Lawrence R. Ernst, U.S. Bureau of the Census

1. INTRODUCTION

Consider a population stratified by two criteria of stratification, r rows and c columns, resulting in a two-way table of rc strata cells. A sample of size n is to be selected, with g_{j} denoting the expected number of sample units in the ij-th cell. We wish to limit the deviation of the number of sample units in the ij-th cell from g_{j}, and also limit the deviation for the row and column totals, while strictly maintaining the requirements of probability sampling. This will be done by construction of a set of rxc integer valued arrays, together with associated probabilities of selection, where $n_{j j k}$, the $i j-t h$ entry for the k-th array, is the number of sample units in the ij-th cell if the k-th array is selected, and satisfies the following:

$$
\begin{align*}
& E\left(n_{i j k} \mid i, j\right)=g_{i j}, \tag{1.1}\\
& \left|n_{i j k}-g_{i j}\right|<1, \tag{1.2}\\
& \left|n_{i . k}-g_{i .}\right|<1 \tag{1.3}\\
& \left|n_{. j k}-g_{. j}\right|<1 \tag{1.4}
\end{align*}
$$

Thus $n_{i j k}$ is required to be one of the two integers n nearest to $g_{i j}$ if $g_{i j}$ is not an integer, and $n_{j i k}=g_{j}{ }_{j}$ if $g_{i j} j_{s}$ an integer, with similar statements holding for the marginal totals.

The above conditions, which can be generalized to dimensions greater than two, are a special case of conditions to be satisfied for the sampling technique known as controlled selection, first described by Goodman and Kish (1950). An example was given in that paper to illustrate the application of controlled selection but no general method to solve such problems was presented. Bryant, Hartley, and Jensen (1960) developed a simple method for approaching the two-way stratification problem that we described above. However, their method does not in general satisfy either (1.1) or (1.2) exactly. Jessen (1970) considered the identical requirements as imposed by (1.1)(1.4), but presented no general procedure for obtaining a set of arrays that satisfies these conditions. Groves and Hess (1975) presented a formal algorithm for obtaining solutions to the two-dimensional and also the much more complex three-dimensional problem. They made noclaim, however, that their algorithm will always yield a solution, and there are indeed simple examples where it fails, even in the two-way case.

In this paper, after establishing notation in Section 2, we describe in Section 3 a constructive method for solving two-dimensional controlled selection problems, which in the Appendix is proved to always yield a solution. (Copies of the Appendix are available from the author.) In Section 4 we show by example that the three-dimensional problem does not always have a solution.

The construction given in this paper also yields a strengthened solution to a related problem, the controlled rounding problem. Employing the terminology of Cox and Ernst (1981), a controlled rounding of a rxc array ($b_{j j}$) is an integer valued rxc array ($\mathrm{a}_{\mathbf{i j}}$) satisfying

$$
\begin{align*}
& b_{i j} \leq a_{i j} \leq b_{i j}+1, \tag{1.5}\\
& b_{i .} \leq a_{i} \leq b_{i}+1, \tag{1.6}\\
& b_{. j} \leq a_{. j} \leq b_{. j}+1, \tag{1.7}\\
& b_{\ldots} \leq a_{\ldots} \leq b_{\ldots}+1 \tag{1.8}
\end{align*}
$$

In that paper a procedure for constructing a controlled rounding of any two dimensional array was detailed. In the present paper for each k the array ($n_{j j k}$) to be constructed is by (1.2)(1.4) not dily a controlled rounding of $\left(g_{j}\right)$, but even satisfies a slightly stronger condition since (1.5)-(1.8) would still hold if each right " \leq " was replaced by "<". Thus, for example, if g bas an integer then $n_{i j}=g_{i j}$ either $n_{i j k}=g_{i j}$ or $n_{i j k}=g_{i j}+1$.
2. NOTATION AND TERMINOLOGY

For any real number $x,\lfloor x\rfloor$ denotes the largest integer less than or equal to x, while $\lceil x\rceil$ is the smallest integer greater than or equal to x.

$$
\text { Let } \hat{C}=\{1, \ldots, c\}
$$

A tabular array is an $(r+1) \times(c+1)$ array of numbers $B=\left(b_{i j}\right)$ such that

$$
\begin{align*}
& b_{i(c+1)}=b_{i .}=\sum_{j=1}^{c} b_{i j}, \quad i=1, \ldots, r, \tag{2.1}\\
& b_{(r+1) j}=b_{. j}=\sum_{i=1}^{r} b_{i j}, \quad j=1, \ldots, c, \tag{2.2}\\
& b_{(r+1)(c+1)}=b \ldots=\sum_{i=1}^{r} \sum_{j=1}^{c} b_{i j} . \tag{2.3}
\end{align*}
$$

The elements $b_{j i}, i=1, \ldots, r, j=1, \ldots, c$ will be known as the internal elements of the tabular array. They uniquely define the array.

Let G denote the tabular array with internal elements $g_{i j}, i=1, \ldots, r, j=1, \ldots, c$.

3. THE CONSTRUCTIVE ALGORITHM

We will recursively define a finite sequence of integer valued tabular arrays, $N_{1}=\left(n_{j i}\right)$, $N_{2}=\left(n_{j j 2}\right), \ldots, \quad N_{l}=\left(n_{j j \ell}\right)$, and associded positive probabilittes $p_{1}^{\ell}, \ldots, p_{\ell}$, satisfying

$$
\begin{align*}
& \sum_{k=1}^{\ell} p_{k}=1, \tag{3.1}\\
& E\left(n_{i j k} \mid i, j\right)=\sum_{k=1}^{\ell} n_{i j k} p_{k}=g_{i j} \text { for all } i, j, \tag{3.2}
\end{align*}
$$

$$
\begin{equation*}
\left\lfloor g_{i j}\right\rfloor \leq n_{i j k} \leq\left\lceil g_{i j}\right\rceil \text { for all } \mathbf{i}, \mathbf{j}, k . \tag{3.3}
\end{equation*}
$$

The justification for all aspects of the algorithm will be given in the Appendix.

To construct N_{1}, p_{k} we begin with the tabular array $A_{k}=a_{i j k} . A_{1}=G$, while for $k>1$, A will be idefined ${ }^{1}$ at the end of the construction of $\mathrm{N}_{\mathrm{k}-1}, \mathrm{p}_{\mathrm{k}-1}$. Now

$$
\begin{equation*}
\left\lfloor g_{i j} \mid \leq a_{i j k} \leq\left\lceil g_{i j} \mid \text { for all } i, j, k\right.\right. \tag{3.4}
\end{equation*}
$$

(see Appendix), and consequently for (3.3) to be satisfied it suffices to define N_{k} with

$$
\begin{equation*}
\left.\left.\left\lfloor a_{i j k}\right\rfloor \leq n_{i j k} \leq\left\lceil a_{i j k}\right\rceil \text { for } a\right\rceil\right\rceil i, j, k . \tag{3.5}
\end{equation*}
$$

We next make the following definitions. (Henceforth, the third subscript will be dropped from ajik and $n_{j i k}$ if this will cause no confusidik.) We initkally let

$$
n_{i j}=\left\lfloor a_{i j}\right\rfloor, i=1, \ldots, r, j=1, \ldots, c+1
$$

abbreviate

$$
R_{i}=n_{i(c+1)}, i=1, \ldots, r,
$$

and define for $S \subset C$,

$$
\begin{aligned}
m(S) & =\sum_{i=1}^{r} \min \left\{R_{i}-\sum_{j \in C \sim S} n_{i j}, \sum_{j \in S}\left\lceil a_{i j}\right\rceil\right\} \\
& -\sum_{j \in S}\left[a_{. j}\right]
\end{aligned}
$$

$$
\begin{aligned}
M(S)= & \sum_{i=1}^{r} \max \left\{R_{i}-\sum_{j \in \mathcal{C S}}\left\lceil a_{i j}\right\rceil, \sum_{j \in S} n_{i j}\right\} \\
& -\sum_{j \in S}\left\lceil a_{. j}\right\rceil .
\end{aligned}
$$

Step 1: Ifm(S) 0 for all $S \subset C$, proceed to Step 2. Otherwise, choose $S_{0} \subset C$ of minimal cardinality satisfying $m\left(S_{0}\right) \geqslant 0$. Then choose i_{0} with

$$
\begin{equation*}
R_{i_{0}}<\min \left\{\sum_{j \in S_{0}}\left\lceil a_{i_{0}}\right\rceil+\sum_{j \in \mathcal{C} \sim S_{0}} n_{i_{0} j},\left\lceil a_{i_{0}}\right\rceil\right\} \tag{3.12}
\end{equation*}
$$

and let $\mathrm{R}_{\mathbf{i}_{0}}=\left\lceil{ }^{\mathrm{a}_{0}}\right.$. $]$. Finally, return to the beginning of this step.

Step 2: If $\Sigma_{i=1}{ }^{K_{j} \geq a}$. proceed to Step 3. Otherwise, let $T=1=1\{S: M(S)=0\}$, choose i_{0} for which
$R_{i_{0}}<\min \left\{\sum_{j \in C \sim T}\left[a_{i_{0}}\right]+\sum_{j \in T} n_{i_{0} j},\left[a_{i_{0}}.\right]\right\}$,
and let $\mathrm{R}_{\boldsymbol{i}_{0}}=\int \mathrm{a}_{\mathbf{i}_{0}}$. . Then return to the beginning of this step.

Step 3: Substeps 3A, 3B, and 3C below insure that (3.6), (3.10), and (3.11) respectively are satisfied.

Step 3A: If \{i: $\left.R_{j}>\Sigma_{i=1}^{C} n_{j j}\right\}$ is empty, proceed to Step 4. Otherwise, iēt j_{0} denote the minimal element of this set, let
and proceed to Step 3B.
Step 3B: If there exists S CC for which $m(S)=0$ and $S \cap J \neq 0$, then choose S_{0} with minimal cardinality satisfying these conditions, choose $j_{0} \in S_{0} \cap J$, and proceed to Step 3D. Otherwise, proceed to Step 3C.

Step 3C: If there exists S CC for which $M(S)=0$ and $\quad \mathrm{J} S ~ \neq \varnothing$, then choose S_{0} with maximal cardinality satisfying these conditions, and choose $j_{0} \in J \sim S_{0}$. Otherwise, choose any $\mathrm{j}_{0} \in J$. Proceed to Step 3D.
Step 3D: Let $n_{i_{0} j_{0}}=\left\lceil a_{i_{0} j_{0}}\right\rceil$ and return to the beginning of Step $3 A$.

Step 4: Having obtained the final value of all the elements of N_{k} except those in the bottom row, we complete the definition of N_{k} with (3.7).

Step 5: We now proceed to define p_{k}. First, for each i, j let

$$
\begin{aligned}
t_{i j k} & =\left\lfloor a_{i j}\right\rfloor+1-a_{i j} \quad \text { if } n_{i j k}=\left\lfloor a_{i j}\right\rfloor \\
& =a_{i j}-\left\lfloor a_{i j}\right\rfloor \quad \text { if } n_{i j k}=\left\lfloor a_{i j}\right\rfloor+1
\end{aligned}
$$

Then let d_{k} denote the minimum value of $\left\{t_{i j k}: i=1, \ldots, r+1, j=1, \ldots, c+1\right\}$, and

$$
\begin{align*}
p_{k} & =d_{k} \quad \text { if } k=1 \tag{3.14}\\
& =\left(1-\sum_{i=1}^{k-1} p_{i}\right) d_{k} \quad \text { if } k>1
\end{align*}
$$

Now if $d_{k}=1$, then $\Sigma_{j}{ }_{j} p_{j_{2}}=1$ and we are done, that is N_{1}, \ldots, N_{k} together with the associated probabtlities ${ }^{k} p_{1}, \ldots, p_{k}$ provide a solution to the controlled selection problem. Otherwise, we define A_{k+1} by letting

$$
\begin{equation*}
a_{i j(k+1)}=\frac{a_{i j k}-d_{k} n_{i j k}}{1-d_{k}} \tag{3.15}
\end{equation*}
$$

for all i, j, and then return to the beginning of Step 1. The fact that this process terminates after a finite number of steps, that is, that there exists an integer ℓ for which $\mathrm{d}_{\ell}=1$, is proven in the Appendix.

4. THREE WAY STRATIFICATION

The following example illustrates that the three-way stratification problem does not always have a solution.

Consider a population subject to a $2 \times 2 \times 2$ stratification from which a sample of size two is to be drawn. The expected number of sample units in the ijk-th stratum cell, $g_{i j k}$, is as fol lows:

$$
\begin{aligned}
& g_{111}=g_{221}=g_{122}=g_{212}=0.5, \\
& g_{121}=g_{211}=g_{112}=g_{222}=0 .
\end{aligned}
$$

We demonstrate that there is no solution by proving that there exists no $2 \times 2 \times 2$ integer valued matrix $N=\left(n_{i j k}\right)$ such that

$$
\begin{align*}
& \left|n_{i j k}-g_{i j k}\right|<1 \quad \text { for all } i, j, k, \tag{4.1}\\
& \left|n_{i} . .-g_{i \ldots}\right|<1 \quad \text { for } i=1,2, \tag{4.2}\\
& \left|n_{. j .}-g_{. j}\right|<1 \quad \text { for } j=1,2, \tag{4.3}\\
& |n \ldots k-g \ldots k|<1 \quad \text { for } k=1,2 \text {, } \tag{4.4}\\
& n .=2 \text {. } \tag{4.5}
\end{align*}
$$

To show this we note that there are six possible N's which will satisfy (4.1) and (4.5). The nonzero elements of N for each of these possibilities are as follows:
$n_{111}=n_{211}=1, n_{111}=n_{122}=1, n_{111}=n_{212}=1$,
$n_{221}=n_{122}=1$, $n_{221}^{221}=n_{212} 12$
The
first $\mathrm{g} . \mathrm{l}=1$, and hence (4.4) is not satisfied. sintlarly, the others fail to satisfy (4.2), (4.3), (4.3), (4.2), and (4.4) respectively.

REFERENCES

Bryant, E. C., Hartley, H. O., and Jessen, R. J. (1960), "Design and Estimation in Two-Way Stratification," Journal of the American Statistical Association, 55, 105-124.
Cox, L., and Ernst, L. (1981), "Controlled Rounding," submitted for publication.

Goodman, R., and Kish, L. (1950), "Controlled Selection - A Technique in Probability Sampling," Journal of the American Statistical Association, $45,350-372$.
Groves, R. M., and Hess, I. (1975), "An Algorithm for Controlled Selection," in Probability Sampling of Hospitals and Patients, 2nd ed., Hess, $\overline{\text { I., RiedeT, D. } \overline{C .} \text {, }}$ and Fitzpatrick, T. B., Ann Arbor, Michigan:

Health Administration Press, 82-102.
Hess, I., and Srikantan, K. S. (1966), "Some Aspects of the Probability Sampling Technique of Controlled Selection," Health Services Research, 1, 8-52.
Jessen, R. J. (1970), "Probability Sampling with Marginal Constraints," Journal of the American Statistical Association, 65, 776795.

