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nVrRODUCT~ON 

A problem that confronts survey statisticians 
is how to estimate the number of different persons 
represented by a listing of records, where more 
than one record belongs to the same person. We 
want to accomplish this task by utilizing a 
simple random sample of records selected without 
replacement. C~mn I stated this problem as fol- 
lows" "Suppose a population of known size N is 
subdivided into an unknown number of mutually 
exclusive classes• It is assumed that the class 
in which an element is contained may be deter- 
mined, but that the classes are not ordered. 
let us draw a random sample of n elements without 
replacement from the population. The problem is 
to estimate the total number of K classes ~hich 
subdivide the population on the basis of sample 
results and knowledge of population size." Our 
population consists of a collection of records 
(these are our population elements)each of 
which correspond to only one person. The set 
of records corresponding to a person represent 
a class. We will assume that each record 
contains items of information such as name, age, 
sex, race, and mailing address of the person to 
whom the record belongs. This information will 
be used in a matching algorithm to determine which 
records in the sample belong to the same person. 
Goodman presented an unbiased estimator (we will 
call ~) of the number of classes, provided that 
the sample size is not less than the maximum 
number of elements in any single class. Also, 
he proved that this estimator was the unique 
unbiased estimator. He proposed three additional 
biased estimators and showed, using a hypothetical 
population, that one of the biased estimators 
(we will call K~ had a smaller mean Squared 
error (MSE) than K G. 

In this^paper, we will present another deri- 
vation of K G and propose another biased estimator 
(KA2) which is^a natural consequence of our 
derivation of K G. KA2 has a larger MSE than 
~2 with respect to a hypothetical population 
provided by ~ .  However, KA2 LS easier to 
obtain than KG2 when a matching algorithm is 
required to identify which pairs of elements are 
in the same class. Finally, we will consider 
estimators of K when our elements in the popu- 
lation are first divided up into clusters and 
a simple random sample of clusters are selected 
without replacement. An example is given of how 
this procedure might be used to increase the 
efficiency of the estimation of K. 

DERIVATION OF UNBIASED ESTIMATOR 

Goodman stated and proved the following" 

Theorem- Suppose a sample of n elements is 
drawn with replacement from a population of 
size N which is subdivided into K classes. 
Let 

( N-n+i-I 1 
• N-n-I ] , i=l,...,n • 

Ai=l-(-l)1% - jInni 1 

If there are x i classes containing i elements in 
the sample then 

In 1 E I A i x i  - K  i-1 
provided that n is not less than the maximum 
number q of elements contained in any class in 
the population. 

Thus, [N-n+i-I 1 
n LN-n-I J 

] x i (1) 

is the unique unbiased estimator (as C~odman 
proved). 

Let us consider another approach which results 
in the same estimator ~. Suppose that we 

consider all 13) subsets of the population which 
are size j=l,2,:..,q. If we set 

6,, _-. 
31 

then 

if all elements in the i th subset 
of size j belong to the same class 

0 otherwise 

C 
K = jl I= (-l)J-I ~i I= 6ji' by an application of 

addition rule for the union of a collection 
of sets• If ~e set the random variable 

if the sample contains the i th 
subset of size j 

otherwise 

1 

~Ji= 0 

then 

n n (N) 

is an unbiased estimator of K since E(~ji) = 

for j=l,..., q and i-l,..., 

(2) 

provided that n _> q• 

It can be shown that K A = ~. This derivation 
is a simpler one than the one given by Goodman 
because it makes use of the well-known addition 
formula for the union of sets as opposed to a 
more complicated combinatorial identity that 
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Goodman uses. We will assume for the rest of 
the paper that n _> q. 

DERIVATION OF BIASED ESTIMATORS 

let K i denote the number of classes containing 
i elements in the population so that Kl+...+ 
Kq = K. Since the statistic KG can have a large 
varlance, when there are classes in the population 
with more than two elements, it is reasonable to 
consider biased estimators for K that may have 
smaller MSE than ~G- Goodman proposed several 
biased estimators of K. ^The one that is discussed 
here ^(we will denote as KG2) had a smaller MSE 
than K G for a hypothetical population which 
Goodman constructed. The estimator 

N(N-I) 
~2 = N - n(n-l) x2 (3) 

is very similar to another biased estimator 

~A2 = N - n(n-l) ~ ~2i~2i . (4) 
i=l 

Note that KA2 is just the first two terms of 
K A • KG2 requires somewhat different infor- 
mation than KA2. In order to calculate KG2 , 
one needs to identify and count the classes 
that have exactly two of their e~ements in the 
sample, whereas in order to use KA2 one needs 
to count the number of times that pairs of 
elements belong to the same class. The dif- 
ference between these two estimates lies in 
the type of matching algorithm that is needed 
to identify when two elements (records) belong 
to the same class (person). The estimator KG2 
requires the matching algorithm to be able to 
link all the elements thgt belong to the same 
class and the estimator KA2 requires the 
matching algorithm to only make determinations 
about whether each pair of elements belong to 
the same class. When each element in the popu- 
lation does not have a unique identifier which 
determines the the class it belongs (as is the 
usual case in practice) then constructing a 
reliable matching algorithm to link together 
all elements in samples that are in the same 
class can be quite difficult. Thus. for some 

blems it may be easier to apply ~ than 

The MSE's of ~ and ~ were compared ana- 
lytically, assuming that t~ elements in the 
sample were selected using a binomial sampling 
scheme. Binomial sampling is a reasonable 
approximation to simple random sampling without 
replacement and it simplifies the computations, 
~nabling us to compare the MSE's of ~2 and 
KA2. If each element in the population has 
equal and independent chance p of entering 
the sample, where the size of the sample is a 
random variable which is binomially distributed 
with mean Np, then we say we used binomial 
sampling to select the sa~ple. 

Denote the estimators KG2 and KA2 under 
binomial sampling by ~G2 a{~ ~A2, respectively, 
then 

I 
BG2 = N - p--2 x2 (5) 

and 

ill= ~2i " (6) 

Note that ~ = BA2 (as well as ~2 = KA2)when 
K i = 0 f o r  1 = 3 , . . . , q .  

(l-p)J -2 

The MSE (BG2) = j~2 P 

q (~)( l -p)  2(j-2) 
J I= 2 Kj 

I,i  '+/' = 
+ [I- 2] (l-p) ] K (7) 

and MSE (BA2) = (l-P)2 (l+p) q~ 1,2i)Ki 
P i=2 

(l-p) q i 
+ p 

i=3 

q i 
whereBias (~2)==~3~ [(l-i)+ 2 

=3 

(8) 

(l-p) i-2 ] Ki 

It can easily be seen that if p is small (i.e. 
(l-p)~l) then Bias (~BG2) ~ Bias (BA2) and 
further the I Bias (~2) I_ < Bias-(~A2) for 
all 0 < p < I . It should be also be noted 
that the Bi--as (fiA2) > 0 so that BA2 alWays 
overestimates K if Ki .> 0 for any i=3,... ,q 
and the Var (~2) < Var (BA2) which implies 
that MSE (~2) <_ M~E (BA2)" 

Using Goodman's hypothetical population of 
I0,000 elements with K I = 9225, K 2 = 336, K 3 
= 33, and K4 =I and selecting a binomial sample 
with p = I/I0, we obtain an empirical comparison 

of BA2 and BG2 with the~MBE (BA2)= 214 and 

A~--~2) = 207. This population is typical of 
populations one sees in practice. Thus, BA2 and 
BG2 can have ~E's that are close in magnitude. 

Goodman calculated that the~MSE (~)= 347, and 
it is easy to see the great savings one can^ 
achieve by using biased estimators such as B2A 
and B2G" However, if ~e had a population with 
a greater frequency of classes containing three, 
four ar~ more elements per class then the vari- 
ances and biases of BA2 and BG2 will become 
larger. The next section describes a 
method that could reduce the MSE's for estimators 
like ~A2 and ~G2- 
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DERIVATION OF ESTIMATORS FOR CLUSTER SAMPLING 

In this section we will suggest grouping our 
elements in the population into clusters in such 
a way so that as the frequency of classes with 
elements in more than two clusters is smaller 
than the frequency of classes with more than two 
elements (i.e., in the previous sections we used 
clusters with one element) and that most of the 
clusters represent just one class. Next, we 
will consider estimators of K that are functions 
of a sample of clusters. 

We will formalize this new sampling procedure 
as follows: Suppose that we divide a population 
of N elements into L clusters (not all neces- 
sarily the same size). The clusters are con- 
structed so that they have a relatively small 
number of elements. The strategy for determining 
the clusters should be such that most of the 
elements in each cluster come from the same class 
and that the number of classes with elements in 
more than two clusters is small. Next we select 
a simple random sample of clusters without 
replacement. Each cluster that is selected into 
the sample has its elements grouped into the 
classes to which they belong. This step should 
be relatively simple since the cluster sizes are 
small. The estimator of K which is a simple 
extension of ~ is" 

~' / L-L-I l 
~- Y [i-(<)i ..... ~ (9) i-i I~Li) ]zi 

where z i are the number of classes containing ^ 
elements in i clusters in the sample. Again, C G 
is an unbiased estimator for K provided that 
is not less than tb~ maximum number w of clusters 
in which any class in the population contains 
elements. Another form for CG, which parallels 
~A, is 

g j 

where Y~i is the number of classes that have 
element~ in all the clusters of the i th subset 
of J clusters and 

8Ji= I 

1 if all the clusters in the i th subset of 
j clusters are selected into the sample 

0 otherwise 

Biased estimators can be constructed using the 
first two terms of ~ and ~A in the same way as 
before when KG2 and KA2 were formed. These 
biased estimators are 

cc2-r ¥ 1 i s l  - 
I 

L(L-1) 
~, (-~- 1) z2 and (11) 

~A2 - ~- ~lJ_ ~1 - f (~ - i )  Y2i  ~2 
1 1 

(12) 

Under binomial sampling of clusters, the M~E' s 
for ~A2 and ~G2 do not simplify enough to be able 
to make a^ comparison between them or with the 
FEE's of BAI and BG2. However, if we further 
simplify the problem by supposing that the ele- 
ments in the population are divided into clusters 
where no cluster has elements from more than one 
class then the FEE (~2) -< MSE (~2)" This is a 
straightforward result of equation (7) and it 
indicates how one can reduce the MSE of the esti- 
mators for K by clustering the elements. 

In the last section, we will describe one way 
to form clusters of elements that will, hopefully, 
increase the efficiency of the estimation of K. 

A PROPOSED APPLICATION 

A real life problem in which we plan to apply 
the estimators in this paper can be described as 
follows: The National Center for Health Statis- 
tics (NCHS) has a file of State pharmacist records 
where each record consists of information provided 
to N~4S by a pharmacist at the time of the renewal 
of his State pharmacy license. Therefore, the 
number of records a pharmacist has in the file is 
the same as the number of States in which he is 
licensed. Each record contains a name and a 
mailing address of a pharmacist; and for pharma- 
cists that provided NCHS with the requested 
information there is age, race, sex, year of 
graduation and other information about his prac- 
tice of pharmacy. 

We want to estimate the number of pharmacists 
(classes) represented by our listing of records 
(elements) by selecting a sample of records. In 
order to identify the records in the sample which 
belong to the same pharmacist, we plan to use a 
matching algorithm that compares items of infor- 
mation on each pair of records in the sample and 
makes a determination whether the records corres- 
pond to the same pharmacist or not. Of course, 
a pharmacist may be licensed under different 
names or have different mailing addresses Thus, 
there can be matching errors made by the algorithm 
but we will ignore these errors for reasons of 
simplicity. 

One way to select a sample of records that may 
increase the efficiency of our estimation is to 
select clusters of records where the clusters con- 
tain most of the records for one pharmacist. A 
proposed way to divide our population into clus- 
ters is by grouping together records with the 
same name on them. Thus, pharmacists with more 
than one license under different names will have 
licenses in more than one cluster and pharmacists 
with the same name will have the'ir records in 
the same cluster. We feel that for most of the 
clusters the records in each cluster will belong 
to just one pharmacist and that few pharmacists 
will have records in more than one cSuster. If 
this is true, we should be able to decrease the 
FEE of our estimators for the total number of 
pharmacists by selecting a sample of clusters of 
records. 
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The generalization of Goodmmn's method for 
estimating the number of classes in a population 
seems to ha~e theoretical promise for problems 
where good auxiliary information is available for 
determining the clusters of population elements. 
However, applications of this methodology needs 
to be conducted in order to determine empirically 

its gains in efficiency over not clustering the 
elements. 

ILeo A. Goodman, "On the Estimation of Classes 
in a P ulation" Ann Math Statist (1949) OP ~ • • • 

pps 72-79. 
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