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1. INTRODUCTION

Many imputation  procedures
observations for a variate proceed by dividing
the sample into adjustment cells based on
ancillary variables assumed known for all sample
cases, and then substituting for each missing
observation in an adjustment cell a value which
is a linear combination of the observed values in
that adjustment cell. Since the variance of the
imputation mean for the entire sample is
dependent on the variances of the imputation
means for the individual adjustment cells, we
will concern ourselves with determining the
variance of the imputation mean for an adjustment
cell. Consequently the entire sample will be
assumed to consist of a single adjustment cell.

We will  consider six such imputation
procedures, which are defined in Section 2: mean
of the observations (MO), running mean (RM),
previous observation (P0), nearest observation
(NO), systematic imputation (SI), and random
imputation (RI). In the 1last four of these
procedures each imputed value will always be some
observed value; such procedures will be referred
to as hot deck procedures.

Surprisingly, relatively 1ittle has been done
for some of these procedures in developing
variance formulas and comparing the variances.
For example, for the RM and NO procedures this
author is aware of no previous work of this type.
For PO, which is probably the most commonly used
of the hot deck procedures, the only previously
derived formulas appeared in Bailar and Bailar
(1978). In that work the variances were
conditional on the number of missing values and
the combinational approach taken resulted in
rather difficult proofs. For the other three
procedures variance formulas are more easily
obtainable, but are usually not presented in the
form given here.

In this paper variance formulas are derived for
all six procedures. Following the approach taken
in Bailar and Bailar (1978) this is done in two
cases, uncorrelated (UC) and serially correlated

for missing

(SC), which differ 1in their assumptions on the
correlation structure of the sample. For PO and
NO both exact and asymptotic formulas are

derived; although for NO the exact formulas are
presented only 1in the Appendix due to their
complexity. (Copies of the Appendix are
available from the author.) For the other four
procedures exact varidnce. expressions are not
obtainable and, therefore, only asymptotic
formulas are presented.

Comparisons between the asymptotic variances of
these six procedures are then made. Among the
results is that if AV(x ) denotes the asymptotic
variance with respect to~ procedure o, and the
probability of an observation being missing
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does not exceed 1/3, then

< AV(Xya) < AV(Xp ) < AV(X

*NO XR1 po!

in the UC case, and also in the SC case when the
correlation coefficient for adjacent units, p, is
sufficiently small (Theorem 13); while

AV( AV(

tA

Xo) < AVlEpg) < AV(iy,)

< WV(Xpp) < AV(Rpy) < AV(Rgy)

Xp) <

in the SC case when p is sufficiently large
(Theorem 14). Different relations hold 1if the
probability of an observation being missing is
greater than 1/3 , as detailed 1in these two
theorems.

2. NOTATION, TERMINOLOGY AND ASSUMPTIONS

The _ initial assumptions on the sampling
procedure are that it yields a self-weighting
sample of size n drawn from a population
with mean p and variance ¢2. Let m denote the

number of missing values in a given sample, and
q=E(m)/n<1.
For 1 = 1, .., n let x. denote the variate

value for the i-th sample unil, whether observed
or not, and let w, = 1 if x, is observed, W, = 0
if x, is missing. It is not assumed that' the
samplie units are in random order. However, it is
assumed that each x, has the same distribution as
the population, that x, and w, are independent
for all i, and that for a fixed 'm all possible
arrangements of the missing values are equally
Tikely. 1In addition the following alternate set
of assumptions are made on the structure of
cov(x;,x,;) for i # j to distinguish our two

cases! Y
Uncorrelated (UC). cov(xi,x.) = 0. Observe
that simple random sampling with replacement will
have this covariance structure and also satisfy
all previous assumptions in this section.
Serially Correlated (SC).

—y
covix,,x,) = pl1 Jlo
that the JSC case reduces

o = 0.

For the PO and RM procedures we employ an
additional value x,, known as the cold deck
This va]ug is chosen randomly from the

Note
for

, where 0 < p < 1.
to the UC case

value.
same population as the sample, but independently
of it.

For any real number x, let [x] denote the

greatest .integer not exceeding x; then let
r =1/(1-q) - L1/(1-g))J. These definitions will
be used for the SI procedure,



We now proceed to define the six imputation
procedures previously referred to. For the
definitions of the PO, NO, -ST, and RI procedures
recall that the sample units have been sequenced.

Mean of the Observations (M0). For each
unobserved value, the imputed value is the same,
namely the mean. of all observed values. Note

that in terms of mean and variance this procedure
is identical to ignoring the missing values.

Previous Observation (P0). The immediately pre-
ceding observed value in the sequence is imputed
for each missing value. If there are no
preceding observed values, then x, 1is imputed.

Nearest Observation (NO). An ogserved value in
the sequence nearest to the missing value is
imputed. If there are two such observed values
then one of them is imputed randomly.

Systematic Imputation (SI). The observed
values are used sequentially for imputation.
That is if m < n -m then the i-th

observed value will “be imputed for the i-th
unobserved value. If m > n - m start over with
the first observed value after each use of
the {n-m)-th observed value., Thus, 1in general
the (i - (n-m) L(i-1)/(n-m)J1)~-th observed value
is imputed for the i-th unobserved value.

Random Imputation (RI). An observed value is
chosen randomly with replacement to substitute
for each missing value.

Running Mean (RM). The mean of all preceding
observed values in the sequence is imputed. If
there are no preceding observed values then x_ is
imputed. °

Note that the imputation means for the MO, NO,
SI, and RI procedures are not defined ifw, = 0
for all 1. To avoid this problem we cdnsider
these four imputation means to be condititional
on w, = 1 for some i.

We' also observe that with the assumptions
previously given on the x.'s and w,'s each of the
six procedures yields an

If o 1is any of the six procedures then x
denotes the imputation mean with respect t
procedure a, while V(x ) denotes the variance of
X_ for either the UC or®SC cases. The asymptotic
viriance of X_» denoted AV(x ),is given by

B}

[¢) n

AV(x

3. SUMMARY OF RESULTS

In this section variance and/or asymptotic
variance formulas are presented for the six
procedures in the two cases. All proofs are
deferred until the Appendix.

3.1 Variance and Asymptotic Variance Formulas in
UC Case

AV(x

2
. - o
Theorem 1: MO) = AliaT

dnbiased &stimator of T
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Theorem 3: _
Vxpg) = [

v __0 1+
and hence AV(xPO) === (—T:§_>
2 r 2,3
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Theorem 5: AV(X,.) = — |-<31929 *9 ] .
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' SI ]_-q
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Theorem 11: AV(xRM) = 5]

3.2 Variance and Asymptotic Variance Formulas in

SC Case
- 02 1 2p
Theorem 2:  AV(xy,) = —— i " 15/
Theorem 4:
2 1 2 2
ViEpg) = (|- + 22 - £
PO n \| I-9 " T ~ T-gp
oo™

n+l
+ _g_.[-q+q +
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2
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1-go q-p !



and hence 2
i y=-9_ (1% . 2 _ 29 \.
Av(XPO) n ( 1-q + 1-p 7 I-gp
Theorem 6:
2 -
AV(X, ) = 9 [é+4Q-q2+q3 + 20
NO n 2(1'q2) 1‘0

2 2

2
+ {=49+q")o+3q p 3

+(3q2—2q 3

2(1-a0)3(1+g0)

Theorem 8:

- 2
AV(XSI) = % {1+(1-q)2r(1-r)-](ﬁ-q + 1—?-;—)

2 2
Theorem 10: Av(x,,) = -2 1t9-9" |, 20 ).
s RI n i

Theorem 12: AV(x_.) = —QE-(1+ 2) A2
~feoren 22+ U R Ve e

l-q

4. COMPARISONS

We state the results of the comparisons between
the asymptotic variances, and present a table
illustrating these comparisons. Again all proofs
are given in the Appendix.

Theorem 13: In the UC case and also in the SC
case with sufficiently small p the following
relations hold:

AV(iMO) < AV(RRM) < Av(;SI) < AV(iNO)

< AV(Rpp) < AV(Rp) 9F q < 1/3;

AV(XMO) < AV(XSI) < AV(RRM) < AV(iRI)
< AV(iNO) < AV(§P0) if 1/3 < q < 1/2;
AV(QMO) < AV(ESI) < AV(XRI) < AV(XRM)

< AV(RNO) < AV(XPO) if 1/2 < q < (-3+/17)/2;

AV(xyg) < AV(Rg ) < AV(Xp) < AV(

Xyo)

EA

NV (Rpy) < AV(Zp0) iF q > (-30/17)/2.

3 5
126")0%+(-q°-q*-¢°)o" ]‘

Theorem 14: In the SC case with sufficiently

Targe p the following relations hold:

AV(Xyo) < AV(X

1A

AV(Xy) < AV(X

PO) RI)

1A

AV (%gyy)

A

AV(Rgp) iF 4 < 1/3;

AV(iNO) AV(x

tA
1A

po) < AV(Xyo) < AV(

RI)

AV(iSI) < AV(iRM) if 9> 1/3 and

1A

1/(1-q) is not an integer;

AV(xyg) < AV(Xpg) < AV(Xyq) = AV(Xg;) < AV(Xp,)

< AV(iRM) if 1/{1-q) is an integer.

Although not explicitly stated in Theorems 13

-and 14, the proofs in the Appendix actually yield

somewhat stronger relations in the SC case for
any pair of procedures a, 8 and any fixed gq as
follows: If Av(iu) < AV(iB) for p sufficiently
small and for p sufficiently large, then
Av(ia)
AV(ia)

A

AV(iB) for all p. On the other hand, if

1A

AV(iB) for o sufficiently small and
AV(iB) < AV(ia) for p sufficiently large, then
there exists p_ such  that Av(ia) < AV(iB) for

p < p, and AV(x,) < AV(ia) foro>p .

B
The following table illustrates the results of
the previous two theorems. It gives the

asymptotic efficiencies with respect to X,,, of
the other five estimators in the SC case for
p = 0, d,..., .9 (p = 0 is the UC case of
course), and g = .1, .2, ..., .9. The reason
that asymptotic efficiencies with respect to MO

‘were computed, is that in terms of variance the

MO procedure 1is, as previously noted, identical
to ignoring missing observations,

5. DISCUSSION OF RESULTS

We briefly discuss each of the six procedures
in terms of the results of Theorems 13 and 14,
and then state our conclusions. Some of the
comparisons will be between the four hot deck
procedures only. This 1is because these four
imputation procedures, unlike the other two,
preserve the marginal distribution of X; for each



ASYMPTOTIC EFFICIENCY OF ESTIMATORS

WITH RESPECT TO XMo

q
Estimator P .1 .2 .3 .4 .5 .6 .7 .8 .9
iRM Al .9901 .9615 L9174 .8621 .8000 .7353 L6711 .6098 .5525
;SI Al .9259 .8929 .8929 .9259 1.0000 L9615 .9804 1-.0000 .0000
;NO .0 .9201 .8671 .8288 .7991 L7742 .7519 .7307 .7098 .6885
.1 .9456 .9060 .8742 .8461 .8191 .7918 .7632 .7328 .7005
.2 .9661 .9398 .9163 .8925 .8660 .8356 .8003 .7600 7152
.3 .9820 L9679 .9538 .9366 L9136 .8828 .8427 .7928 .7335
.4 .9938 .9899 .9852 .9763 .9599 .9325 .8908 .8325 .7570
.5 1.0019 1.0058 1.0092 1.0092 1.0019 .9822 .9440 .8808 .7881
.6 1.0066 1.0154 1.0248 1.0327 1.0356 1.0277 1.0001 .9394 .8307
7 1.0084 1.0191 1.0315 1.0445 1.0562 1.0621 1.0525 1.0076 .8918
.8 1.0077 1.0173 1.0291 1.0431 1.0590 1.0754 1.0870 1.0756 .9819
.9 1.0047 1.0107 1.0183 1.0279 1.0403 1.0568 1.0786 1.1040 .0968
;RI .0 L9174 .8621 .8264 .8065 .8000 .8065 .8264 .8621 .9174
.1 .9302 .8804 .8462 .8252 .8163 .8194 .8355 .8672 .9191
.2 .9416 .8974 .8654 .8442 .8333 .8333 .8456 .8730 L9211
.3 L9517 L9133 .8840 .8632 .8511 .8484 .8569 .8798 .9235
4 .9607 .9281 .9020 .8824 .8696 .8647 .8696 .8879 .9264
.5 .9689 .9420 L9195 .9016 .8889 .8824 .8840 .8974 .9302
.6 .9763 .9551 .9366 L9211 .9091 .9016 .9005 .9091 .9353
7 .9830 .9673 .9531 .9406 .9302 .9227 .9195 .9236 .9422
.8 .9891 .9788 .9692 .9603 .9524 .9459 .9418 .9420 .9524
.9 .9948 .9897 .9848 .9801 .9756 L9716 .9682 .9664 .9689
;PO .0 .9091 .8333 .7692 L7143 .6667 .6250 .5882 .5556 .5263
.1 .9362 .8756 .8182 .7640 L7129 .6648 .6196 L5771 .5373
.2 .9582 .9130 .8650 .8147 .7627 L7097 .6563 .6031 .5509
.3 .9756 .9451 .9083 .8650 .8153 .7599 .6993 .6349 .5679
.4 .9888 L9714 .9466 L9130 .8696 8153 .7500 .6743 .5900
.5 .9981 .9915 .9784 .9565 .9231 .8750 .8093 7241 .6197
.6 1.0040 1.0054 1.0024 - .9925 .9722 .9362 .8774 .7879 .6615
.7 1.0069 1.0129 1.0172 1.0179 1.0117 .9928 .9510 .8692 .7239
.8 1.0069 1.0144 1.0220 1.0292 1.0345 1.0341 1.0191 .9669 .8235
.9 1.0046 1.0099 1.0163 1.0239 1.0329 1.0431 1.0529 1.0523 .9834
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limit the
these four.

i. For this reason alone one might
choice among the six procedures to

MO. This procedure has the smallest asymptotic
variance of all six under the conditions of
Theorem 13. However, it has a larger asymptotic

variance than NO and PO under the conditions of
Theorem 14 for all q.

PO. It has the largest asymptotic variance of
all six procedures under the conditions of
Theorem 13, but 1its asymptotic variance is
smaller than all but NO under the conditions of
Theorem 14. Interestingly, despite its wide
usage, PO never has the smallest asymptotic
variance among the four hot deck procedures.

NO. Although not distinguished under the
conditions of Theorem 13, it has the smallest
asymptotic variance of the six procedures under
the conditions of Theorem 14 for all q.

SI. This procedure has been used with such
surveys as the March Current Population Survey of
the Bureau of the Census as a lower variance

alternative to PO. Indeed, under the conditions

of Theorem 13 it has the smallest asymptotic
variance of the four hot deck procedures.
However, under the conditions of Theorem 14 its

asymptotic variance is relatively large.

RI. Although it never has the Tlargest
asymptotic variance among the six procedures, it
also never has the smallest, either among all six
procedures or the four hot deck procedures.

RM.  Under the conditions of Theorem 13 it has
a smaller asymptotic variance than all but MO if
q < 1/3, but does not perform as well for larger
q. It also has a relatively large asymptotic
variance under the conditions of Theorem 14 for
all q.

On the basis of smallest asymptotic variance MO
is best under the conditions of Theorem 13 among
all six procedures and SI among the four hot deck
procedures. Under the conditions of Theorem 14,
NO 1is the best both among all six procedures and
the four hot deck procedures.

Other considerations, however, may enter into
the cloice of procedures. For example, PO and RM
are the easiest to program.

Furthermore, different assumptions than those
made in this paper will often lead to different
conclusions on choice of imputation procedure.
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In particular these six procedures will, in
general, no longer yield unbiased estimators of p
if one drops either the assumption that x; and w,
are independent for all i, or the assumpt%on tha

E{(x.) = u for all i, In fact, the bias
proﬂerties of these procedures may then become
more significant than the variance properties,
particularly for large samples. Bailar and
Bailar (1979) have compared the biases of the MO
and PO procedures under various assumptions, but
much remains to be done. Unfortunately, it
appears that most reasonable sets of assumptions
which produce biased estimators also result in
variances ‘that are not mathematically tractable.
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