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SUMMARY 

The major theoretical development of survey- 
sampling in recent years seem to be primarily 
motivated by two key results, namely (I) the non- 
existence of minimum variance unbiased estimation 
(Godambe, 1955) and (2) the fact that the likeli- 
hood function is independent of the sampling 
design (Godambe, 1966). While these somewhat 
negative results received considerable attention 
(Lindley, 1971; Rao, 1977; Royall, 1976) the 
positive proposals made along with them remained 
mostly unnoticed: (I) a criterion of optimality 
to replace minimum variance was laid down (1955) 
and (II) a suggestion was made to interpret 
sampling designs as means to robust inference 
(1966). In this paper we demonstrate how propos- 
als (I) and (II) can lead to estimation which is 
both efficient under an assumed (prior-probabil- 
istic) model and robust against possible depart- 
ures from the model. The robustness here is in 
relation to the estimator as well as its effi- 
ciency (Box and Tiao, 1962). 

The twin concepts of random and purposive 
samplingwere understood intuitively and pract- 
iced in sample surveys long before they were 
formalised. It was also informally understood 
that randomization, unlike purposive selection, 
renders inference more or less free of any assum- 
ptions, i.e. renders it robust against departures 
from assumptions. Though possibly purposive 
sampling is of older origin than the other, in 
the theoretical development random sampling pre- 
ceded purposive sampling, as will be clear from 
the subsequent discussion. 

The general thesis of the present paper is 
this. 'Purposiveness' and 'randomization' are 
two irreducible components of survey-sampling. 
They determine the efficiency of ultimate esti- 
mation; more precisely, optimality in this res- 
pect would be the result of blending an approp- 
riate mode of 'randomization' with corresponding 
'purposive' elements. Leaving aside the mathe- 
matical definition of optimal estimation for 
the moment we will here explain the above 
thesis in its historical context. 

Neyman's (1934) forceful formalization was 
intended to show the superiority of random sampl- 
ing over purposive selection. He argued that the 
inference based on a purposive sample becomes 
baseless in case the (prior) assumptions about 
the survey population, supporting the purposive 
selection, go wrong. On the other hand the 
frequency properties of estimation (such as un- 
biasedness and minimum variance) obtained through 
randomization are independent of any such prior 
assumption. Of course, even Neyman made assump- 
tions of homogeneous strata and the like. But 
these assumptions tended to be less restrictive 
than the prior probabilistic assumptions (models) 
on which purposive sampling was based. For 
instance, Gini-Galvani's (1929) purposive selec- 
tion could be appropriate only under the assump- 
tions of a probabilistic model providing the re- 
gression of the variate under study on the aux- 
iliary variate. 

Now in retrospect it appears that Neyman's 
thoroughgoing frequency approach using unbiased 

minimum variance (UMV) estimation based on random- 
ization had intrinsic limitations. Neyman con- 
sidered estimators which were based on individual 
labels only through the stratum to which the 
individuals belonged. But with the subsequent 
introduction of modes of randomization more soph- 
isticated than stratification such as unequal 
probability sampling (Hansen and Hurwitz (1944)), 
estimators based more essentially on the labels 
(such as Horvitz- Thompson (1952) type estimators) 
became common. Further, soon after, for the class 
of all label based estimators the non-existence of 
UMV estimation was established (Godambe, 1955; 
Godambe and Joshi, 1965). On the other hand, 
'purposive sampling' received new significance and 
interpretation from subsequent theoretical devel- 
opment. Within the formal survey-sampling model 
which takes into account individual labels, the 
likelihood function was found to be independent of 
the mode of randomization (Godambe, 1966). This 
implied that once the sample was drawn any infer- 
ence (estimation) consistent with the likelihood 
and conditionality principles should be independ- 
ent of whether the sample was drawn at random or 
was drawn purposively. Indeed the likelihood 
(Barnard et al, 1962) and conditionality (Birnbaum 
1961) principles have strong appeal even for many 
non-Bayesian statisticians. The discovery that 
the likelihood function is independent of the mode 
of randomization gave rise to formal theories of 
(prior-probabilistic) model based inference 
(Royall, 1976) and the related purposive selection 
mentioned earlier. (In contrast to model based 
inference, the inference which essentially utiliz- 
es the mode of randomization is usually referred 
to in the literature as design based inference.) 

Hence the theoretical developments thus far, 
while sharpening and advancing our understanding 
of the two basic concepts of random and purposive 
sampling, have also clarified the basic conflict 
between the two. As indicated earlier the thesis 
of the present paper is that the conflict between 
the two basic concepts can be removed by implem- 
enting the considerations of 'model based effic- 
iency' and 'robustness under departures from the 
model' into a single integrated criterion of 
optimal estimation. 

This paper is a logical extension of previous 
work by Godambe and Thompson (1971, 1976); there 
the authors considered general model failure and 
showed that in some (very ristrictive) situations 
model based inference statements could be replaced 
in the case of model failure, by corresponding 
(frequency) design based inferences. In this 
paper the more common phenomenon of specific de- 
partures from the assumed model is considered. It 
is shown that appropriate randomizations (sampling 
designs) provide with large frequency samples for 
which inferences under the 'model' and under 
'departures' are nearly the same. 

In this paper we define a model as a class C 
of prior distributions on the population (size N) 
individuals, i.e. on R N. Corresponding to C 

let {e :~EC} be the class of Bayes estimators 

for the population total T. Then we define an 

estimate e closest to the class {e~:~eC} and 
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N 

show that e is the usual model C-best estimator 
i.e. for every sample s, in the class of C- 
unbiased estimators for the population total, e 
has smallest C-variance. When C is a complete 
class of distributions, it is shown that no C- 
unbiased estimator exists unless the sample s 
is equivalent to the entire population. That is 
for a sufficiently broad model, C-best estimator 
does not exist. Hence we define in an analogous 
manner an estimate ~ which is closest to the 
class {e~:~eC}, under a sampling design p~ 

If E and s t denote expectations under the 
P 

sampling desing p and the prior distribution 

then it is shown that in the class of estimates e 
satisfying Epe~(e-T)=O, E p i c ( e - T )  2 i s  min imized  

for e=e when it exists. Further if C is 
P 

complete, the class of estimates satisfying 
E e~(e-T)=O is identical with the class of 
P 

design unbiased estimates, i.e. those satisfying 
E (e-T)=0. Thus if under the samping design p 
P 

an estimate e closest to the class of Bayes 
P 

estimates {e~:$eC} exists, it satisfies the 

optimality criterion of Godambe (1955) and 
Godambe and Joshi (1965). Hence one would like 
to find a sampling desing p which minimizes 
E E~(p-T) 2 ~eC to get closest possible to the 
p 

class of Bayes estimates {e~:~EC}. Now though 

under completeness of C, (~ ,p) minimizing 
P 

Ep ~E (ep-T) 2 does not exist, good approximations 

satisfying the near optimality criterion defined 
in the paper exist for different models C. Most 
designs satisfying the criterion of near optimal- 
ity are stratified(homogeneous in some respects) 
sampling designs with appropriate inclusion prob- 
abilities. The paper discusses many examples 
illustraing and emphasizing how near optimal 
sampling designs provide a well defined mechanism 
for eliminating nuisance parameters in contrast 
to their estimation in the model based approach. 
The latter estimation can be justified only for 
very restrictive models; hence the limitations 
of pure model based approach. Now even statist- 
icians professing to adopt model based approach, 
recommend drawing sample with suitable random- 
ization for 'balancing' Now this inference based 
on randomization in model based theory is not 
only ad hoc but is fundamentally in conflict with 
the basic principle on which the model based 
theory is founded--namely the likelihood prin- 
ciple. 
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