l l  be done by 
construct ion of a set of rxc integer valued 
arrays, together with associated p robab i l i t i es  
of se lect ion,  where n. .  , the i j - t h  entry for  
the k-th array, is th~J~umber of sample uni ts in 
the i j - t h  cel l  i f  the k-th array is selected, 
and sa t i s f i es  the fo l lowing:  

E ( n i j k l i ' J )  : g i j '  (1.1) 

I n i j  k - g i j  I < 1, (1.2) 

In i .  k - g i .  i < I ,  (1.3) 

In . j  k - g . j l  < I .  (1.4) 

Thus n~[j is required to be one of the two 
integer~ knearest to g i j  i f  gi < is not an 
integer,  and n i i k  i i =  i f  gi~ ~s an integer,  
with s imi la r  stat~mentsgh~Iding for  the marginal 
to ta l  s. 

The above condi t ions,  which can be 
generalized to dimensions greater than two, are 
a special case of condit ions to be sa t i s f ied  for  
the sampling technique known as contro l led 
select ion,  f i r s t  described by Goodman and Kish 
(1950). An example was given in that  paper to 
i l l u s t r a t e  the appl icat ion of contro l led 
select ion but no general method to solve such 
problems was presented. Bryant, Hart ley,  and 
Jansen (1960) developed a simple method for  
approaching the two-way s t r a t i f i c a t i o n  problem 
that we described above• However, the i r  method 
does not in general sa t i s fy  e i ther  (1.1) or 
(1.2) exact ly .  Jessen (1970) considered the 
ident ica l  requirements as imposed by (1 .1) -  
(1.4) ,  but presented no general procedure for  
obtaining a set of arrays that sa t i s f i es  these 
condi t ions.  Groves and Hess (1975) presented a 
formal algori thm for  obtaining solut ions to the 
two-dimensional and also the much more complex 
three-dimensional problem. They made no claim, 
however, that  the i r  algori thm w i l l  always y ie ld  
a so lu t ion,  and there are indeed simple examples 
where i t  f a i l s ,  even in the two-way case. 

In th is  paper, a f te r  establ ish ing notat ion in 
Section 2, we describe in Section 3 a 
construct ive method for  solving two-dimensional 
contro l led select ion problems, which in the 
Appendix is proved to always y ie ld  a so lu t ion.  
(Copies of the Appendix are avai lable from the 
author.)  In Section 4 we show by example that 
the three-dimensional problem does not always 
have a so lu t ion.  

The construct ion given in th is  paper also 
y ie lds a strengthened solut ion to a related 
problem, the control led rounding problem. 
Employing the terminology of Cox and Ernst 
(1981), a contro l led rounding of a rxc array 
(b . . )  is an integer valued rxc array ( a i j )  
sa t is fy ing 

b i j  < a i j  < b i j  + I ,  ( l .5J 

• < a .  < b .  + I ,  ( 1 . 6 )  b l . -  I . -  I .  

b • < a . < b . + 1 { 1 7 )  . j  - -  . j  - -  . j  , 

b <_a < b + I .  (1.8) 
• • , , , ,  

In that paper a procedure for  construct ing a 
contro l led rounding of any two dimensional array 
was deta i led.  In the present paper fo r  each k 
the array (n~<,.) to be constructed is by {1 .2) -  
{1.4) not 6r~y a contro l led rounding of ( g ~ ) ,  
but even sa t i s f ies  a s l i g h t l y  stronger condit ion 
since (1 .5) - (1 .8 }  would s t i l l  hold i f  each 
r igh t  "<__" was replaced by "<". Thus, for  
example, i f  g was an integer then n~,.  = g ~  
by { I . 2 ) ,  whii~ ( l .5J only guarant&~ t 
e i ther  n i j  k = g i j  or n i j  k = g i j  + 1. 

2. NOTATION AND TERMINOLOGY 

For any real number x, txJ denotes the 
largest  integer less than or equal to x, while 
Fxl is the smallest integer greater than or 
equal to x. 

Let C = {1 . . . . .  c} 
A tabular array is an {r+1)x{c+l)  array of 

numbers B = ( b i j )  such that 

C 

= ~E] b . i = l  . .  r ( 2  1 )  bi (c+ l )  = bi" j= l  i j ,  ' . . . .  

r 

- . = ~ b . j = l  . ,  c ( 2 . 2 )  b ( r + l ) j  - b. j  i=l  i J, '" ' ' 

r c 

b( r+ l ) ( c+ l )  = b = ~] ~]  b..  (2 3) 
• " i = l  ~ = i  1 j .  j i 
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The elements b . . ,  i=l  . . . .  r ,  j = l , .  c w i l l  be 
known as the internal  e~ements uf the tabular 
array• They uniquely define the array.  

Let G denote the tabular array with in ternal  
elements g i j '  i=1 . . . . .  r ,  j = l  . . . . .  c. 

3. THE CONSTRUCTIVE ALGORITHM 

We w i l l  recurs ive ly  define a f i n i t e  sequence 
of integer valued tabular  arrays, Nl=(n ~ 

=In. ) . . . . .  N =(n~z,) ,  and associ~ 
Np~s't1~ p robab i l i t i es  . . . .  PZ' sa t i s fy ing  

Z 
Pk : l ,  (3.1) 

k=l 

! 
E ( n i j k l i , j )  : ~ n i P : g 

k=l jk k i j for  al !  i , j ,  

(3.2) 

[gij] _< nijk'<_ [gijl for all i , j ,k.  (3.3) 

The j u s t i f i c a t i o n  for  a l l  aspects of the 
algori thm w i l l  be given in the Appendix. 

To construct N , p we begin with the 
tabular array A. = ~a. . .~ .  A I = G, while for  
k > 1, A~ wi~1 be1~f ined at the end of the 
construct iof l  of Nk_ I ,  Pk-l" Now 

[g i jJ  < a i j  k < [ g i j l  for  a l l  i , j , k  (3.4) 

(see Appendix), and consequently for  (3.3) to be 
sa t i s f ied  i t  suf f ices to define N with k 

[ a i j  kj _< n i j  k < [ a i j k l  for  a l l  i , j , k .  (3.5) 

We next make the fo l lowing d e f i n i t i o n s .  
(Henceforth, the th i rd  subscr ipt  w i l l  be dropped 
from a. .  and n.~<,, i f  th is  w i l l  cause no 
confusi&r~ k) We i n ~ ' a l l y  le t  

n i j  [ a i j  ] ,  i - 1 . . . . .  r ,  j = 1 . . . . .  c+1, 

a b b r e v i a t e  

Ri = h i (c+1) '  i=1 . . . . .  r ,  

and define for S C C, 

r 

m(S) : ~ min IRi ~ ~ n ~ F a I I  
i 1 jCC~ S i j ,  i j  = jCS 

- ~ [ a j J ,  
jCS " 

M(S) = 
r 

max tRi - ~ r a. 1 S] n } 
i :  I jCC~.S i j ' i j j 6  

- ~ F a j ] -  
jCS " 

Note that at th is  point  n d j = 1 . . . . .  
c+l has not been defined at ~'l~l)~n that  most 
of the other required condit ions are not 
sa t i s f ied  by the n . . ' s  as cur ren t l y  defined. In 
Steps 1-4 below wel~emedy th is  s i tua t ion .  We 
f i r s t  proceed in Steps i and 2 to redef ine, one 
at a t ime, some of the R-'s to be [a~ 1 un t i l  we 
reach the po in t ,  upon t~e complet ion 'of  Step 2, 
where sir1R.= = a . Then in Step 3 we 
redef ine,  a~ain one at a t ime, some of the 
in ternal  elements of N k to be ~ a i j l ,  un t i l  at 
the end of Step 3, 

C 

n : R i i : l  r (3 6) 
j = l  i j  . . . . . . . .  

F ina l l y ,  in Step 4 we le t  

r 

• = ~ n i j  j :1 c+l (3 7) n ( r+ l )3  = n . j  "= . . . .  

In order that (3.5) hold for  i = r+ l ,  j = l ,  
. . . .  c, care must be taken in Steps 1-3 in 
choosing the elements of Nkito be redefined to 
guarantee that the f i na l  nternal elements, 
determined upon completion of Step 3, sa t i s f y  

r 

La J J <  i : i  ~ n,~ < r a , , I  j=z c ,  (3.8)  • - ~ - .~ , , . . . .  

or equ iva len t ly ,  

r 

[a ] <  ~ ~ n i j  = ~ ~a j l ,  scc. (3.9) 
jCS •J - jCS "= jCS " 

To sa t i s f y  the f i r s t  inequa l i t y  in (3.9) i t  is 
necessary that for  the f i na l  n i j ' s ,  

re(S) > O, SCC, (3.10) 

while to sa t i s f y  the second inequa l i t y  i t  is 
necessary that  

M(S) 5_ O, SCC. (3.11) 

In Step 1 the elements to be increased are 
chosen with the goal of sa t i s fy ing  (3.10).  Once 
th is  has been accomplished, the elements to be 
increased in Step 2 are chosen so that  (3.11) 
remains sa t i s f i ed ,  and then in Step 3 so that  
both (3.10) and (3.11) remain sa t i s f i ed .  Note 
that in general each time an element is 
increased in Steps 1-3, the values of the 
funct ions m and M are changed for  some subsets. 
(See Appendix for  fu r the r  explanat ion.)  
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S t e ~ :  _ I f  mIS)> 0 for all S C C, proceed 
to ~=~ ~.. 0therwlse,choose S~C_C OT mlnimal 
cardinality satisfying m(S 0) ~ 0. Then choose 
i 0 with 

Rl" 0 < min i ~]jCS 0 Fa i 0 J 1 + j~CNS ~ 0 n i 0 J } ra~lill0 ] }  ' 

(3.12) 

• = [a i I .  F ina l l y ,  return to the and l e t  RIO 
O" 

beginning of th is  step. 
St_~ 2" I f  7.irlR.>a proceed to Step 3. 

Otherwis-e,-, le t  T = u { ~ - M i S )  = 0}, choose i 
fo r  which 0 

• < min I ~ FaioJl + ~ n . . ,  [a I }  Rio jCC~T jCT loJ io. ' 
(3.13) 

• = [ai 1. Then return to the and le t  Rio 
O" 

beginning of th is  step. 
~ :  Substeps 3A, 3B, and 3C below insure 

that (3 .6) ,  (3.10),  and (3.11) respect ive ly  are 
sa t i s f i ed .  

Step 3A" I f  { i :  R. > 7 c n } is empty, 
proceed to-Step 4. Otherwise, ~e~ ~ denote the 
minimal element of th is  set, l e t  

J = C C~{ j .  nio j < [ a i o j l }  , 

and proceed to Step 3B. 
St_tep 3B: I f  there ex is ts  S C C for  which 

m(S) = 0 and SC~ J ~ j~, then choose S O with 
minimal cardina I i t y  sa t is fy ing  these 
conditionsG choose JOC S^C~ J, and proceed to 
Step 3D. therwise, proceed to Step 3C. 

~t_tep 0 3C: I f  there exists S C C for  which 
M(S = and J~S ~ J~, then choose S with 
maximal ca rd ina l i t y  sa t i s fy ing  these condi t ions,  
and choose Jn CJ~S o. Otherwise, choose any 
J nCJ.  Proc#ed to Step 3D. 

v St_te_p 3D: Let nioJo = [aioJo] and return to 

the beginning of Step 3A. 
St_tep 4: Having obtained the f ina l  value 

of a l l  the elements of N~ except those in the 
bottom row, we complete the de f i n i t i on  of N k 
with (3.7) .  

SteS_tep__5: We now proceed to define Pk" F i r s t ,  
for  each i , j  l e t  

t i j  k : [a i j  ] + I -  a i j  i f  n i j  k = [ a i j ] ,  

= a i j -  [ai j ] i f  ni j  k : [ai j ]  + I. 

Then le t  d k denote the minimum value of 
{ t  • i= l  . . . . .  r + l , j = l  . . . . .  c+l} , and i j k  

Pk = dk i f  k = I .  

k-1 (3.14) 

= (1- ~E] Pi)dk i f  k > I .  
i 1 " ' -  

Now i f  d = 1, then 7_.klp. = 1 and we are 
done, that  ~s N . .,N k Jco~e~her with the 
associated p robab i l i t i es  PI '  "'P provide a 
so,ut ion to the contro l led seiect~on problem. 
Otherwise, we define Ak+ 1 by l e t t i ng  

a i j  k _ dkni.ik (3.15) 
a i j ( k + l )  = I -  d k 

fo r  a l l  i ,  j ,  and then return to the beginning 
of Step i .  The fact  that  th is  process 
terminates a f te r  a f i n i t e  number of steps, that  
i s ,  that  there exists an integer Z for  which 
dz=1, is proven in the Appendix. 

4. THREE WAY STRATIFICATION 

The fo l lowing example i l l u s t r a t e s  that  the 
three-way s t r a t i f i c a t i o n  prob]em does not always 
have a solut ion•  

ConsideF a population subject to a 2x2x2 
s t r a t i f i c a t i o n  from which a sample of size two 
is to be drawn. The expected number of sample 
units in the i j k - t h  stratum ce l l ,  g i j k '  is as 
fo I Iows" 

g l l l =  g221 = g122 = g212 = 0.5, 

g121 = g211 = gl12 = g222 = O. 

We demonstrate . that there is no solut ion by 
proving that  there exists no 2x2x2 integer 
valued matr ix N=(ni jk l  such that 

In i j  k - g i j k l  < 1 for  a l l  i , j , k ,  (4.1) 

I n i . .  - g i . . I  < 1 for  i=1,2,  (4.2) 

I n . j .  - g . j . l  < I for  j = l , 2 ,  (4.3) 

In. .  k - g . .k l  < I for  k=l ,2,  (4.4) 

n = 2. (4.5) 
• ° 

To show th is  we note that  there are six possible 
N's which w i l l  sa t i s fy  (4.1} and (4 .5) .  The 
nonzero elements of N for  each of these 
p o s s i b i l i t i e s  are as fol lows" 
n 

= ~12 = I ,  nz2 ~ n212 1 
~ = n2= n = i,i• n l l l  = nl 2 = 1, n l l l==  n212aln~ 

l~2g i f i r ~ Z  p o s s i b i l i t y  f a i l s  since n 2 and I 
= 1, and hence (4.4) is not "s~t~'sfied. 

s i m i l a r l y ,  the others f a i l  to sa t i s fy  (4.2) 
(4 .3) ,  (4 .3) ,  (4 .2) ,  and (4.4) respect ive ly .  
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