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ABSTRACT

The ’‘cusp’ model of catastrophe theory is very
closely related to certain multiparameter expon—
ential families of probability density functionms.
This relationship is exploited to create an
estimation theory for the cusp model. An example
is presented in which the independent variable has
a 'bifurcation’ effect on the dependent variable.
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The ’‘elementary’ catastrophe models
(1975) and Zeeman (1977) have attracted
attention of researchers and theorists
the sciences. A persistent problem with virtually
all published applications, however, has been the
absence of statistical procedures for detecting
the presence of a catastrophe in any given body of

data, This lack has resulted in some severe
criticism of catastrophe models for being, among
other things, speculative and unverifiable
(Sussmann and Zahler, 1978). Thus catastrophe

models have become associated in many minds with
reckless speculation and intellectuwal irresponsi-
bility. As part of an effort to overcome this
problem, this paper presents an estimation theory

and the beginnings of an inferential theory, in a
form useful for survey research applications of
catastrophe models.

Catastrophe models come in both dynamic and

static forms, the static
equilibria (stable and unstable)
forms. The capacity for multiple stable
equilibria is inherent in catastrophe models:
this is the principal feature which distingunishes
them from the standard models used in linear and
polynomial regression. In effect, the ’'control’
factors of a catastrophe model correspond to the
independent variables of a statistical model, and
the ’'behavioral’ variable of a catastrophe model
corresponds to the dependent variable of a
statistical model, When the control factors are
such that the behavioral variable is in a multi-
stable situation, then each stable equilibrium
value is a predicted value of the behavioral
variable — thus there is more than one predicted
value. In addition, the unstable equilibria which
separate the stable equilibria are also
predictions of a sort: they are the values that
we predict the behavioral variable will not have.

forms being simply the
of the dynamic

This feature of catastrophe models makes it
difficult to define the 'size of an error of
prediction.

There are two ways of overcoming this
difficulty. Both of these ways have emerged from

a study of various forms of dynamic stochastic
catastrophe models (Cobb, 1978, 1981, and Cobb and

Watson, 1981). One of these is based on the
method of moments and is an estimation method
only, while the other is based on maximum

likelihood estimation and permits hypothesis

throughout -
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testing with the use -of the chi-square approx—
imation to the likelihood ratio test. The former
has the advantage of computational simplicity,
while the latter is clearly preferable when
hypotheses must be tested.

THE CUSP MODEL

The canonical cusp model can be thought of as a
rather peculiar response surface model. It's
shape may be seen in Figure 1 on the next page.

Note that sections taken through the depicted
surface parallel to the o—axis are just cubic
polynomials in y, the dependent variable. The

entire surface is defined by the implicit equation

0 =a+ B(y-A)/o - {(y-A)/e}2.
If we let z = (y-A)/o be the 'standardized’
dependent variable, them the cubic equation is
simply

0 =a+ pz - z3,

It may be seen that A and o are the location and

scale parameters, respectively. The roots of the
cubic polynomial are the predicted values of 1z,
given @ and B. When there are three roots, the

central root is an 'anti-prediction’: a
prediction of where the dependent variable will
not be. This feature of the cusp model is
clarified in Figure 2, which shows the sequence of
conditional probability density functions for y,

with o fixed as B is increased. This sequence
corresponds to the trajectory and its projection
that are shown in Figure 1. These probability
density functions will be discussed in a later
section.

The two dimensions of the 'control' space, o

and B, are canonical factors which depend upon
the actual measured independent variables, say
Xl’ wees X . As a first approximation, we may
suppose that the control factors depend linearly
upon the independent variables:
= + +
a o, * alxl .ee ava,
= + + ..+ .
B B0 lel Bvxv
Thus the statistical estimation problem is to find

estimates for the 2v+4 parameters
{xyo;ao)- ..’av’ﬂo’. . -:Bv};
from n observations of the v+l variables
{y, Xy vee s Xv].
As B changes from negative to positive, the
conditional probability density function of y
changes in shape from unimodal to bimodal. For

this reason the B factor will be called the
bifurcation factor (it has also been called the
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Figure 1: The cusp catastrophe model.
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Figure 2: The cusp probability density functiom.
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'splitting’ factor, by Zeeman and others). When
a is zero the pdf is symmetrical no matter what
the value of B. When the pdf is unimodal, a
determines its skew: o« positive implies positive
skew and vice versa. However, when the pdf is
bimodal, then a determines the relative height of
the two modes: a positive implies that the
right—hand mode is higher, and vice versa. To
encompass these attributes, o will be called the

asymmetry factor (it has also been called the
'normal’ factor, a rather misleading term).
Because the model is based on a cubic, it is

possible to define a statistic which discriminates
between the unimodal and bimodal cases. This is
Cardan's discriminant:

8§ = (a/2)2 - (B/3)%.

When & is negative the pdf is unimodal, and when
it is positive the pdf is bimodal.

STATISTICAL THEORY
The probability density function upon which all
of the preceding descriptive statistics were based
is the standard 4-parameter cusp pdf:
f(y) = Eexplaz + Pz2/2 - z4/4),
z = (y-A) /o,

in which

The constant & merely normalizes the pdf so that

it has wunit integral over its range, which is the
whole real line. The modes and antimodes of the
cusp pdf may be found by solving df/dy = 0. This

yields the equation

a + Bz -z = 0,

which is exactly the same as the implicit equation
which defined the cusp surface. The modes of the
cusp pdf are the predicted values of the cusp
model, and the antimodes of the cusp pdf are the
'anti-predictions’ of the cusp model, The
derivation of the cusp pdf from stochastic
catastrophe theory, wusing stochastic differential
equations, may be found in (Cobb and Watson,
1981). The statistical theory was first presented
in rudimentary form in (Cobb, 1978).

The standard cusp pdf can clearly be repara—
metrized so that it is a canonical exponential
family, as in:

f(y) = exp(—n+t1y+12y2+r3y3+14y‘).

Now the well-developed theory (e.g. Lehmann, 1959)
of exponential families can be applied: we know
that maximum 1likelihood estimators (MLE's) exist,
are unique, and can be found, for example by a
Newton—Raphson search, This search procedure
proceeds as follows. Let t stand for the vector

of parameters

T = (tl, cee s 14),
let S be the vector of sample means defined by

s, = (1/n)§‘.‘_ Y5, for k=1,2,3,4,
k i=1"1
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let M(t) be the
given T defined by

vector of expectations of f(y)

M, (x) = E[Y*], for k=1,2,3,4,

and let H(x) be the
given T defined by

4x4 matrix of covariances

H, . (x) = CoviY*, Y],
13

for i,j=1,2,3,4. The Newton—Raphson search is an
iterative procedure which starts from an initial
guess for T, say t. Each guess is improved by
adding to it the quantity

[S-M(£)TLH(£)17L,

This calculation is performed repetitively until

S = M(t), within the 1limits of computational
accuracy.

It should be noted that after each iteration
the vector M(t) and the matrix H(t) must be
recalculated. These moments must be found by
numerical integration, since closed form expres—
sions for the moments of the cusp pdf are not
known.

The preceding discussion applies to the

estimation of the four parameters of the cusp pdf,
given observations of the wvariable Y. If,
however, the cusp pdf is to be used as the
conditional density of Y, given the values of the
independent variables, then the maximum likelihood
procedure becomes more complicated. If we use the
previously stated assumption that the factors a

and § are linear combinations of the independent

variables, then the extension of the Newton-Raph-
son technique is straightforward. There are now
2v+4 parameters to be estimated, and the matrix
H(t) becomes (2v+4)x(2v+4) dimensional. The
problem is that calculating the elements of H(t)
and M(t) now becomes almost prohibitively tedious,
especially for large data sets, since the computa-—
tion time is now proportional to the sample size.

of
in
max imum
As
permit

We now proceed to estimation by the method
moments. It will be seen that this method,
sharp contrast to the method of
likelihood, is extremely easy to implement.
noted before, it does not, unfortunately,
hypothesis testing.

Even though closed-form expressions for the
moments of the cusp pdf do not exist, moment
estimators are trivial to derive with the aid of
the following general theorem:

Theorem: Let g(x,y) be a function
of x and y such that

polynomial

0 < [Texp(-fg(x,y)ay} < =,

Define
random variable Y

Let & be the reciprocal of this quantity.
the conditional density of a
given X as

flylx) = texp{-Sg(x,y)dy}.

Assume that the joint
moments of all

density of X and Y has
orders, and let h(x) denote the



density of X. Then for any non-negative j and k

B9 s (x, 11 = kerxdy*ly.
Proof: Note that f(ylx) is asymptotically
zero as y tends to either + or —», Singe g(x,y)

that y f(ylx)
Further, we can

is a polynomial, we also have
tends to zero in the same way.
write g(x,y) as

g(x,y) = —{8f(ylx)/ay}/£(ylx).
Substituting this expression into the moment for-
mula, we obtain
XY g (X, 0 1=/ y g (x, ) £y 10 h(x) dyax

= ffoyk{—af(y|x)}h(x)dx

= I (-fy*af(ylx) Vax.
Now use integration by parts on the inner
integral, and observe that one of the parts is

identically zero:
—fykaf(ylx) = —ykf(ylx)|j:

+ x5 eyInay
=0 + kfyk_lf(ylx)dy.

Thus we now have

E[Xijg(X,Y)] = ijh(x)kfyk—lf(y|x)dydx

kfijyk—lf(ylx)h(x)dydx

931535 Gl

1.

This theorem enables the method of moments to
be applied to models that, like the elementary

catastrophes, are expressed as implicit equationms.

Before examining the cusp model, it may be worth-—
while to show how it can be applied to ordinary
linear regression, The linear regression model

y=a+bdx + ¢
can be written in implicit equation form as
g(x,y) = (y — a - bx)/o? = 0,

where o2 will turn out to be the variance of ¢.
The conditional pdf of y given x is

f(ylx) = texpl-(y2/2-ay-bxy)/o?]

expl—{y—(a+bx)}2/202].

normal density, Nla+bx,o?].
formula, complete the square and
into &, the mnormalizing

This is clearly a
(To obtain this
absord the terms in x
constant).

To find estimation equations for a and b, wuse
the theorem twice, first with j=k=0 and second
with j=1 and k=0:

775

1)  E[g(X, D] =0
==> a + bE[X] = E[Y],
2)  E[Xg(X,)] = 0

==) aE[X] + BE[X2] = E[XY].

Notice that when sample moments are substituted
for these expectations, we obtain the usual
Gauss—Markov normal equations for linear
regression, To estimate o2, use the theorem

again, this time with j=0 and k=1:
3) E[Yg(x,Y)] = E[Y°] =1

==> E[Y2] - aE[Y] - bE[XY] = o2,

which is the correct formula for the residual
variance of Y after the 1linear effect of X has
been removed by linear regression.

Turning now to the cusp model, let us consider

first the model with no independent variables:

g(y) = a + by + cy? + dy?, (d>0).

This model has a pdf given by

f(y) = texp{ay+by?/2+cy3/3+dy*/4],

which has modes and antimodes at the roots of
g{y) = 0. The transformation from (a,b,c,d) to
the standard coefficients is accomplished by

A =-c/3d, o =a /4,

a = —o(a+bA+tcA2+dA?), and

B = =o2(b+cdr).
Estimation of (a,b,c,d) from the moments of Y
procgeds from an application of the theorem. Let

k

pk=E[Y].
From a single application of the theorem we can
derive a linear difference equation (with one
varying coefficient) for the moments of Y:

EIY5 (D] = kBIYS 1]
== ki g T A b ey Tk
Simply apply this result with k=0,1,2,3 to obtain
a system of four linear equations in the four

unknowns (a,b,c,d). Substitute sample moments for
the expectations and solve the system. Transform
the resulting estimates as indicated to obtain
(A,0,a,B).

It is trivial to expand this technique for
models with dindependent, variables. For example,
suppose there is one independent variable, say X.
Then the model is

= + 2 3
glx,y) b1+b2x+b3y+b4xy bsy +b6y .
The standard coefficients are obtained from
_ _ ., -1/4
A= b5/3b6, ¢ = b6 ,
ay = ~o(b bt A24bA%),



= - +
(11 d(b2 b4k)l
= —g2
Bo G (b3+bsk).
= —g2
Bl ] b4.
Estimation of the coefficients from moments

proceeds as before. Apply the theorem six times,

with j=0 and %k=0,1,2,3, and then with j=1 and
k=0,1. Solve the resulting system and transform
to get the standard coefficients.

Estimation by the method of moments does not
yield estimators with known sampling
distributions, and cannot therefore be wused for

hypothesis testing., The maximum likelihood method
yields estimators that are efficient and that have
known (asymptotic) sampling distributions, but
that are, from a computational point of view,
highly inefficient. It is possible, however, to
use the moment estimates as the initial guess for
the Newton—Raphson iterations, thus cutting down
somewhat the time required to calculate the MLE's.

Once MLE's have been obtained, it is possible to
test hypotheses (for example, comparing a linear
regression model to the -equivalent catastrophe

model) using the chi—square approximation for the
likelihood ratio test.
AN EXAMPLE

An excellent example of published empirical
data which seems to exhibit a bifurcation in the
dependent variable has been quoted by Zeeman
(1977, pp. 373-385). The data come from a study
of driving performance before and after the
ingestion of alcohol (Drew, Colquhoun, and Long,
1959). Essentially, the authors found that the
change in time per lap (i.e. driving speed) was
strongly affected by the position of the subjects
on the Bernreuter scale of introversion, However,
the effect was mnot linear: the correlation
between change in lap time and introversion was
.005 or effectively zero. However, as is visible
from Figure 3, it is clear that whereas extroverts
continuted to drive at about the same speed after
drinking, the introverts either drove faster or
slower, and did not stay at the same speed.

These data were reproduced as a figure in
(Zeeman, 1977, Fig. 1), from which approximate
data were recovered by digitization. Following
Zeeman, three cases were eliminated as extreme
ontliers, leaving the 37 cases seen in Figure 3.
The six parameter cusp model with one independent

variable was fitted to the data using to method of
moments as given  above, and the resulting
relationship between change in driving speed after
alcohol (the dependent variable) and introversion
(the independent variable) is shown. The dashed
line indicates values that are predicted not to
occur.

Zeeman also used a cusp model in his article,
although it differs substantially from the omne in
Figure 3. Poston and Stewart (1978, pp. 420-423)
criticize Zeeman'’s model on psychological grounds,
and suggest the bifurcation model that appears
here.
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Figure 3: A bifurcation model fitted to data.



