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1. INTRODUCTION 

Many imputation procedures for missing 
observations for  a var iate proceed by d iv id ing 
the sample into adjustment ce l ls  based on 
anc i l l a r y  variables assumed known for a l l  sample 
cases, and then subs t i tu t ing  for  each missing 
observation in an adjustment cel l  a value which 
is a l inear  combination of the observed values in 
that adjustment c e l l .  Since the variance of the 
imputation mean for the ent i re  sample is 
dependent on the variances of the imputation 
means for  the indiv idual  adjustment ce l l s ,  we 
w i l l  concern ourselves with determining the 
variance of the imputation mean for an adjustment 
ce l l .  Consequently the ent i re  sample w i l l  be 
assumed to consist of a single adjustment c e l l .  

We w i l l  consider six such imputation 
procedures, which are defined in Section 2" mean 
of the observations (MO),  running mean (RM), 
previous observation (PO), nearest observation 
(NO), systematic impu ta t i on  (S l ) ,  and random 
imputation (RI).  In the las t  four of these 
procedures each imputed value w i l l  always be some 
observed value; such procedures w i l l  be referred 
to as hot deck procedures. 

Surpr is ing ly ,  r e l a t i v e l y  l i t t l e  has been done 
for some of these procedures in developing 
variance formulas and comparing the variances. 
For example, for the RM and NO procedures th is  
author is aware of no previous work of th is  type. 
For PO, which is probably the most commonly used 
of the hot deck procedures, the only previously 
derived formulas appeared in Bai lar  and Bai lar  
(1978). In that work the variances were 
condit ional on the number of missing values and 
the combinational approach taken resulted in 
rather d i f f i c u l t  proofs. For the other three 
procedures variance formulas are more easi ly  
obtainable, but are usual ly not presented in the 
form given here. 

In th is paper variance formulas are derived for  
a l l  six procedures. Following the approach taken 
in Bai lar  and Bai lar  (1978) th is is done in two 
cases, uncorrelated (UC) and s e r i a l l y  correlated 
(SC), which d i f f e r  in the i r  assumptions on the 
cor re la t ion  st ructure of the sample. For PO and 
NO both exact and asymptotic formulas are 
derived; although for NO the exact formulas are 
presented only in the Appendix due to t he i r  
complexity. (Copies of the Appendix are 
avai lable from the author.)  For the other four 
procedures exact var iance expressions are not 
obtainable and, therefore,  only asymptotic 
formulas are presented. 

Comparisons between the asymptotic variances of 
these six procedures are then made.  Among the 
resul ts is that i f  AV(x ) denotes the asymptotic 
variance with respect to ~ procedure ~, and the 
p robab i l i t y  of an observation being missing 

does not exceed 1/3, then 

AV(~MO) _< AV(~RM) <_ AV(~sI) 

<_ AV(RNO) <_ AV(RRI) <_ AV(Rpo) 

in the UC case, and also in the SC case when the 
cor re la t ion  coe f f i c i en t  for  adjacent un i ts ,  p, is 
s u f f i c i e n t l y  small (Theorem 13); while 

AV(~NO) <_ AV(~po) <_ AV(~MO) 

<_ AV(RRI) <_ AV(~RM) < AV(RsI) 

in the SC case when p is s u f f i c i e n t l y  large 
(Theorem 14). D i f ferent  re la t ions hold i f  the 
p robab i l i t y  of an observation being missing is 
greater than 1/3 , as detai led in these two 
theorems. 

2. NOTATION, TERMINOLOGY AND ASSUMPTIONS 

The i n i t i a l  assumptions on the sampling 
procedure are that i t  y ie lds a se l f -weight ing 
sample of size n drawn from a population 
with mean ~ and variance o 2 . Let m denote the 
number of missing values in a given sample, and 
q = E(m)/n < 1. 

For i - 1 . . ,  n l e t  x. denote the var iate 
value for the ~-th sample uni~, whether observed 
or not, and l e t  wi - 1 i f  x. is observed, w. = 0 
i f  x~ is missing. I t  is no~ assumed that I the 
sample units are in random order. However, i t  is 
assumed that each x. hasxthe same d i s t r i bu t i on  as 
the populat ion, t~at . and w. are independent 
for a l l  i ,  and that for  a l f i xed  Im a l l  possible 
arrangements of the missing values are equally 
l i k e l y .  In addi t ion the fo l lowing a l ternate set 
of assumptions are made on the st ructure of 
cov(x i , x j )  for  i ~ j to d is t ingu ish our two 
cases. 

Uncorrelated (UC). cov(x i , x . )  ~ O. Observe 
tha t  simple random sampling wit~ rerlacement w i l l  
have th is  covariance st ructure and also sa t i s f y  
a l l  previous assumptions in th is  sect ion. 

Se r ia l l y  Correlated (SC). 
I I 2 

cov(x x j )  : p l i - j l ~  , where 0 < p < I .  Note 
that t~e SC case reduces to the- UC case for 
p = 0 .  

For the PO and RM procedures we employ an 
addit ional  value x , known as the cold deck 
value. This valu~ is chosen randomly from the 
same population as the sample, but independently 
of i t .  

For any real number x, l e t  Lx] denote the 
greatest . in teger  not exceeding x; then le t  
r = 1/(1-q) - L1 / (1 -q) ] .  These de f in i t i ons  w i l l  
be used for  the S l procedure. 
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we: now proceed to define, the si'x imputat.ion 
procedures previously r e f e r r e d  to. For the 
def in i t ions  of the P0, NO, S[, and RI procedures 
recal l  that the sample units have been sequenced. 

Mean of the Observations (M0). For each 
unobserv'ed value, ~che imputed value is the same, 
namely the mean of a l l  observed values. Note 
that in terms of mean and variance th is procedure 
is ident ical  to ignoring the missing values. 

Previous Observation (PO). The immediately pre- 
ceding observed vaiue in the sequence is imputed 
for e a c h  missing value. I f  there are no 
preceding observed values then x is imputed. 

Neare.st Observation (N0i ,. An o~served value in 
the sequence nearest to the missing value is 
imputed. I f  there are two such observed values 
then one of them is imputed randomly. 

Systematic Imputation (Sl). The observed 
values are used sequentially for imputation. 
That is i f  m < n - m then the i - th 
observed value wi l l  -be imputed for the i - th 
unobserved value. I f  m > n - m start over with 
the f i r s t  observed value after each use of 
the (n-m)-th observed value. Thus, in general 
the (i  - (n-m) L ( i - 1 ) / ( n - m ) j ) - t h  observed value 
is imputed for the i - t h  unobserved value. 

Random Imputation (RI).  An observed value is 
chosen randomly wi'{h replacement to subst i tu te 
for each missing value. 

Runnin 9 Mean (R_M). The mean of a l l  preceding 
observed values in the sequence is imputed. I f  
there are no preceding observed values then x is 
imputed, o 

Note that the imputation means for the M0, NO, 
SI, and RI procedures are not defined i f  w. : 0 
for a l l  i .  To avoid th is problem we c~nsider 
these four imputation means to be cond i t i t i ona l  
on wi = 1 for some i .  

We also observe that with the assumptions 
previously given on the x ' s  and w.'s each of the 
six procedures yields an ~nbiased ~stimator of p_. 

I f  (% is any of the six procedures then x 
denotes the imputation mean with respect tB 
E~rocedure (%, while V(x ) denotes the variance of 
x for either the UC or'SC cases. The asymptotic 
v~riance of x , denoted AV(x(%),is given by (% 

AV(x ) = n÷- m . 

(x n 

3. SUMMARY OF RESULTS 

In th is section variance and/or asymptotic 
variance formulas are presented for the six 
procedures in the two cases. All proofs are 
deferred unt i l  the Appendix. 

3.1 Variance and Asymptotic Variance Formulas in 
UC Case 

2 
Theorem 1- AV(xM0 ) : n(z° q) 

Theorem 3 -  = o q n + l  - 

VCRp0) T l -q + n(l_q) ,2~ 

and hence AV(x P0 ) _ o - T  \ l - q  

Theorem 5. AV( 
2[ q2 3] 

NO ) = ~ 2+4q +q . 
2(I_q2) 

Theorem 7" AV( 2I 1 2 ]  SI ) = ~ °  I+(I: Tq) r , ( l - r )  . 
-q 

Theorem 9" AV(x I q . 
RI ) : T  

Theorem 11" AV(x RM ~j = ~ T 

3.2 Variance and Asymptotic Variance Formulas in 
SC Case 2( 

Theorem 2- AV(RM0 ) = ~ I_ + T Zq  l-p, " 

Theorem 4" 

~ 2 ( [ l + q  2p 2qp] 
V(Xp0) = T l -q + Tz-E - i-qp 

F n+l + 2 -q+q 
T L ( l -q )2  

n+l n + l ]  -p +p q p - (qp) 
(I_p)2 + (l_qp)2 

2 F(q+qn+l) (_p+pn) 

n (Z-q) L l-p 

2 n+l n n+l 2 n l ~  
+ q P-q p + q p-q p J) l-qp q-p ' 
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and hence 2 ( 2p 2qp)  O 1 + q  + _ , 

AV(Rp0) = T l -q ~ l-qp 

Theorem 6" 

2 F2+4q-q2+o~+ 2p 
AV(RN0) = --~ L 2(l-q 2) 1-p 

(-4q+q2)p+3q 2 2+(3q2 2 3+2q4 3+ 3 4 5 4 1 _ _ , p , ,  - q ) p ,  ( - q  - q  - q  )p + 

2'( l-qp ) 3 (l+qp) ] 

Theorem 8- 
2 

T +( l -q )  (1-r  + 

- 

Theorem i0" AV(XR I) : ~ + ~ . 

Theorem 12" AV(~RM ) = ~ 2p - -T-  ( I+q2)  + ~ " 

4. COMPARISONS 

We state the resul ts of the comparisons between 
the asymptotic variances, and present a table 
i l l u s t r a t i n g  these comparisons. Again a l l  proofs 
are given in the Appendix. 

Theorem 13" In the UC case and also in the SC 
case with s u f f i c i e n t l y  small p the fo l l ow ing  
re la t ions hold" 

AV(~M0) <_ AV(RRM) <_ AV(~sI) < AV(~N0) 

<_ AV(RRI) <_ AV(Rpo) i f  q <_ 1/3; 

AV(~ MO ) <_ AV(~sI) <_ AV(RRM) < AV(RRI) 

< AV(~NO) <_ AV(~po) i f  1/3 <_ q <_ 1/2; 

AV(RMO) < AV(~sI) < AV(~RI) < AV(~RM) 

<_ AV(~NO) <_ AV(~po) i f  1/2 <_ q <_ ( -3+v~f) /2;  

AV(~MO) <_ AV(~sI) < - AV(~RI) < AV(~NO) 

<_ AV(~RM) <_ AV(~po) i f  q >_ ( - 3 + ~ ) / 2 .  

Theorem 14. In the SC case with sufficiently 
large p the following relations hold" 

AV(RN0) <_ AV(Rpo) <_ AV(RM0) <. AV(RRI) 

< AV(RRM ) <_ AV(RsI) i f  q < 1/3; 

AV(RN0) <_ AV(Rp0) < AV(RM0) < AV(RRI) 

< AV(RsI .) < AV(RRM) i f  q >_ 1/3 and 

I/(1-q) is not an integer; 

AV(RN0) <_ AV(Rp0) <. AV(RM0) - AV(~sl) <. AV(RRI) 

<_ AV(XRM) i f  I/(l-q) is an integer. 

Although not e x p l i c i t l y  stated in Theorems 13 

and 14, the proofs in the Appendix ac tua l ly  y ie ld  

somewhat stronger re la t ions in the SC case for 

any pair  of procedures ~, B and any f ixed q as 

fol lows" I f  AV(x ) <  AV(x ) for p s u f f i c i e n t l y  

small and f o r  p s u f f i c i e n t l y  large,  then 

AV(x ) < AV(x ) for a l l  p. On the other hand i f  

AV(x ) < AV(x ) for p s u f f i c i e n t l y  small and 
0¢ - ~3 

AV(x B) <_ AV(x~) for  p s u f f i c i e n t l y  large,  then 

such that AV(x ) < AV(x~) for there exists po 

P < Po and AV(x B) < AV(x ) f o r  p > Po" 

The fo l lowing table i l l u s t r a t e s  the resul ts of 
the previous two theorems. I t  gives the 
asymptotic e f f i c ienc ies  with respect to xMO of 
the other f i v e  estimators i n  the SC case for  
p = O, .1 . . . . . .  9 (p = 0 is the UC case of 
course), and q = .1, .2, , . ,  9 The reason 
that asymptotic e f f i c ienc ies  with respect to MO 

'were computed, is that in terms o f  variance the 
MO procedure is ,  as previously noted, ident ica l  
to ignoring missing observations. 

5. DISCUSSION OF RESULTS 

We b r i e f l y  discuss each of the six procedures 
in terms of the resul ts  of Theorems 13 and 14, 
and then state our conclusions. Some of the 
comparisons w i l l  be between the four hot deck 
procedures only.  This is because these four 
imputation procedures, unl ike the other two, 
preserve the marginal d i s t r i bu t i on  of x i for each 
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ASYMPTOTIC EFFICIENCY OF ESTIMATORS WITH RESPECT TO xMO 

Estimator 
. . . . . . . . .  

. I  .2 .3 .4 .5 .6 .7 .8 .9 

RRM Al I. 

XSl All 

.9901 . 9615 ,9174 .8621 . 8000 . 7353 .6711 .6098 . 552 5 

.9259 .8929 .8929 .9259 1.0000 .9615 .9804 1".0000 1 0000 

m 

XN 0 

XRl 

.9201 .8671 .8288 .7991 .7742 .7519 .7307 .7098 .6885 

.9456 .9060 .8742 .8461 .8191 .7918 .7632 .7328 .7005 

.9661 .9398 .9163 .8925 .8660 .8356 .8003 .7600 .7152 

.9820 .9679 .9538 .9366 .9136 .8828 .8427 .7928 .7335 

.9938 .9899 .9852 .9763 .9599 .9325 .8908 .8325 .7570 
1.0019 1.0058 1.0092 1.0092 1.0019 .9822 .9440 .8808 .7881 
1.0066 1.0154 1.0248 1.0327 1.0356 1.0277 1.0001 .9394 .8307 
1.0084 1.0191 1.0315 1.0445 1.0562 1.0621 1.0525 1.0076 .8918 
1.0077 1.0173 1.0291 1.0431 1.0590 1.0754 1.0870 1.0756 .9819 
1.0047 1.0107 1.0183 1.0279 1.0403 1.0568 1.0786 1.1040 1.0968 

.9174 .8621 .8264 .8065 .8000 .8065 .8264 .8621 .9174 

.9302 .8804 .8462 .8252 .8163 .8194 .8355 .8672 .9191 

.9416 .8974 .8654 .8442 .8333 .8333 .8456 .8730 .9211 

.9517 .9133 .8840 .8632 .8511 .8484 .8569 .8798 .9235 

.9607 .9281 .9020 .8824 .8696 .8647 .8696 .8879 .9264 

.9689 .9420 .9195 .9016 .8889 .8824 .8840 .8974 .9302 

.9763 .9551 .9366 .9211 .9091 .9016 .9005 .9091 .9353 

.9830 .9673 .9531 .9406 .9302 .9227 .9195 .9236 .9422 

.9891 .9788 .9692 .9603 .9524 .9459 .9418 .9420 .9524 

.9948 .9897 .9848 .9801 .9756 .9716 .9682 .9664 .9689 

m 

Xpo .9091 .8333 .7692 .7143 .6667 .6250 .5882 .5556 .5263 
.9362 .8756 .8182 .7640 .7129 .6648 .6196 .5771 .5373 
.9582 ,9130 .8650 .8147 .7627 .7097 .6563 .6031 .5509 
.9756 .9451 .9083 .8650 .8153 .7599 .6993 .6349 .5679 
.9888 .9714 .9466 .9130 .8696 .8153 .7500 .6743 .5900 
.9981 .9915 .9784 .9565 .9231 .8750 .8093 .7241 .6197 

1.0040 1.0054" 1.0024 .9925 .9722 .9362 .8774 .7879 .6615 
1.0069 1.0129 1.0172 1.0179 1.0117 .9928 .9510 .8692 .7239 
1.0069 1.0144 1.0220 1.0292 1.0345 1.0341 1.0191 .9669 .8235 
1.0046 1.0099 1.0163 1.0239 1.0329 1.0431 1.0529 1.0523 .9834 



i .  For th is reason alone one might l i m i t  the 
choice among the six procedures to these four.  

MO. This procedure has the sma!lest asymptotic 
varl-':-ance of a l l  six under the conditions of 
Theorem 13. However, i t  has a larger asymptotic 
variance than NO and PO under the conditions of 
Theorem 14 for a l l  q. 

PO. I t  has the largest asymptotic variance of 
. - . = _  

al l  six procedures under the conditions of 
Theorem 13, but i t s  asymptotic variance is 
smaller than al l  but NO under the conditions of 
Theorem 14. In teres t ing ly ,  despite i ts  wide 
usage, PO never has the smallest asymptotic 
variance among the four hot deck procedures. 

NO. Although not dist inguished under the 
conditions of Theorem 13, i t  has the smallest 
asymptotic variance of the six procedures under 
the conditions of Theorem 14 for a l l  q. 

SI. This procedure has been used with such 
surveys as the March Current Population Survey of 
the Bureau of the Census as a lower variance 
a l ternat ive to PO. Indeed, under the conditions 
of Theorem 13 i t  has the smallest asymptotic 
variance of the four hot deck procedures. 
However, under the conditions of Theorem 14 i t s  
asjnnptotic variance is r e l a t i ve l y  large. 

RI. Although i t  never has the largest 
asymptotic variance among the six procedures, i t  
also never has the smallest, e i ther  among a l l  six 
procedures or the four hot deck procedures. 

RM. Under the conditions of Theorem 13 i t  has 
a smaller asymptotic variance than al l  but MO i f  
q < 1/3, but does not perform as well f o r  larger 
q. I t  also has a re la t i ve l y  large asymptotic 
variance under the condit ions of Theorem 14 for 
al l  q. 

On the basis of smallest asymptotic variance MO 
is best under thecond i t ions  of Theorem 13 among 
al l  six procedures and SI among the four hot deck 
procedures. Under the conditions of Theorem 14, 
NO is the best both among a l l  six procedures and 
the four hot deck procedures. 

Other considerations, however, may enter i n t o  
the cMoice of procedures. For example, PO and RM 
are the easiest to program. 

Furthermore, d i f fe ren t  assumptions than those 
made in th is paper w i l l  often lead to d i f fe ren t  
conclusions on choice of imputation procedure. 

In par t icu lar  these six procedures w i l l ,  in 
general, no longer y ie ld  unbiased estimators of 
i f  one drops ei ther the assumption that x. and w. 
are independent for a l l  i ,  or the assumption tha~ 
E(x.) = ~ for a l l  i .  In fact ,  the bias 
properties of these procedures may then become 
more s ign i f i can t  than the variance propert ies, 
pa r t i cu la r l y  for large samples. Bai lar and 
Bai lar (1979) have compared the biases of the MO 
and PO procedures under various assumptions, but 
much remains to be done. Unfortunately, i t  
appears that most reasonable sets of assumptions 
which produce biased estimators also resul t  in 
variances that  are not mathematically t ractable.  
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