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1.1 Introduc t ion 

The Statistical Reporting Service (SRS) of the 
U.S. Department of Agriculture (USDA) currently 
uses plant measurements from a probability sam- 
ple of plots in fields planted to a crop in 
regression equations, where coefficients are 
estimated using historic measurements, to fore- 
cast yields during the current year. Measure- 
ments do not include any meteorological observa- 
tions or take into account any cultural practice 
information, except plant density. 

These models are adequate in the maturing 
period (4 to 6 weeks prior to biological maturity) 
but have not been adequate for yield forecasting 
in the early and mid-growing period (6 to 12 
weeks before harvest) in normal or near-normal 
years. These models have been less accurate 
during these periods in abnormal years. UDSA is 
optimistic that plant process models with feed- 
back capabilities can contribute to better fore- 
casts in the early and mid-growing periods. 

As part of USDA yield research, we have 
attempted to identify the interrelationships 
(important to yield) which exist between various 
parameters and functions in plant process models, 
as a first step toward developing procedures for 
the evaluation of plant growth simulation models. 
The need for more (or less) accurate parameter or 
fu nc t ion d et ermina t ion t hr ough exp er im ent at ion 

can also be assessed as part of the sensitivity 
of modeled yield to these factors. 

1.2 Plant Process Models 

Plant process models have been developed by 
agronomists, agricultural engineers and other 
~lant scientists to study the response of an 
average plant, or unit area of plants, to 
environmental conditions and/or various manage- 
ment practices. These models simulate the growth 
of plants from sowing to maturity. The models 
are crop specific and, in some instances, require 
location and variety calibration. Several stages 
of plant process models have evolved. After 
Duncan (1966), among others, successfully modeled 
photosyntheses, scientists were able to use this 
process in simulation growth models for corn, 
cotton, alfalfa, a short grass, barley and wheat. 
These models use daily inputs of temperature, 
solar radiation and rainfall to "grow" the speci- 
fied plant. Current versions of plant process 
models are beginning to include the more complex 
relationships of the effects of soil, nitrificia- 
tion, insects and disease. The simulation of the 
individual processes has become more detailed and 
more complete. 

A typical plant process model, sometimes 
called a soil-plant-atmosphere model, might trace 
the growth of the plant in a daily cycle and 
would accept climatic measurements, estimate daily 
evapotranspiration rates, separate them into 
evaporation and transpiration rates, extend the 
roots, monitor soil moisture flow between the 
plant and the soil, use solar radiation values 
for photosynthesis, mimic the respiration process, 

and apportion the dry matter production among the 
roots, stems, leaves and fruit of the plant. The 
computed maturity stage of the plant would deter- 
mine whether to continue the simulation or to 
print final statistics. The parameters and func- 
tions used for the simulation of the growth 
processes would be estimated from laboratory or 
field experi~nents. In most models, the growth 
process is deterministic with no probability dis- 
tribution attached to any of the model components. 

These models have been used primarily as 
research tools to examine the changes in yield or 
in growth behavior under different conditions. 
Recent models have attempted to simulate the crop 
yields more accurately. For example, Arkin et al 
(1980) introduced feedback information into SORGF, 
a grain sorghum model developed earlier (Arkin 
et al (1976)). Plant part data, such as number of 
leaves emerged or number of fully-grown leaves, 
and plant phenology data, such as Julian dates of 
floral initiation, anthesis, or physiological 
maturity, are entered into the program at various 
growth stages; the model variables are then reset 
based on this information; and the modeled growth 
of the plant continues from that point. 

1.3 Sensitivity Analysis 

The traditional approach to studying the effect 
of varying relevant parameters in a simulation 
model is the same as that used in any other inter- 
polation problem: a multidimensional regula falsi 
technique. The use of fractional factorial designs 
to limit the number of simulation runs required, is 
clearly indicated when the number of factors 
becomes large. Montgomery (1979) presents a 
detailed discussion of the use of such techniques. 
In an earlier paper (Montgomery and Evans (1975)) 
they also suggest the use of response surface 
designs for the analysis of the sensitivity of 
responses to changes in input parameters. 
Steinhorst (1979) utilizes two-level fractional 
factorial designs as suggested by many authors 
(e.g., Kleijnen (1979)). Hartley (1979) also 
proposes to restrict the number of experimental 
runs required by adopting a form of rotation 
sampling plan. 

1.4 Design Constraints 

As is the case with most simulation models, the 
class of computer programs described in Section 
I.I require extensive computer time. Many of the 
factors determining the responses of such simula- 
tion runs are difficult to quantify. Some simula- 
tion models require constants, such as the fraction 
of wheat florets converted into grains, that must 
be determined experimentally. A study of the 
sensitivity of responses to a variation of these 
constants may be useful in that if the response is 
not significantly affected, costly experimentation 
to determine the constant for different varieties 
of wheat may be unnecessary. It was considerations 
of this type that prompted us to look for minimal 
(smallest size) response surface designs. We 
chose a central composite design with one center- 



point (since replication in such a deterministic 
model would yield identical results), and 
arbitrarily chosen x-values, with the option of 
choosing a fractional factorial design for the 
lattice points if the number of factors is five 

or greater. 
Cubic response surface designs were compared 

to minimal quadratic response surfaces to see 
whether the quadratic surface is adequate to 
express the association between input parameters 
and yield prediction. Work is also in progress 
to consider the effect of scale transformation 
of input parameters. The approach is similar to 
that proposed by Hartley and Rao (1967). In a 
design matrix for classificatory models, these 
authors replaced the 0,I in a given row by 0 
and 1 - @ for two selected columns, and esti- 
mated the value theta by maximum likelihood. 

2.1 Model Assumptions 

In addition to the usual assumptions that the 

experiments (simulated growths of a plant) can 
be performed and the response(s) measured at 
each of the design points, we have made two 
special assumptions. First, we have assumed 
that an available simulation program is the 
author's best description of the modeled plant 
processes. The model usually has been validated 
by the author over several locations and the 
forecasting (estimation) ability of the model 
has been evaluated by USDA over time (see Wilson 
et al (1981)). Thus, the existing values of the 
factors (the center point values) provide a good 
indication of the response and the response 
surface intercept should be close to the center 
point response. Second, in the calibration of 
the model parameters (selected as factors), a 
range of possible values (or a set of bounds) 
for each factor has been determined by the 
model author. By setting the factor levels to be 
+i and -i at these bounds, we have defined a 
design lattice which describes the variation of 
the "real" response to be expected under varia- 
tion of parameters. 

2.2 Relative Sensitivity 

Although the physical units of the factors may 
be completely different and levels may even be 
categorical in nature, use of the model author's 
calibration limits in setting the factor levels 
standardizes the sensitivity of the response to 
all of the factors. Since the intercept is the 
best estimate of the response at the center and 
"reality" lies inside the unit lattice, the con- 
tribution of each factor or factor combination at 
the boundary (lattice points), i.e., the coeffi- 
cient of that effect in the standard response 
equation, can serve as an index of sensitivity. 
The ratio of this coefficient to the intercept 
has been defined to be the "relative sensitivity" 
of the response to variation of a factor or 

factor combination. 

3.1 The Computer Programs 

Even for minimal designs, many runs may be 
necessary. For example, 25 runs of the simula- 
tion program are required to estimate the response 
to variation of four factors in a quadratic 

response surface design. Thus, it is advisable 
to study, in each run, as many responses as 
possible. Care was taken to write analysis pro- 
grams that could handle multiple responses 
without unnecessary repetition. Our driver 
program permits the handling of several responses 
during one execution of the simulation program. 
For the analysis of a single response, the proce- 
dure RSREG of the Statistical Analysis System 
(SAS) has been used and is quite efficient. 
The SAS procedure GLM was used for the estimation 
of cubic response equations. Special programs 
are being written to examine the effect of 
transformation of scales. 

3.2 A Simulation Model 

TAMW ("Texas A&M Wheat Simulation Model") 
(Maas and Arkin 1980a)) was used to demonstrate 
the response surface techniques. The following 
factors were used in the analysis: 

I. ROSPZ -- spacing between rows(cm) 
2. ROWID -- spacing between plants in a 

row(cm) 
3. DENS -- density of plant population 

(combination of ROSPZ and ROWID) 
(cm*cm/plant) 

4. COMP -- an exponent used in the calcula- 
tion of a competition factor 

5. LAI -- leaf area threshhold 
6. CVERN -- an input function which governs 

the effect of vernalization on 
the vegetative phase (see Figure 
1) 

7. BETA -- the limiting value of asymptote 
for the number of heads(H) 
possible at head emergence given 
the number of existing shoots(X) 
at terminal spikelet in 

H = B *(i- EXP(-~* X/B)) 
8. CGSET -- the fraction of wheat florets 

converted to grain. 

FIGURE I- Picture of CVERN 
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Three weather datasets were chosen to provide 
different kinds of environmental conditions. 
Maximum and minimum temperatures, precipitation, 
solar radiation and snow depth were obtained on a 
daily basis. All data were recorded during the 
1978-79 growing season and were used to validate 
the model. The field sites were located near 
Temple, Texas (a wet southern latitude growing 
season) ; Fort Pierre, South Dakota (a normal 
northern latitude growing season); and Brewster, 
Kansas (a severe early-season water stress 
growing season). 

4.1 Comparison of Predicted and Simulated Values 

A preliminary study compared prediction errors 
for points inside the design lattice to extra- 
polation errors. The effects of interaction and 
higher order terms were assessed to determine 
the adequacy of a quadratic response surface. 
The choice of factors and lattice points pro- 
duced impossible physical conditions for star 
points two units from the center point; conse- 
quently, the design has ~ = 1.5. Responses 
were yield (grain weight in grams per plant) and 
the maximum number of shoots per plant. The 
weather data were from Temple, Texas. 

TABLE i: Preliminary Study- Design 

Factor/Level -1.5 -i 0 1 1.5 
ROSPZ 15 20 30 40 45 
ROWID 3 4 6 8 9 
COMP .25 .30 .40 .50 .55 
LAI .7 1.0 1.6 2.2 2.5 

The TAM~ simulation program was run for 25 
points, i.e., the 16 lattice points, the center 
point, and the eight star points. The maximum 
errors between the observed yields and those 
predicted from the response equation for yield 
occurred at the settings: 30, 9, .40, 1.6 
(observed 8.030, predicted 7.816), at 45, 6, .40, 
1.6 (observed 8.030, predicted 7.816), and at 
40, 8, .30, 1.0 (observed 7.732, predicted 7.932). 

Of the remaining 22 settings, four had an error 
between .I and .2 and 18 had errors less than .i. 
The following table shows the quality of fit of 
the quadratic model for extropolated settings: 

TABLE 2 : Preliminary Study - Extrapolation 

ROSPZ ROWID COMP LAI Yield(PRED) Yield(OBS) ERROR 
15 3 .25 .7 I. 505 2. 089 .584 
45 9 .55 2.5 9.009 9.064 .055 
15 3 .40 .7 1.774 2.270 .496 
15 6 .25 1.6 4.301 4.186 -.115 
15 6 .40 .7 3.925 3.532 -.393 
30 3 .25 1.6 4.301 4.186 -.115 
30 3 .40 .7 3.925 3.532 -.393 
30 6 . 25 .7 6.112 6.162 .050 
45 9 .40 1.6 8.729 9.064 .335 
45 6 .55 1.6 7.671 8.030 .359 
45 6 .40 2.5 8.060 8.030 -.030 
30 9 .55 1.6 7. 671 8.030 .359 
30 9 .40 2.5 8.060 8.030 -.030 
30 6 .55 2.5 6.662 6.726 .064 
15 3 .25 2.5 1.607 2.324 .717 
15 3 .55 .7 1.221 1.732 .511 
15 9 .25 .7 5.278 4.855 -.423 
45 3 .25 .7 5. 278 5. 248 -.0310 

"Observed" in this context refers to the 
results of TAMW runs at various extrapolation 
settings, where at least two of the factors were 
at the level of + or - ~. If the user is not 
satisfied with this degree of approximation, the 
following options are open: the step-size 
between intervals could be reduced; ~ could be 
chosen closer to the lattice points; factors 
which have small coefficients for the cross- 
product terms in the response equation could be 
left out. 

From this study and several other studies 
which we made, we concluded that the traditional 
techniques of sensitivity analysis, i.e., 
variation of each factor at all possible levels, 
are not needed for the evaluation of these com- 
puter simulation programs. The difference 
between the results of computer simulation studies 
and the physical growth process would appear to 
be of a greater order of magnitude than the 
error of approximation of a quadratic response 
equation to the computer simulation model (Maas 
and Arkin (1980)) . 

4.2 Quadratic vs. Cubic Response Surfaces 

The next study concerned the possible advan- 
tages of using a cubic response surface design. 
To reduce the number of computer runs only three 
factors were used, but at each of the three 
locations -- Temple, Fort Pierre, and Brewster. 
The star points were two units from the center 
point and the levels were based on the precision 
of measurement indicated by the authors of TAMW. 

TABLE 3: Cubic Study 

Factor/Level -2 -i 0 1 2 
CVERN F - 8 F - 4 F F + 4 F + 8 
BETA 620 670 720 770 820 
CGSET .15 .20 .25 .30 .35 

All of these factor values are determined 
experimentally. The function values to define 
CVERN depend on the current photoperiod, but 
essentially shift the y-value up and down. When 
the factor levels were chosen, the model author 
suggested a vertical shift of four units as one 
level for the function values. If CVERN does not 
affect the yield response then less experimenta- 
tion would be required to determine this function 
given variety and location changes. Similarly, 
CGSET is a parameter also established by costly 
experimental procedures. If it does not affect 
yield significantly over location and varietal 
changes, then it could be ignored and costs for 
experiments to determine varietal and location 
differences could be reduced. 

Using Temple data, the quadratic response 
surface (with significant coefficients (at .i0 
level) ) is 

YIELD = 3.85 - .13*CVERN + .28*BETA + .77*CGSET 

and has maximum errors of -.175 for point 13 and 
.171 at point 12, the two star points for BETA 
(see TABLE 4 for point identification). 
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TABLE 4: Temple Data and Errors 

SIM QUAD CUBI C 
POINT CVERN BETA CGSET YIELD ERROR ERROR 

i -i -i -I 

2 i -i -i 
3 -i 
4 I i 
5 -i -i 

6 I -i 
7 -i i 
8 I i 

9 0 0 
I0 -2 0 
II 2 0 
12 0 -2 
13 0 2 
14 0 0 
15 0 0 

2.875 -0.066 -.012 

2.680 -0.099 -.008 
1 -I 3.494 0.099 .011 

-i 3.246 0.081 .006 

1 4.313 -0.074 -.036* 

1 4.020 '0.093 -.032" 
1 5.241 0.104" .033* 
1 4.868 0.073 .028 
0 3.848 -0.004 -.014 
0 4.051 -0.025 -.013 
0 3.597 0.025 -.013 
0 3.435 0.171" .001 
0 4.225 -0.175" .001 

-2 2.308 -0.002 .001 
2 5.387 0.001 .001 

16 1 0 
17 0 1 

18 0 -I 
19 -i 0 

20 1 0 

21 -i 1 
22 0 1 
23 0 -i 
24 -I 0 

25 0 0 
26 1 0 

27 0 1 

28 0 -i 

29 -i 0 
30 0 0 
31 -i -I 
32 1 -i 
33 1 1 

-i 
-i 

0 
0 

0 

0 
0 
I 

2.918 0.051 .011 

3.201 0.028 .011 

3.078 -0.004 -.009 
2.980 0.003 .011 

3.231 -0.056 -.026 

3.648 0.085 -.093* 
4.002 0.031 .009 
3.725 0.006 .008 

1 4.189 -0.078 -.035 

1 4.039 -0.092 .073* 
1 4.802 0.035 .012 
1 4. 618 -0.002 -.019 

-i 4.470 0.111 .013 
-i 4.847 -0.126" -.071" 
-I 4.377 0.128" .059 
0 3.805 0.140" .058 
0 3.549 0.102" .049 

0 3.894 -0.087 -.025 

The cubic response surface (with significant 

coefficients (at .I0 level)) is 

YIELD = 3.86 - .15*CVERN + .08*BETA 

+ .77*CGSET + .06*BETA*CGSET 
+ . 03*B E TA*B E TA*B ETA 
+ .II*BETA*CVERN*CVERN 

+ . 13*BETA*CGSET*CGSET 

and has a maximum error of .093 at point 21. The 
errors (.001) at points 12 and 13 are equal and 
much smaller than the errors from the quadratic 

analysis. 
If the quadratic response surface equation is 

applied to the points used in the cubic analysis, 

the maximum errors (.17) are those present from 

the quadratic analysis although there are four 
absolute errors between .I0 and .14. The cubic 
fits the quadratic design points better in all 
but two cases (points 9 and 15), but these errors 

are less than .02. The cubic surface fits the 
additional points better except for three cases 

where both quadratic and cubic errors are less 

than . 02. 
When Fort Pierre data was used, the quadratic 

response surface and error structure were similar. 

The coefficients changed since yields were less 

in the northern latitudes. 

YIELD = 2.575 - .I0 * CVERN + .15 * BETA 
+ .52 * CGSET 

These coefficients were the only ones significant 

at the .i0 level. 

When Brewster data was used as input to TAMW, 
the severe water stress caused several changes 
in the quadratic and cubic surfaces; however, 
the contributions of the factors remained about 

the same. The behavior of the yield response is 
essentially linear, with the higher order terms 

and interaction terms contributing very little 
to the predicted response, but yet reducing the 

prediction errors slightly. The quadratic 
response surface (with significant coefficients 
(at .I0 level)) is 

YIELD = 2.99 + .59 * CGSET- .12*CVERN*CVERN 

and has maximum errors of -.14 and .13 at points 
i0 and !i, respectively. These points are the 
star points for CVERN (see TABLE 5 for errors). 

TABLE 5: Brewster Data and Errors 

B REW" BREW- TEMPLE 

SIM STER STER quad 
CVERN BETA CGSET YIELD quad cubic (ADJ) 

-i -i -i 2.310 .090 .005 .235 
1 -I -i 2.209 -.051 .005 .296 

-i 1 -i 2.392 .080 .006 -.137 

1 1 -i 2.289 -.059 .006 -.010 
-i -I 

1 -i 
-i 1 
1 1 

0 0 
-2 0 
2 0 
0 -2 
0 2 

0 

0 

1 3.466 .068 .006 -.057 

1 3.314 -.072 .005 .067 
1 3.589 .059 .005 -.682* 
1 3.433 -.081 .005 -.496* 

0 2.982 -.011 -.007 -.004 
0 2.369 -.144" -.011" -.841" 
0 2.669 .132" -.011" -.037 

0 2.852 -.015 -.004 .454* 
0 3.088 .001 -.004 -.446* 

0 -2 1.789 -.028 -.004 .345 

0 2 4.175 .014 -.004 -.345 

1 O -i 2.251 -.057 .004 .140 
0 1 -i 2.430 -.017 -.006 .009 
0 -i 0 2.921 -.013 -.006 .224 

-i 0 0 2. 942 .072 .003 -.163 
1 0 0 2.814 -.068 .004 -.039 

-i 1 0 2.991 .069 .005 -.410" 
0 1 0 3.038 -.006 -.006 -.227 

0 -i 1 3.505 -.004 -.006 .114 

-i 0 1 3.531 .063 .005 -.370 
0 0 1 3.579 .001 -.006 -.175 

1 0 1 3.377 -.077* .005 -.216 
0 1 1 3.645 .006 -.004 -.462* 
0 -I -i 2.336 -.021 -.004 .335 

-I 0 -i 2.354 .084* .005 .047 

0 0 -i 2.386 -.020 -.006 .170 
-i -i 0 2.888 .078* .005 .089 

1 -i 0 2.761 -.063 .005 .180 
1 1 0 2.861 -.071 .005 -.254 

The cubic response surface (with significant 

coefficients (at .i0 level)) is 

YIELD = 2.99 - .II*CVERN + .06*BETA 
+ . 60*CGSET - .II*CVERN*CVERN 

- .OI*CGSET*CVERN + .01*BETA*CGSET 

+ .05*CVERN*CVERN*CVERN 
- . 02*CGSET*CVERN*CVERN 

3? 



and has maximum errors of .011 at points i0 and 

ii, the star points for CVERN. However, these 

errors are much smaller than the errors from the 

quadratic surface. 
When the behavior of the Brewster simulations 

was compared with the expected responses obtained 

by using the Temple quadratic response equation, 

the predicted responses at Brewster were all less 

than the simulated yield. When the predictions 
were adjusted by the difference in center point 

responses (-.866), the distribution of errors 

contained both positive and negative values; 
however, with the exception of an error of .454 
at point 12 -- the negative star point for BETA, 
all of the "large" errors were negative. The 

largest error (-.841) occurred at the negative 
star point for CVERN, point i0 -- as it did for 

both the quadratic and cubic response equations 

for Brewster. 

5.1 Factor Sensitivities 

The relative sensitivities of the factors and 

factor combinations appear in TABLE 6. The 

center point yield, which represents the model 
author's best simulation, dominates the response 

equation. The contributions of the individual 

terms are small for points within the unit 

lattice when compared with the intercept of the 

response equation and hence, the relative 

sensitivities are also small. The only term 

which could change the response by more than 

7% corresponds to the pure factor CGSET with a 

relative sensitivity of .20. In fact, the value 

of the relative sensitivity for CGSET is .20 for 

all of the models. BETA has a relative sensi- 

tivity close to .07 using the quadratic surfaces 

for the normal growing season (Temple and Fort 
Pierre), but only .02 for both Temple and 
Brewster cubic surfaces; BETA is not part of the 
quadratic response equation for Brewster. The 

impact of factor combinations is considerably 

smaller near the center point, as expected since 
the higher-order and interaction terms are 
multiplicative. Although these terms are not 

meaningless (if the effects are significant), the 

contribution (for these models) to the yield 
response is negligible and the terms could be 

discarded. 

For this set of factors -- CVERN, BETA, and 
CGSET -- the relative sensitivities have been 

consistent from location to location and from 

quadratic to cubic response equation. CGSET has 

influenced the yield in all cases and the para- 

meter value should be well-defined if TAMW is to 

be used for yield forecasts or estimates. 
Although the cost of experimentation may be 

expensive, the performance of the model is 

heavily dependent on CGSET; CGSET must be 
accurately measured. BETA, on the other hand, 

plays a lesser role in model performance and may 

be less accurately determined. 

TABLE 6: Relative Sensitivities 

FACTOR 

TEMPLE FT PIERRE BREWSTER 

QUAD CUBIC QUAD QUAD CUBIC 

CVERN .03 .04 .04 - .04 

BETA .07 .02 .06 - .02 

CGSET .20 .20 .20 .20 .20 

CVERN**2 - - - .04 .04 

BETA**2 . . . .  .00 

CVERN*CGSET - .01 - - .00 

BETA*CGSET - .02 - - .00 
CVERN**3 - .02 

BETA**3 .01 - 
CVERN* CVE RN*B ETA .03 - 
CVE RN* CVERN* CGS ET - .01 

BETA*CGSET*CGSET .03 - 

5.1 Scaling the Factors 

In this approach to sensitivity analysis, the 

author of the simulation program was expected to 

state, for each factor, where the "center" 
setting is to be taken, and where the upper and 

lower boundaries of "reality" would be assumed. 

These points were translated into the values zero 

and plus or minus one, respectively. There is, 

of course, no reason why the center point should 

be as far from the left boundary as it is from 

the right. Attempts have been made to improve 
the fit of a minimal quadratic response surface 

by choosing irregular spacing of these points. 

For example, center points for each of the k 

factors could be chosen so as to minimize a func- 

tion of the error of fit. If least squares is 

used for this purpose, "ridges" appear to occur 
(i.e., the gradient vector at the minimum is not 

zero). Further work in this area is in progress. 

6.1 Conclus ions 

The use of response surface techniques to 

evaluate plant process models has provided some 
important advantages. The central composite 

design with a single center point enables us to 

perform sensitivity analyses on multiple variables 

and parameters at one time; the existence and 
contributions of higher-order and interaction 

terms can be assessed and at reduced cost. If the 

number of factors becomes large (greater than 

five), then fractional factorial designs can be 

imp i ement ed. 

Quadratic designs have produced a prediction 

equation for the simulation model which have 

errors generally less than the errors between 

the model and field data. Cubic designs are much 

better because of smaller errors, but the addi- 

tional points (and additional cost) required for 

this design make this option less attractive. 

The use of scaling on the factors -- which are in 
many cases ordinal or nominal -- in a quadratic 

design may be an important bridge between the 
need for more points and the need for lower costs. 

The relative sensitivities of the various 
factors and factor combinations have been con- 
sistent under different meteorological scenarios 

for both the quadratic and cubic designs. The 

impact of the individual factors on the yield 
response can be measured and the need for more 
or less accurate determination of the function 

or parameter can be assessed. 
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Further work in factor scaling for quadratic 
designs is in progress and will be reported at a 
later time. 
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