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1. INTRODUCTION

Consider a population stratified by two
criteria of stratification, r rows and ¢
columns, resulting in a two-way table of r¢
strata cells. A sample of size n 1is to be
selected, with g.. denoting the expected number
of sample units indthe ij-th cell. We wish to
limit the deviation of the number of sample
units in the ij-th cell from g.., and also limit
the deviation for the row dRd column totals,
while strictly maintaining the requirements of
probability sampling. This wili be done by
construction of a set of rxc integer valued
arrays, together with associated probabilities
of selection, where n.. , the 1ij-th entry for
the k-th array, is théJhumber of sample units in

the ij-th cell if the k-th array 1is selected,
and satisfies the following:
E(nijkh’j) =g1'ja (1.1)
Imige - 9550 < 1 (1.2)
Injp- 9l <1 (1.3)
LEPREIRS (1.4)

Thus LI is required to be one of the two
1'nteger§J nearest to g.. if g.,. is not an
integer, and n,. = gTQ if g..1is an integer,
with similar staléhents 531d1n91%or the marginal
totals.

The above conditions, which can be
generalized to dimensions greater than two, are
a special case of conditions to be satisfied for
the sampling technique known as controlled
selection, first described by Goodman and Kish
(1950). An example was given in that paper to
illustrate the application of controlled
selection but no general method to solve such
problems was presented. Bryant, Hartley, and
Jensen (1960) developed a simple method for
approaching the two-way stratification problem
that we described above. However, their method

does not in general satisfy either (1.1) or
(1.2) exactly. Jessen (1970) considered the
identical requirements as imposed by (1.1)-
(1.4), but presented no general procedure for

obtaining a set of arrays that satisfies these
conditions. Groves and Hess (1975) presented a
formal algorithm for obtaining solutions to the
two-dimensional and also the much more complex
three-dimensional problem. They made noclaim,
however, that their algorithm will always yield
a solution, and there are indeed simple examples
where it fails, even in the two-way case.
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In this paper, after establishing notation in
Section 2, we describe in Section 3 a
constructive method for solving two-dimensional
controlled selection problems, which in the
Appendix is proved to always yield a solution.
(Copies of the Appendix are available from the
author.) In Section 4 we show by example that
the three-dimensional problem does not always
have a solution.

The construction given in this paper also
yields a strengthened solution to a related
problem, the controlled rounding problem.

Employing the terminology of Cox and Ernst

(1981), a controlled rounding of a rxc array

(b,.) is an integer valued rxc array (ai.)

sa%?sfying J
bij 5-aij §-b13 +1, (1.5)
b, <a; b +1, (1.6)
bjia.jib_J’fl’ (1.7)
b <a <b +1 (1.8)

In that paper a procedure for constructing a
controlled rounding of any two dimensional array
was detailed. In the present paper for each k
the array (n.. ) to be constructed is by (1.2)-
not 8ﬂ¥y a controlled rounding of (g..)

{1.4) s
but even satisfies a slightly stronger condition
since (1.5)-(1.8) would still hold if each
right "<" was replaced by "<". Thus, for
example, if g.. was an integer then n.., = g..
by (1.2), whild (1.5) only guarantéé§ that
either nijk = gij or nijk = gij + 1.
2. NOTATION AND TERMINOLOGY

For any real number x, |[x] denotes the

largest 1nteger less than or equal to x, while

[x} is the smallest integer greater than or
equal to x.
tet C = {1,...,c}

A tabular array 1is an (r+l)x{(ct+l) array of
numbers B = (bij) such that

c
bi(C-f-]_) = bi. = ng bij, i=1, ST (2.1)
r
WHUJ=VJ=§%WL J=l,..0, (2.2)
r
b(r+1)(c+1) =b = 2: 2 bij. (2.3)



The elements b.., i=1,...,r, j=1,...,¢c will be
known as the intétnal elements of the tabular
array. They uniquely define the array.

Let G denote the tabular array with internal
elements gij’ i=l,...,ry J=1,..., C.

3. THE CONSTRUCTIVE ALGORITHM

We will recursively define a finite sequence
of integer valued tabular arrays, N.=(n...),
No=(non)sunns N =(n..£), and a%soc?ﬂ%ed
pgsit39% probab111t4es 5%,..., Pp> satisfying

I
2 P =T,

k=1

(3.1)

s
E(n,, [i,j) = L. = q. . .
ikl 153) k}_:_] NiskPk = 9y for all 1(,33,2)

i3l < Mygecs T9g41 for all d,5.k. (3.3)

The justification for all aspects of the
algorithm will be given in the Appendix.

To construct N, , p, we begin with the
tabular array A, = Ea.. &. A, =G, while for
k > 1, A wi%l be1&§fined1at the end of the

constructioh of Nk-l’ Pe-1 Now

lg;5! =< a5k < 19451 for all 1,5,k (3.4)

(see Appendix), and consequently for (3.3) to be
satisfied it suffices to define Nk with

g ) < nygp < fag i1 for all 1,5,k (3.5)

We next make the following definitions.

(Henceforth, the third subscript will be dropped

from a.._ and n.. if this will cause no
confusi&ﬂk) We in%%%a]]y let

nij = laijj’ i=1,...,r, jJ = 1,...,c41,
abbreviate

Ri = ni(c+1)’ i=l,. ...,

and define for S CC,

mis)

n
0=
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M(S) = ﬁi max {Ri -3

i=1 JEC~S

2 on..

fa..],
IR 13}

Note that at this point n 1)52 J=1,...,
¢+l has not been defined at &7T1)dnd” that most
of the other required conditions are not
satisfied by the n..'s as currently defined. In
Steps 1-4 below we]}emedy this situation. We
first proceed in Steps 1 and 2 to redefine, one
at a time, some of the R.'s to be Ja, 1 until we
reach the point, upon the comp]etioﬁ‘of Step 2,
where z.=1R. = a,. Then in Step 3 we
redefinel aéain one at a time, some of the

internal elements of Nk to be [ai.], until at
the end of Step 3, J
>
n.. =R,, i=1,...,r. (3.6)
=t WY

Finally, in Step 4 we let
r
M1 "5 T Zl N 3 Lerl, (3.7)
1:

In order that (3.5) hold for i=r+l, j=1,

. »C, care must be taken in Steps 1-3 in
choosing the elements of N, to be redefined to
guarantee that the final “internal elements,
determined upon completion of Step 3, satisfy

r
I-a.j-lii; ”Uifa.ﬂa Jj=l,...,c, (3.8)

or equivalently,

fa_j1, scc. (3.9)

ZLaJJiZ: in =Z
Jj&s

R
To satisfy the first inequality in (3.9) it is
necessary that for the final nij's,

m{s) > 9, SCC, (3.10)
while to satisfy the

necessary that

second inequality it is

M(s) < o, SCC. (3.11)
In Step 1 the elements to be increased are
chosen with the goal of satisfying (3.10). Once
this has been accomplished, the elements to be
increased in Step 2 are chosen so that (3.11)
remains satisfied, and then in Step 3 so that
both (3.10) and (3.11) remain satisfied. Note
that in general each time an element is
increased in Steps 1-3, the values of the
functions m and M are changed for some subsets.
(See Appendix for further explanation.)



Step 1: If m(S)> O for a]1 S C C, proceed
to Step 2. Otherwise, choose C € “of minimal
cardinality satisfying m( 9 Then choose
i, with

0
Ry < min { > fa; 3+ P 5 0 lag ]},
0 s, o je~s, ol o
(3.12)
and let R, = 7Ja, 1. Finally, return to the
19 ig-
beginning of this step

Step 2: If 3. R 2a, proceed to Step 3.
Otherwise, let T = L){é = 0}, choose iO
for which
R. <min{ 3 [a, .7+ Z: n. a.

1() FEC~T 103] €T 10J (- 10-]},
(3.13)
and et Ri = [ai 1. Then vreturn to the

0 0
beginning of this step.
Step 3: Substeps 3A, 3B, and 3C below insure
that (3.6), (3.10), and (3.11) respectively are
satisfied.
Step 3A: If {i: R.
proceed to Step 4. Otherwlse, qe{ {J
minimal element of this set, let

J=CN{j:n

.}ois empty,

0 denote the

in < [aioj”’
and proceed to Step 3B.

Step 3B: If there exists S CC for which
m(S) = 0 and SN J # P, then choose S, with
minimal card1na|1ty satisfying these
conditions, choose J € S.MN J, and proceed to

Step 3D. Otherwise, procged to Step 3C.
Step 3C: If there exists S C C for which
M(S) =0 and S # P, then choose S, with

maximal cardinality satisfying these cond?t1ons,

and choose j, € JnS Otherw1se, choose any
JOCJ Hbcedtogmp
Step 3D: Let LA [a. . 1 and return to
Todo "ol

the beginning of Step 3A.

Step  4: Having obtained the final value
of ail the elements of N, except those in the
bottom row, we comp]e%e the definition of Nk
with (3.7).

Step 5: We now proceed to define P
for each i,j let

First,

t.., =

+1 - a,
ijk ! a

las; i3 ijk -

= a,, - lass] ]+ 1.

a. .
ij ij 1]

Then
{t

let d

1jk: i=1l,...

denote the minimum value of

,r+l, j=1,...,c+1} , and

p|,=dk if k=1,

N

k-1
= (1- 'igl p'i)dk

(3.14)
if k>1.
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Now if d 1, then I, 1 and we are
done, that %s N 10§e{her with the
associated probab}11t1es 1s¢-- provide a
solution to the contro]led se]ect%on problem.
Otherwise, we define Ak+1 by letting

i Assp - dkni'k {3.15)

435 (k+1) T-4,
for all i, j, and then return to the beginning
of Step 1. The fact that this process

terminates after a finite number of steps, that
is, that there exists an integer £ for which
d£=1, is proven in the Appendix.

4. THREE WAY STRATIFICATION

The following example illustrates that the
three-way stratification probilem does not always
have a solution.

Consider a population subject to a 2x2x2
stratification from which a sample of size two
is to be drawn. The expected number of sample

units in the ijk-th stratum cell, g..,, is as
ijk
follows:
911]_ = 9221 = 9122 = 9212 = 0.5,
9121 = 9211 T 9112 T 902 = O
We demonstrate .that there 1is no solution by
proving that there exists no 2x2x2 integer
valued matrix N:(nijk) such that
lnijk - gijkl <1 for all i,j,k, (4.1)
!ni - g5 <1 for i=1,2, (4.2)
In 5.7 9 j.‘ <1 for j=1,2, (4.3)
In - 9wl <1 forkelz, (4.4)
n o =2, (4.5

To show this we note that there are six possible
N's which will satisfy (4.1) and (4.5). The
nonzero elements of N for each of these
possibi]ities are as follows:

1, n =Ni,, =1, n =1
111 2 1 > L1111 122 _ 7 111 212 >
N22] 6142 R TR SP R
2
Tﬁé f1r§% possibility fails since n = 2 and
= 1, and hence (4.4) 1is not ‘sdtisfied.

S1m}1ar1y, the others fail to satisfy (4.2),
(4.3), (4.3), (4.2), and (4.4) respectively.
REFERENCES

Bryant, E. C., Hartley, H. 0., and Jessen, R. J.
(1960), "Design and Estimation in Two-Way
Stratification," Journal of the American
Statistical Association, 55, 105-124.

Cox, L., and Ernst, L. (1981), "Controlled
Rounding," submitted for publication.




Goodman, R., and Kish, L. (1950), "Controlled
Selection - A Technique in  Probability
Sampling," Journal of the American
Statistical Association, 45, 350-372.

Groves, R. M., and Hess, I. (1975), "An
Algorithm for Controlled Selection," in
Probability Sampling of Hospitals and
Patients, 2nd ed., Hess, I., Riedel, D. C.,
and Fitzpatrick, T. B., Ann Arbor, Michigan:

Health Administration Press, 82-102.

Hess, 1., and Srikantan, K. S. (1966), “Some
Aspects of the Probability Sampling Technique
of Controlled Selection," Health Services
Research, 1, 8-52.

Jessen, R. J. (1970), "Probability Sampling with
Marginal Constraints," Journal of the
American Statistical Association, 65, 776~
795.




