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i. Introduction 
Although lists and directories are common 

frame materials for sample surveys it frequently 
happens that the space continuum, represented by 
a map, or the time continuum, reflected in clock 
readings, becomes the frame of a sampling investi- 
gation. One of the problems of design in such 
studies is choice of the best size of sampling 
unit. In order to solve this problem one needs 
to express survey costs as a function of sampling 
unit size and also to find the function relating 
sampling unit variance to size of unit. For 
surveys of agricultumal crops such a variance 
function has been suggested by H. Fairfield Smith 
(1938) • 

2 2 M-b 2 
The form of function is S C - S E where S C 

is the variance of means of sampling units 
(clusters) containing M elements and SE2 is the 

variance among elements. If the M elements had 
been randomly selected to constitute the sampling 
units then the form of function would be 

S 2 2 M-I 2 is the variance of means of R = SE where S R 

such randomly created units. When adjacent ele- 
ments are joined to form larger units, as is 
natural for a spatial frame, then b is found to 
be less than one. This reflects the fact that 
adjacent elements are more similar than those that 
are further separated. 
2. Multi-stage Notation 

The sampling units at the level of nesting of 
smallest size units will be called elementary 
units or elements. The levels will be indexed 
Z= 1,2,..., L where the Lth level contains the 
elements. It will be supposed that units within 
each level are all of the same size, although the 
results should hold reasonably well for unequal 
sizes, with average sizes substituted for the 
single size. The number of first stage units 
(PSU's) will be denoted N I and the number of 

second stage units (SSU's) in each PSU will be 
written Np, etc. The number of elements in each 
PSU is written M I and the number in each SSU is 

denoted M 2 , etc. Notice that 

L 
M Z : II N =M%+INz+ (Z:O 1,2 ...,L-I), (2 i) 

j=~+l j i ' ' " 

and M L = l, while M 0 is the total number of ele- 

ment in the population. 
The PSU's themselves will be indexed i l= 1,2, 

..., N I . The SSU's will be indexed by 

( i l ,  i 2 ) =  (1 ,1 ) ,  (1 ,2) ,  . . . ,  (1,N2) , . . .  ,(N1,N2). 
An under squiggle will be used as shorthand for 

the Z-tuples such as i I = il, i 2 = (i l,i 2) , 

~3' "''' iL" That is, there are M 0 L-tuples of 

the type i~. The finite population-of M values 0 
~" be rltt n of the Y variable may w " e collectively as 

{Y. ] .  

Population quantities of interest are: 

Means : Y0 --~= E Yi /Mo ' ? = 7' ~i Z 

Deviations: D. = Y. - Y (i Z EiZ_ ) 

T° TT . 

where 'lz E i~_ 1 means summation over all ~Z 

having the same initial Z-I components as iZ.l . 

The variances are: 

2 D2 Variance Components" SZ= Z ~ /NIN2...Nz_ I(NZ-I) 

Cluster Variances" SC, ~ = ~ - , 

where U Z = jw__ZIN j = M0/~4 Z . 

Conversion back and forth between the 2 
the $2 £ is relatively easy. Notice that SZ and 

_ - -  (~-~ 9 ?. -~. +f. -Y 
~Z ~Z-1 ~Z-1 

= D +(~ -~), 
%~ &~-i 

so that 

2 D. 2 + z( -~)2]/(u~- l) Sc, ~ : Is  ~ Y~_~ 

2 + 1)NzS 2 ]/(U~-I), (2.2) = [(u~-u~_ I) s~ (u~_~- c,~-~ 

or equivalently" 

2 2 2 2 
S~=[Uz(Sc, I-SC,Z_I)+NZS ,~-i -S2C,~]/(O k-UZ_I )" (2.3) 

Equation (2.2) applies to Z=2,3,...,L while 

$2C,I = $21 " This shows that the $2 £~ may be ob- 
2 

tained by a linear transformation on the S£ . If 
2 ~ 

the quantities SC, ~ be placed in ~n L-~omponent 
column vector, say C V, and the S Z in another, say 

VC then equation (2.2) defines the matrix B in 

cv:  s v c  . ( 2 . 4 )  

3. Sample Data and ANOVA Estimates of VC 

In p a r a l l e l  to the popula t ion q u a n t i t i e s  [YiL]~ 

we denote sample observations as [y,~ ] . The 
L 

draw-order subscripts ~ stand for the vectors 

(u I , u 2 , ..., u£) with Z= 1,27..., L where u£ 

denotes order of draw of a cluster into a simple 
random sample (SRS) of size n~ from a finite pop- 

ulation of N Z clusters. The simple balanced multi- 

stage sample design is completely specified by the 
sample sizes nl, n2, ..., n L . The whole collection 

may be denoted S and the number of such samples is 

(NIl [N2 nl .. " /N L) nln2 "'" nL-i . . 

(S) nl n2 
= (3 l )  

• . n ~  
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A randomly selected• such samp!e willbe written s . 
In fact, s is a correspondende~ s(~)•= ~Z ' show- 

ing which clusters were drawn and in what order 
into the sample. 

From a thoroughgoing, sampling-from-a-finite- 
population viewpoint the [Y~ ~ are a fixed col- 

or L 
lection of quantities from which the [Di. ] may be 

~Z 

calculated, as well as the S 2 , and so forth• The 

randomness of the sample observations is due en- 
tirely to the simple random subsampling of clusters• 
The sample unit means may be represented as: 

deviations at any one level equals zero within any 
more inclusive unit. Consequently, 

£(ms I) = n2n 3 .nL[S 2 + (i - f2)S 2 2 "" i 2/n2 + (i- fs)S3/n2n3 

2 
+ ... + (l-fL)SL/n2n 3 ...nL] 

- (i fL)S~+nL(l fL_l ) 2 + _ _ _ SL_ I •.. 

+ nLnL_ 1 n2 $2 " '"  1 (fz =nZ/NZ ) " (3.6) 

By a similar argument one finds" 
g-% 

6(msz) = (I-fL)SL+ ...+nLnL_ I ...nz_ I 2 (3.7) 

=Y + + D + ... +D + D 

+ ... + D , (3.2) 

where the quantities, ~uD 2E , for example, are 

single values of deviations while the, for example, 
D are means of finite population deviations. 
u~9 u~+ 1 

The notation "E" refers to agreement of components 

as given in, for example, Bennett and Franklin 
(~9~). 

It is frequently more realistic to suppose that 
there have been added to each sample observation 
some random, so called, nonsampling error quantities. 
We will suppose, rather unrealistically I 'm afraid, 
that they are independent of the underlying Y. 

values and that their expectations are zero for 
each level with some characteristic variance at 
that level• 

To see their effect on expectations of sample 
,, mean squares we go back to the discussion of 

Du ~2 as a submean of n 2 deviations. We still 
of the indexes and the sy~nbol "9 refers to averaging ~u19 
over the extra components. For example 9 ~Z+ 

~Z 2 
is an average of nz+ I nz+ 2 quantities. 

The unweighted sample mean can be written 

= Y + DI + D2 + "'" + DL (3-3) 

in which ~(Dz ) = 0 for ~ = i, 2, ..., L and thus 

6(y) Y Now consider the differences - -y 
= . Yul 

for u I = i, 2, ..., n I . These appear as" 

- _ ~ ~i) + (- _ ~2)+ ... 
Yul = (Dul- Dul9 ~2 

+ (D~i~ ~L- ~T') " (3.4) 

Notice that D2 is the mean of nln 2 deviation 

quantities or of n I submeans each based on n 2 

quantities, while each Dul 9 U2 is a submean of n 2 

deviations. Because the sample of n I first stage 

units from the N 1 of the population was SRS, it is 

possible to construct unbiased estimates of popu- 
lation variances by squaring the n I differences, 

! 

adding them and dividing by n I -1 (Cochran s 

Theorem 2.2). In routine computation of the sample 
analysis of variance (ANOVA) this is done to find 
mean squares as, for example" 

= Z ... Z (Yul- Y)2/(nl-m) ms I 

u I u L 

= n2n 3 ... n L Z (Yul- Y)2/(n I -1) . (3.5) 

u 1 
Upon squaring the RHS of (3.4) and then taking 

expectation over random sampling the crossproduct 
terms will equal zero because the average of 

have these deviations, but there are now also n 2 
nonsampling error quantities in each submean. 
Whereas we had (i-f2)S2/n 2 for the variance being 

2 2 
estimated we now find it to be [(I- f2)S2/n2+co/n2 ] 
say. 

In order to minimize disruption to our notational 
scheme we propose to denote total variance, which 

be defined as £ + So ~ ,~ by S 2 itself and to ~lay 
g_. 6_. g_ 

2 
denote the sampling error portion by ~2S2 . Thus 

each submean of n 2 FP deviations plus n 2 non- 

sampling error quantities has variance" 
2 

(i - ~2)s 2 [(l-f2 ) 72S2 + 2]/n 2 

: (i-~2f2)S~/n 2 . (3.g) 

This leads finally to a generalization of (3.7) 
as" 

E(ms~) = (I-~LfL)S2+nL(I-~L_IfL_I)S2L-I + 

2 (3.9) • "" + nLnL-i "'" n~_i SZ 

This linear transformation can be represented by 
the matrix A in 

: A ms , (3.10) VC 

^2 
where ~ is the vector of S Z quantities and ms 

contains the ms Z . Notice that by using (2.4) we 

obtain estimates of the cluster variances in: 

C~V : BA ms . (3.11) 
N 

4. Estimating b From Sample Mean Squares 
Smith's relation is written 

2 2 ~b 
SC, ~ = SC,TM , (4.1) 

while a linearized form to be fit to data can be 
obtained as" 
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y= x~+d , (4;2) 

where y = Zog(C~) , x contains logs of the M o 

2L) and ~2 = b has two components , ~i = Zog(Sc 

while d is an error vector. 
If the observations [YuL}~ can be viewed as 

randomly drawn from a normally distributed additive 
model then the sample means squares would be in- 
dependently chi-square distributed. Each mean 
square would have variance equal to twice its 
squared expectation divided by its degrees of 
freedom. Although such an assumption is not ex- 
actly satisfied, there may be sufficiently close 
correspondence to warrant its provisional accep- 
tance. 

If we denote by D a diagonal matrix with 
msv 

2 
entries 2 ms£/d£ where d~= nln 2 ... n£_l(n~-i ) and 

further denote by DVC the diagonal matrix with 
^ 

entries from VC then the following computation for 
V would provide a covariance matrix for d under 
the just stated assumptions: 

-i T T -i 
v= DvcBAD ~ B  DVC . (~-3) ms 

Applying generalized least squares to the estima- 
tion of ~ leads to" 

= . (4.4) 

The estimated covariance matrix for ~ is 

(xTv-Ix) -1 , while the error sum of squares is 
found as" 

Ess = yTv-  - y v-l  . (4.5) 

This quantity ESS may be compared to a chi-squared 
distribution on L- 2 degrees of freedom and large 
values taken as evidence of failure of fit of the 
model. With reasonable fit the square roots of 
diagonal elements of (xTv-Ix) -I are useful standard 
errors for judging the precision of a and b . 
These results are essentially those given by 
Hathaway and Williams (1958). 

After the model had been fit to several sets 
of data we found that evidence of lack of fit was 
rather common. Such a result could arise from non- 
normality or nonindependence of the deviation at 
the various levels as well as from nonlinearity at 
the overall level of logs of cluster variances. If 
one were to relax the distributional assumptions 
the logical or "default" direction would seem to 
be more toward unweighted least squares. However, 
it is unfortunate to have to give up knowledge of 
the degrees of freedom involved when estimating 
standard errors. That is, when the data are for 
only, say, four levels of nesting then the standard 
errors are based on just these four observations 
when using unweighted least squares, although they 
are based on the multi-stage sample sizes behind 
the ANOVA mean squares when the more specific model 
is used. 

The covariance matrix of the data points for 
unweighted least squares "is simply a constant 
diagonal matrix and thus a compromise would be 
attained by some linear combination of the identity 
matrix I and V. By way of preserving information 
on standard errors contained in V it was decided 
to maintain the trace of the compromise covariance 
matrix equal to the trace of V. The new covariance 

matrix will be denoted C and is defined as" 

= ~T + (i - ~N)v , (4.6) 

where y is the arithmetic average of the eigen- 
values of V. As the chi-square distribution 
approaches normality with large degrees of freedom 
the Zog likelihood approaches the following multi- 
variate normal form" 

LLF = -.5 [~og 2 + Zog(g) + (y-x~)T 

~-~(y -x~)] . (~.7) 

M a x i m i z i n g  t h i s  l i k e l i h o o d  by  c h o i c e  o f  ~ and 
furnishes some information about the advisability 
of using ~ $ O. 
5. Applications 

After a number of experiences with datasets 
ranging from small scale classroom examples, 
through Smith's original wheat yield data and the 
Hathaway and Williams' examples 'for soybean yields 
and timber volumes plus tobacco diseases, satellite 
imagery of wheat fields, Ghana agricultural census, 
Detroit Area Study educational levels, and many 
more, we arrived at a computational routine with 
the following features" 

i) Input consists of mean squares (ms£), their 

degrees of freedom (d~) , population sizes (N~), 

and proportions of sampling variances (7 Z) . If 

the mean square at any level is in fact a residual 
mean square after removal of a systematic effect, 
then its actual degrees of freedom must also be 
input. Sample sizes (n£) are computed from the 

degrees of freedom and may be noninteger when the 
sample data are unbalanced. 

2) Estimates of b are furnished for unweighted 
^ 

least squares, for ~= O, for ~ and for an imposed 
value of ~ , usually ~= .01 . The likelihood 
function is displayed and chi-square goodness of 
fit statistics are provided in order to judge the 
reasonableness of the models. 

Whencontemplating use of a nearly balanced multi- 
stage sampling design one faces a sample variance 
of the form" 

2(nll- YiNl I)+ 2(n21_ - ) - + V(y)  = S 1 - S 2 v2N21 n i  1 

"'" L - ... nL_ I, (5.1) 

with a cost function possibly of the form" 

C = CO+ Clnl+ C2nln2 + ... + CLnln 2 ... n L • (5.2) 

Minimizing V(y) for fixed C as in Cochran (1977, 
p. 288) results in" 

2 2 C~ 
2 S~ - yz+ISz+I/N~+I -i 

= x (5.3) 
n~ opt S~_12 ,/ CZ ' ' - 

2 
for Z = 2, 3, ..., L and ~L+I SL+I/NL+I may be set 

to zero. The quantities S~ - 2 ~+ISz+I/Nz+ I may be 

estimated in the program by setting the YZ = 0 and 

obtaining the ANOVA-estimated components of vari- 
ance. Using an approximate form 6f (2.3) and de- 
noting the value of Smith's b just obtained as 
b* we find" 

b~/2 
nz,op t -~ N~ ~C~_i/C Z , (5.4) 
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Which may be of use in deciding on provisional 
subsample sizes when the cluster sizes are fixed. 

A somewhat more familiar problem is that of 
choosing an optimum size of cluster, or M L , when 

cluster size may be varied in the neighborhood of 
some M Z . The solution as derived by Smith (1938) 
is 

Mi,op t --" b C~/(i-h)CL+ I (5.5) 

If there is seen to be lack of fit in the model 
then one may use a b-value closer to the inter- 
point b-values at level Z-I to L and ~ to L+I. 
The optimizing equation then becomes : 

--" b~c~/(i-b~) c~+ i . (~.6) M~ 
,opt 

Since Smith's b is to some extent an alter - 
native to use of the intracluster correlation 
coefficient and design effect it may be of inter- 
est to show how these are related, namely as: 

i-b (i-b) 
deffz=M~ and p~=[ML - I]/(Mz- I). (5.7) 
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Appendix on Two Numerical Examples 

A population of zero-one data on a lattice 
was created by laying a 20 by 20 square grid of 
points on an aerial photo and scoring one if the 
point was on agricultural land- zero otherwise. 
First stage units were defined as 4 by 4 square 
sets of points, second stage units as 2 by 2 
squares and individual points were elements. 
Thus N I = 25 , N 2 = 4 and N 3 = 4. A simple ran- 

dom multi-stage sample was drawn with nl= 5 , 

n2=4 and n3=4 ; that is, five of the 25 PSU's 

were selected by SRS and all points were Observed 
in each. The mean squares in the nested ANOVA 
were found to be msi=1.356, ms2= .308 and 

ms 3= .159 with dl=4 , d 2=15 and d 3=60 . 

Since f3 = f2 = i the expectations of the 

mean squares are: E(ms~) =̂ 2 $2 '3 E(ms2)=4 S 22 

and E(mSl)=16 S 2_ so that $3= .159 and 

^2 .077 2= = .308/4 : while SI 1.356/16= S 2 .08475 

in accord with (3.9). Using (2.3) we find 

 L 5(3! .o77 + .o8 75 /99= 
and SC,3 = 25900752. The matrices A and B are" 

A= 0 .25 and B~ .9697 .7576 • 
0 0 .9624 7519 .7519 

Under the approach based on unweighted 
regression of ~og ~2 _ on Zog M~ the estimate of 

,L 
Smith's b was found as b = .403 with a standard u 

error, derived from the one degree of freedom in 
the regression residuals, as .022 . Consistent 
with this unweighted approach to estimating b are 
the, so called, local b-values. These are ob- 
tained as ratios of the negative first differences 
of Log S2,L divided by those of Log M Z . For 

example, 

(~og ~2 -Zog ~2 )/(Zog M 2-~og Ml) 
C,I C,2 

=(-2.468 + 1.962)/(1.386 - 2. 773) = .365 • 

Their standard errors may be obtained from V (see 
belowJ which contains estimated covariances of the 
Zog S$ L quantities. For example, the standard 

error to attach to .365 is found as" 
i 

[.5 + .19401 - 2(.29243) ]5/(1.386-2.773) = .238 • 

In accord with the Hatheway-Williams (1958) 
procedure based on ~= 0 , the significance prob- 
ability of the fit of the data turned out to be 
.68 and so the value ~= 0 seems reasonable. The 
accompanying estimate of Smith's b is bo= .438 

with standard error based on the supposed chi- 
square distributed mean squares and good fit to 
the model as 9. Smoothed cluster variances, 
to be written ,Z ' were calculated by exponen- 

tiating fitted values from the prediction equation, 
while smoothed variance components, written S~, 

were obtained from these by using (2.3). We found 

~C, i ' = .076 SC,2 = .139 and ~28C, 3 = .254, while 
~2 

S 1 . . . . .  

When t h e  v a l u e  o f  ~ = . 0 1  i s  i m p o s e d  t h e n  t h e  
e s t i m a t e  o f  S m i t h ' s  b b e c o m e s  b .  = . 4 2 1  w i t h  z 

s t a n d a r d  e r r o r ,  b a s e d  on t h e  r e s u l t i n g  e r r o r  c o -  
v a r i a n c e  m a t r i x ,  o f  . 1 7 3 .  The r e s u l t s  f o r  
oe= . 0 1  a r e  s o m e w h a t  o f  a c o m p r o m i s e  b e t w e e n  t h e  
c~= 0 e a s e  a n d  t h a t  o f  u n w e i g h t e d  r e g r e s s i o n .  
The m a t r i x  V and  i t s  i n v e r s e ,  d e n o t e d  W, a r e  
found to be" 

V= 
.5 .29243 .157455 ) 
29243 .19401 .104462 
157455 .104462 .0633472 

W = f 16.886 
and i_2504523 

-25.4523 ?82081 
84343 -75 

-758208140.817 

Notice that the sum of entries in W is 39-5 and 
is equal to half the sum of ~egrees of freedom of 
the mean squares being fit as will always be the 
case. 

All of the above calculations were obtained 
with the values of y~ equal one as befits the 

case of careful measurement with no nonsampling 
error variance. When the ~Z are set to zero and 

the fitting routine is rerun then b is found, 
using the ~=0 case, as .418. The ANOVA-esti- 
mated planning variance components were found as 
• 0655 , .03725 and .159 for ~=1,2,3 and when 
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smoothed they become: .0655 , .09173 and .2106 . 
A second example uses data from Smith's (~1938) 

original article. These refer to a wheat field 
in Australia on which a uniformity trial was con- 
ducted and yield observations recorded for every 
6-inch by 12-inch plot - all 1,080 of them. This 
collection of elementary plots was used to create 
compact clusters of many shapes and sizes on 
which variances of average wheat yields could be 
calculated. 

The present method was applied to the series 
of cluster variances for plots of sizes (in feet): 
3 x 12, 3 x 6, i x 6, ½x 6, ½ x 2, and ½x i. 
The cluster variances (with numbers of elementary 
units, MZ , in brackets) as reported by Smith in 

his Table la (p. 7) are: 102(72), 155(36), 383(12), 
524(6), 1220(2) and 2201(1). The corresponding 
mean squares (with d Z in brackets) were found to 

be: 7344(14), 3934(15), 4120(60), 1708(90), 2090 
(360) and 1962 (540) . 

The following results were obtained upon ap- 
plying the fitting routines. The unweighted re- 
gression estimate was bo= .712 ; with ~=0 the 

estimate was bo= .774 + .049 but with PO = .0002 

as level of significance for the test of 
H O" ~= 0 ; with likelihood maximized at ~= .006 

2 
(and goodness of fit X =3"34 on 4 degrees of 
freedom) we found b = .724 + .061 ; finally with 

set at .01 the b-value was b. = .721 + .064. 
i 

Smith reported b'= .7486 with standard error of 

• 0132. The following series of ratios of the 
cluster variances to the smoothed values gives 
some evidence of the goodness of fit: 1.08, 
• 99 , i.ii, .92 , .96 and 1.05 • 

The agreement is certainly close between our 
methods and Smith's except for the standard error. 
Since the present method uses such a small portion 
of Smith's cluster variances, only six of the 45, 
it behooves us to inquire as to a possible loss of 
information on the part of the nested ANOVA approach 
or a possible manufacturing of data by Smith's 
calculations. ~it appears that both are happening. 
That is, examination of just one nested series 
looses some information on the effect of plot 
shape. However, whatever is the point-to-point 
pattern of spatial correlation governing the 
yield, it will be rather thoroughly reflected in 
one series of nested mean squares, so that, given 
knowledge of that one, alternative series must 
show a similar result. 

Unfortunately, without a more specific model 
for generation of the data these arguments cannot 
be stated more precisely. Nonetheless, one should 
be rather cautious in accepting a standard error 
calculation, or an estimate of b , that is affected 
by the number of plot shapes chosen to be examined 
when that number is essentially unlimited• That 
is, the standard error obtained from our procedure, 
while it needs to be judged as only a provisional 
estimate, is likely a more reasonable one to use. 
Similarly, the estimate is somewhat more objectively 
arrived at and there are signals of possible lack 
of fit at stages of the estimation calculation. 
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