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SU~94ARY 

Bayesian inference in finite populations uses 
probability models at two stages: (i) to des- 
cribe relationships among population units and 
(ii) to express uncertainty concerning the values 
of parameters appearing at stage (i). Here we 
consider the Bayes posterior distribution of the 
population total when a multivariate normal re- 
gression model is used at stage (i), with a dif- 
fuse prior distribution on the regression coeffi- 
cients. We study the situation where the stage 
(i) model is in error because an important re- 
gressor is omitted, and we show that in balanced 
samples such errors do not affect the posterior 
distribution. Cases where the covariance matrix 
contains an unknown scale parameter or is itself 
misspecified are also considered. 

I. INTRODUCTION 

We consider a population made up of N units 
labelled i, 2, ..., N. Associated with unit i is 
an unknown number y. and a known p-dimensional 

1 
vector x i. We observe the y values for a sample 
s of n of the units and seek to make inferences 

about the population total T = Z N i Yi" If r is the 

set of N-n non-sample units, we can write 

T = ZsYi+ Zry i. After the sample is observed the 

first term is known, and inference about T is then 
equivalent to inference about the unknown sum, 

ZrY i • 

We treat the case where the vector 

Y = (YI' Y2 .... , yN ) is a realization of a random 

vector Y which is related to the matrix 

X = (Xl, x 2 .... , _XN)" through a linear regression 

model: E(Y) = X8 and vat(Y) = V. Without loss 
of generality We list the n sample units first 
and partition Y, X, and V, ()(v v) 

Xs ss sr 
Y= y , X= Xr , V= V V ' 

rs rr 

where Y is n×l, X is n×p, V is n×(N-n), etc. 
S S sr 

We assume that X is of full rank p. 
S 

A Bayesian solution to our problem consists 
of finding the conditional distribution of T, 
given Y . If Y has a (multivariate) normal dis- 

S 

tribution N(XS, V) with X and V known, and if the 
unknown parameter vector 8 has the diffuse prior 
distribution, f(8) ~ constant,- ~ < 8. < ~, then 

1 

given Y the predictive distribution of Y is 
s r 

easily found to be normal with expectation vector 

~(Y IY~) :x;+v v -i(y _x;) 
r r rs ss s s 

and covariance matrix 

var(YrlYs) = (Vrr- VrsVss -IVsr) + ADA" 

where A = (X- V V -Ix ), D = (X ~V -Ix )-i, 
r rs s s s s ss s 

and 8 = DX" V - 1 y  . Now d e f i n i n g  
S SS S 

" • 1 "= (I, i, ..., l) and I = (i, i .... l)n, r s N-n 

IN'= (is', i r ) , it follows that the distribution 

of T = IN'Y , given Y , is normal with 
S 

~(TIYs)-I "Ys +l "{ x ~ +v v -l(Ys-Xs~)} s r r rs ss (1) 
and 

ir'{(Y -V V -Iv ) + ADA'}I = 1 var(TIY )= 
s rr rs ss sr r ' 

(2) 

where I is defined by the last equality. 

The Bayes posterior distribution of T depends on 
the sample s actually chosen and is otherwise in- 
dependent of the sampling plan. Any sample s 
which minimizes (2) is optimal under the present 
model. 

Example i" If p = i and given B the Y's are 

independent with E(YilB) = 8x. and var(YilB)=~2x. 
1 1 

then N 

~(TIYs) = (~Ji/z x ) z x = s i 1 R ' 
i 

the ratio estimator, and 

var(TIY s) = (N/f)(l-f)~2~/~ = V where f = n/N, 
r s r 

x = Z x./n, and x = Z x./(N-n). Clearly 
s s i r r i 

var(TIY s) is minimized when s consists of the n 

units whose x-values are largest. Thus this 
Bayesian model leads to the popular ratio estima- 
tor but prefers an extreme purposive sample to 
the randomly selected samples with which the esti- 
mator is most often used. 

Real world relationships are invariably more 
complicated than those we can represent in mathe- 
matically tractable models. As Neyman and 
Pearson (1937) put it, "Mathematics deals with 
mathematical conceptions, not with real things 
and we can expect no more than a certain amount of 
correspondence between the two." This forces 
attention to the robustness of statistical proce- 
dures. If our model is imperfect, say in its 
specification that E(YI8) = XS, then our calcu- 
lated distribution of T, given Y might be mis- 

s 
leading. Our Bayesian procedure is robust with 
respect to certain changes in the model if the 
posterior probability distribution of T is not 
greatly affected by the model changes. We refer 
to the model actually used in deriving the 



posterior distribution as the working model. To 
study the robustness of our inferences we imagine 
that there is a true model, different from the 
working model, and compare the true posterior 
distribution of T with that based on our working 

mode i. 

In example i the working model specifies 

that the Y. are independent N(Bx i ~2x. ) random 
1 ' i 

variables, with B having a diffuse prior. There 

might, in fact, be another parameter y which 

should be in the regression model, EY i = 7 + Bx..l 

Or perhaps the true model also includes another 
variable Z, with coefficient y. Or the true vari- 
ance might be proportional, not to x, but to x 2. 

In the following sections we study the effects of 
such errors in the working models and character- 

ize samples for which these errors do not strong- 

ly affect the posterior distribution. The re- 

sults obtained here help to clarify the role of 

probability sampling in Bayesian theory. We dis- 
cuss this point in the last section. 

It is tempting to advise that if one is se- 
riously concerned about the possibility that Zy 
should appear in the regression function, then one 

should include this term in the working model, 
with an appropriate prior distribution for y, cf 

Bernardo (1975). This counsel of perfection is 
impractical in many problems. Even after the 
working model has been enlarged, there often re- 
main still more variables which should perhaps be 
included. If in example i the constant intercept 

term is added, EYi= Yl + 8xi' we must admit that 

some degree of non-linearity, possibly approxima- 

ted by a quadratic term 72xi2 , might also be pres- 

ent. Or the units might actually be of different 

types, and perhaps they should be partitioned 

according to type into strata, with different re- 

gression coefficients in different strata. The 
working model, even one containing many variables, 

is chosen on the basis of our judgement that it 

is an adequate approximation, not on knowledge 

that it is correct. 

Another suggestion is that we should look at 
the sample and adjust our model, if necessary, to 
conform to the data. Whether or not such a pro- 
cedure is in the spirit of Bayesian inference, it 
should be noted that: (i) An elaborate data anal- 
ysis is not always possible, particularly in 

large scale sample surveys where the totals of 
many variables have to be predicted simultane- 
ously within a short time and with limited man- 
power. (ii) Model failures which are not often 
apparent in samples can cause serious errors in 

our inferences. Huber (1975) credits Box and 
Draper (1959) with first recognizing the "shocking 

fact" that "subliminal deviations from the model" 
can distort inferences so severely that protecting 
against such distortions is often more important 

than minimizing variance. This is dramatically 

demonstrated in an empirical finite population 
study of Royall and Cumberland (1981). Although 
Huber's remarks were made in a non-Bayesian con- 

text, they apply with equal force to Bayesian in- 
ference. 

2. O~ISSION OF EXPLANATORY VARIABLES 

First we consider the effects of omitted re- 
gressors, when the covariance matrix, given the 
regression coefficients, is known. Then we con- 

sider models where this matrix contains an un- 
known scalar and models where it is incorrect. 

2.1 Known covariance matrix 

The working model is" 

MI: Given B, Y ~ N(XB, V), and B has a dif- 
fuse prior distribution, f(B) ~ constant. 

The true model is the same, except for the 
presence of an (N×q) matrix Z of additional re- 
gressors with a fixed coefficient vector y" 

M2" Given B, Y ~ N(XB + Zy, V), and B has a 

diffuse prior distribution. 

Model MI, unaware of the very existence of y, 

represents the purest state of uneompromised ig- 
norance about y. On the other hand, in effect, 
MI asserts with perfect certainty that ~ is pre- 
cisely equal to the zero vector, and this error in 

specifying the value of y is the only difference 
between MI and M2. The following theorem states 

that two conditions together ensure that the pos- 
terior distribution for T derived under MI remains 

correct under M2. One of the conditions restricts 

the covariance matrix: 

Condition L. V i = X 61 and V I = X 62 
ss s s sr r s 

for some vectors 61 and 62 . The other condition, 

balance, restricts the sample" 

Definition: A sample s is balanced on x if 

1 "X /n  = 1N'X/N.  
S S 

A sampie is balanced on x if for each column 

of X the average value in the sample is the same 
as in the whole population. This condition is met 

if and only if the sample average, i "X /n, equals 
S S 

the non-sample average i "X /(N-n). Both Condi- 
r r 

tion L and balance have figured prominently in re- 

cent non-Bayesian sampling theory (Royall and 
Herson, 1973, Royall and Cumberland, 1978, Tallis, 

1978). 

Some immediate consequences of Condition L 

are given in the following lemma, in which P de- 
-1 s 

notes the matrix X DX "V 
S S SS 

Lemma i. Condition L implies that 

(i) ls'(l - P ) = 0 
n s 

(ii) I "v (I - P-) = 0 
r rs n s 

(iii) 1 "V V -i(i - P ) = 0 
r rs s s n s 

Theorem I. If V satisfies Condition L and if 

the sample is balanced on x and z, then under both 
models MI and M2 the posterior distribution of T, 

17 



given Ys' is normal with mean Ny s, where 

Ys = Z s Y i / n '  and  v a r i a n c e  

{(l-f)/f}2 1 "V i -2 {(l-f)/f}l "V i +i "V i . 
s ss s s sr r r rr r 

(3) 
Proof. Under model M2, given S, , 

Y = Y - Z3̀  ~ N(XS, V), so the conditional distri- 

bution of T, given Y , is normal with variance 
S 

g i v e n  by  ( 2 ) .  U s i n g  I_~rrcrna 1 and  b a l a n c e  on x we 

see that i "ADA'I ={(l-f)/f}21 "V i 
r r s ss s 

-2((l-f)/f}l "V i + i "V V -Iv i , so that 
s sr r r rs ss sr r 

(2) reduces to (3). Now 

~,(TIY ) m "Y + l "X DX'V = -Y + I ' Z ) '  
s s s r r s ss s r r 

+ l'V v -l(T - P )Y (~) 
r rs ss n s s 

where Y = Y - Z ~. Again using the lemma and 
S S S 

balance on x we see that (4) equals 1 "Y 
, S S 

+ ((l-f)/f}is "Ys + ir'Zr 3̀ ' and this eauals_ Ny s 

because of balance on z. Thus under N2, g i v e n  Ys' 
T has a normal distribution whose mean and vari- 

ance are independent of 3̀ . Since MI corresponds 

to the case of ~ = 0 ,  t h e  p r o o f  i s  c o m p l e t e .  

When V in Theorem i satisfies the stronger 

C o n d i t i o n  L*" V1N= X6 f o r  some ~,  and  V = 0 ,  
r s  

the posterior variance (3) is simply 

z "v l (l-f)/f 2. 
S SS S 

In example i it is easy to show that if the 
true model contains an intercept, that is, if 

EY. = 3' + Bx i t h e n  t h e  t r u e  p o s t e r i o r  d i s t r i b u -  
1 ' ^ 

t i o n  o f  T h a s  mean E(TIY ) = T R + N) ' (x  - x ) / x  
S S S 

and  v a r i a n c e  v a r ( T [ Y  ) - ( N / f ) ( 1 - f ) o  2 x x / x  . 
S r s 

The s a m p l e  m a x i m i z i n g  x , o p t i m a l  u n d e r  t h e  
s 

w o r k i n g  m o d e l ,  i s  d o u b l y  d i s a d v a n t a g e o u s  i n  t h a t  
( i )  i t  l e a d s  t o  a l a r g e  e r r o r  i n  E(TIY ) u n l e s s  

s 
)' = 0 ,  and  ( i i )  i t  i s  o b v i o u s l y  a b a d  s a m p l e  f o r  
d e t e c t i n g  when y # 0 .  I n  t h i s  e x a m p l e  C o n d i t i o n  

L i s  met s i n c e  V1 N = Xo 2 ,  and  a l l  s a m p l e s  a r e  

b a l a n c e d  on 7. b e c a u s e  7. = i N . Thus i f  s i s  

b a l a n c e d  on x t h e n  t h e  t h e o r e m  a p p l i e s  and  we~... 
h ave  E(TIY s )  = Ny-s and  v a r ( T I Y s ) -  ( N / f ) ( l - f ) e ~ ' x .  

S i m i l a r l y ,  t h e  p o s t e r i o r  d i s t r i b u t i o n  r e m a i n s  u n -  
c h a n g e d  b y  t h e  f u r t h e r  a d d i t i o n  o f  a q u a d r a t i c  

2 i f  t h e  s a m p l e  r e g r e s s o r ,  EY i = 3`2 + ~3xi + Y2xi ' 

i s  b a l a n c e d  on b o t h  x and  x 2.  

In this example the ratio of the minimum 
posterior variance +o that for a balanced sample 

can entail a substantial loss of efficiency when 
the working model is correct. But this is not 
always the case. For some .working models bal- 

anced samples are optimal, as the following 

easily proved lemma states. 

Lemma 2. Under model MI with V = T..~ 2 if -~ 

one column of X is the vector IN, then 

min var(TIY ) = o2N(l-f)/f and this is achieved 
S S 

when s is balanced on x. 

Example 2. Suppose that the working model is 
MI but the units are actually grouped in H strata 

with a different regression coefficient Bh= B+y h 

in each stratum h = i, 2, .... H. Then if the 

units are ordered according to strata we have 

X ~= (X# , X2" , ..., ~') where ~ is the matrix 

for stratum h, 

X I 0 ... 0 

0 X 2 0 

Z -- ° " • " 

0 0 ..." X__ 

and y'= (YI" '_ Y~" '_ "''' YH" )" Balance on z and on 

x is achieved if (i)within each stratum the sam- 

sh/n h ple is balanced on x" l s h  X = i F X h / N  h 

where s h is the sample, n h the sample size, and 

the number of units in stratum h, and (ii) pro- 

proportional allocation is used" n h = nNh/N. 

Thus, for a proportional stratified balanced sam- 

ple the distribution of T given Y is the same 
s 

for all y if Condition L is met. For instance, if 

V is a diagonal matrix whose ith diagonal element 

has the form v.. = x.'6, then Condition L* is 
ii i 

satisfied and the posterior distribution of T 

- /f2 derived under ~il, T ~ N(Ny s, ZsVii(1-f) ), is 

also correct under the true model M2. 

Because the conclusion in Theorem i is true 
for every fixed y, it is true when 3̀  has any 

prior distribution for which the conditional dis- 

tribution of 3̀ , given Y , is a proper probability 
S 

distribution. The model is now 

M2 : Given B and y, Y - N(X8 + Zy, V) and B 

and ~ are independently distributed, with 

f(S) ~ constant. 

Since the prior distribution of Y is not 

necessarily normal, the distribution of T, given 

Y , need not be normal under M2*. But under bal- 
s 

ance and Condition L the same normal distribution 

obtained under MI applies under M2* as well" 

Corollary i. Under the conditions of Theo- 
rem i, under both models MI and M2*the posterior 

distribution of T, given Ys' is normal with mean 

Ny s and variance given by (3). 

2 
2.2 Unknown 

~Cnen the working model' s covariance matrix 
contains an unknown scalar o 2, and log o is 

assigned a uniform prior distribution, balanced 

samples no longer ensure that the true posterior 
distribution is the same as that derived from the 

working model. However, they do ensure that the 

8 



two distributions have the same mean value and 
that for large n the variance calculated using 
the working model is usually larger than the un- 
known true variance. 

We refer to the difference between the erro- 
neous posterior mean calculated under the working 
model and the correct value calculated under the 
true model as the Bayes bias. It is the distance 
by which our modelling errors cause the mean (the 
predictor under a quadratic loss function) to be 
displaced from its correct location. Using model 
MI when ~9 is correct introduces a Bayes bias, 
and Theorem i showed that balance protects against 
the Bayes bias in that situation• 

Now the working model is" 

Mla" Given B and o, Y ~ N(XB, Vo2), and B 
and log o have independent diffuse prior distri- 
butions, f(8,o) ~ i/~. 

Under this working model the total T, given 
Y , has a Student's t distribution with n-p 
s 

degrees of freedom, mean given by (I) and variance 

l$12(n_p)/(n_p_2),A where ~ is defined in (2) and 

(n-P)~l 2 = (Ys-Xs~)" Vss-l(Ys-X s~) = ys ,BYs (5) 

where B = (In-P s)'V s -l(in_P s). That is 
s 

{T-E(TIYs)}/(I°I 2)P2 has a Student's t distribu- 

tion with n-p degrees of freedom. 

The true model is, for fixed y, 

M2__~a: Given B and o, Y ~ N(X8 + Zy, V~ 2), 
and 8 and log a have independent diffuse prior 
distributions, f(B,o) ~ i/o. 

Under M2a, given Y , T again has a Student's 
t distribution with n-pSdegrees of freedom, but 
with mean given by (4) and variance 

^ 2 
lo 2 (n-p)/(n-p-2) where 

^ * * ^ 2 
(n-P)O22 = Y "B Y = (n-p)o I -2 Y "BZ 

S S S S 

+ Y'Zs'BZ Y. (6) 
s 

Since balance and Condition L ensure that the 
mean, EiTIY ), is the same under Mla and M2a, the 

S 

only remaining difference between the two t-dis- 
tributions is that between the scale factors 
^2 ^2 
o I and o 2 . When n is large the following 

lemma shows that the variance calculated under 
the working model will usually be the larger. We 
consider that the population grows so that N and 
n -> oo. 

Lemma 3. If there is a positive constant g 
such that as n ÷ ~ lira y'Z ~ BZ y/n = g, then 

^ 2 s ^s 2 
given 8 and o, lira Pr(o I > o 2 ) = i. 

Proof. It follows from (6) that 

^ 2 ^2 
o 2 = o I - (2Y'Zs'BSs + y'Zs'BZsY)/(n-p), where 

e = Y - X B- Z ~. Since 2Y'Zs'Be /(n-p) has 
S S S S S 

mean zero and variance 

4o2~Z "V -I(v - X DX ")V -Iz y/(n-p) 2, this 
S SS SS S S SS S 

term converges in probability to zero, so that 
^2 ^2 
o 2 - o I converges in probability to -g, which 

implies the desired result. 

Condition L and balance do not ensure that 
the posterior distribution of T, given Y , is the 

s 
same under Mla and M2a. They ensure only that the 
Bayes bias is zero. The same remains true when 7 
has a prior probability distribution, since in 
that case the posterior mean is 

~(TIYs) = E {F(TIYs, ~)IYs} = ~(NYsl Y~) = Ny~--. 
2.3 Incorrect covariance matrix 

When the working model is inaccurate in 
specifying that the covariance matrix is V as well 
as in setting ~ = 0, balance continues to provide 
protection against the Bayes bias if the true 
covariance matrix satisfies Condition L. This is 
clear from Theorem i, where the posterior mean, 

Ny s, does not depend on V. We state the result 

as a corollary. The true model is now 

M3. Given B, Y ~ N(XB + Zy, W), and B has a 
diffuse prior distribution. 

Corollary 2. If both V and W satisfy Condi- 
tion L and if the sample s is balanced on both x 
and z, then under the models MI and M3, 

 (Tlh) :  Ys" 

As before, the conclusion continues to hold 
when y has a prior probability distribution, 
since the posterior mean, for fixed ~, does not 
depend on y. 

When MI is wrong only in its specification 
of V, that is, when y = 0, and V and W satisfy 
Condition L, the Bayes bias is ir" X (~ - 8W ) 

where 8W = (Xs~ Wss-IXs)-i XsWss-IY r • In this 
s 

case Lemma ]~i) ensures that balance on x alone 
makes the Bayes bias zero. 

In Corollary 2 the true covariance matrix W 
satisfies Condition L. What happens when W 
depends also on the omitted variables Z? Suppose 
W satisfies 

Condition L I. 

W i = X + Zs61 , W i = X + Z for 
ss s s61x z sr r s~2x ~62z 

for some vectors ~ix' ~iz' ~2x' and ~2z" 

It follows immediately from Theorem i that 
for a diffuse prior on y, if the sample is bal- 
anced on x and z then E(TIY ) = NYs, and there 

s 
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is no Bayes bias. This result does not neces- 
sarily hold for fixed y (or when y has a "proper" 
prior distribution). Nevertheless, for large 
samples the following theorem shows that the Bayes 
bias will usually be small. 

Theorem 2. Under model M3, if W satisfies 
Condition L and the sample is balanced on x and 
on z, and i~ as n + 

lim t'W -i t = 0 (7) 
ss 

where t" = {~2z'/(N-n) - ~iz'/n} Z s , then 

then E(T/NIY ) -~s converges in probability to 
s 

zero for each B and 7. 

Proof. Condition L I implies that 

is'WssBw = 61z" Zs~Bw and that ir'WrsBw = ~2z'ZsBw' 

where B W is the same matrix as B, but with V re- 

placed by W throughout. From this we can write 

E(T/NIY ) = ~ + t'BwY . 
S S S 

Now BwX s = 0, so t'BwYs = t'BwS s, and the result 

follows from Chebychev' s inequality. 

Condition (7) is mild. In the simple case 
where X and Z are column vectors with 

S S 

W = diag(x i6 + zi6 ) and W = 0, we have 
ss ix iz rs 

2 
t'Wss-It = (~iz/n)2 Zs zi /(x i6Ix + zi61z), 

and when 61x = 0 this is simply ~iz Zs/n. 

2.4 Models with proper prior distribution s 

The preceding results have been derived under 
models using improper diffuse prior distributions 
for 8 and log o. They can also be obtained as 
approximations, for large n, when these parameters 
have proper "locally uniform" prior distributions. 
This is simply a facet of the well known principle 
of "precise measurement" or "stable estimation" 
Savage (1962) which states roughly that for large 
n all relatively smooth prior distributions, in- 
cluding the standard diffuse priors, lead to 
approximately the same posterior distributions, 
cf e.g. Zellner (1971, p. 46). 

We will only sketch the argument in the 
simplest case. Let Mlb and M2b be the models 
obtained by replacing the diffuse prior for B in 
MI and M2 by any smooth prior probability distri- 
bution. Using techniques similar to those in 
Lindley (1965, p. 13) we can show that when n is 
large the posterior distributions of B, given Ys' 

under Mlb and M2b are approximately the same as 
under MI and M2 respectively. Now this implies 
that the posterior distributions of T/N under Mlb 
and M2b are approximately the same as under MI 
and M2 respectively. Finally, Condition L and 
balance on x and z imply (Theorem i) that the 
posterior distributions of T/N under ~il and M2 
are the same. 

3. DISCUSSION 

r~ese results help to answer two serious 
objections to the Bayesian approach to finite 
population inference. The first of these con- 
cerns the possibility that an imperfect working 
model might produce a posterior distribution 
which is seriously misleading. This objection 
has many facets, and an important one is the 
possibility that misspecification of the re- 
gression function E(YI8 ) might produce an im- 
portant Bayes bias, or error in the posterior 
mean. Although a simple linear regression 
function might be used in the working model, if 
the sample is well balanced on various powers of 
the regressors, then it matters little whether 
some more elaborate polynomial regression model 
would be more realistic -- the posterior distri- 
bution of T would be the same as under the simple 
working model. By careful choice of his sample 
the Bayesian can ensure that his inference is 
robust in this sense. 

The second reservation comes from the failure 
of random sampling to play an important general 
role in Bayesian theory (Basu, 1969). Justifica- 
tions for random sampling have been described in 
terms of its psychological effects on respondents 
and on potential users of the results as well as 
in terms of protecting the sampler from his own 
subconscious biases. But in terms of the 
Bayesian sampler's formal statistical inferences, 
random sampling has been problematic. Ericson 
(1969) offered an argument based on approximate 
exchangeability, but his analysis does not apply 
to the many populations where every unit has its 
own unique value for an important auxiliary 
variable. 

In the present results a role for random 
sampling in Bayesian inference appears: In 
practice there are always variables, such as those 
appearing in the matrix Z in model M2, which 
should be included in the working model, but 
which are omitted because their importance is not 
appreciated or because it is impractical to obtain 
the Z matrix. If Z is unknown then whether a 
given sample is well balanced on z cannot be 
determined. But simple random sampling provides 
(say via Chebyshev's Inequality) grounds for 
confidence that the selected sample is not badly 
unbalanced on z (Cornfield, 1971). Thus although 
the random sampling distribution does not play a 
central role in the Bayesian's inferences, it 
does have a secondary role in protecting against 
a Bayes bias, by providing samples which are 
approximately balanced. 
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