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i. Introduction 

A weighted cluster sample survey design is 
frequently used in large demographic sample 
surveys. In the National Health Interview Survey 
conducted by the National Center for Health Sta- 
tistics, households are often selected in clusters 
of four. In this survey, sociodemographic and 
health characteristics of all members of sample 
households are recorded. Such characteristics 
for each person interviewed are multiplied by a 
known weight that is approximately the inverse 
of the probability of being included in the 
sample on the basis of the post-stratified geo- 
graphic and demographic domain of each individual 
This type of weighting is necessary to estimate 
certain characteristics of the target population 
at reasonable cost in large sample survey 
situations. 

Cohen (1976) ~iscussed the distribution of the 
chi-squared statistic from contingency tables in 
cluster sampling when clusters consist of two 
members. Altham (1976) generalized Cohen's 
results for clusters of M members. In the 
present research, these results are further 
extended to the weighted cluster sample survey. 
A new chi-squared statistic is used to analyze 
data from cluster sampling and weighted cluster 
sampling, and these two results are compared. 
This statistic is useful in the analysis of 
complex survey data for investigating the effect 
of weighting in ••cluster sample survey situations. 
Illustrative data from the 1975 National Health 
Interview Survey are analyzed by these new methods. 

2. Models of Association Between Cluster Members 

Suppose that a sample of b clusters is randomly 
drawn from the population of B clusters and that 
the ~ the cluster contains M members (~=I ..... b). 

We observe that b clusters include n members 
b 

(n=EM) in the sample and B clusters include N 
vv B 

members (N=ZM) in the population. Suppose that 
~) 

each member is doubly classified in a two-way 
contingency table: once by a population charac- 
teristic represented by R rows and once by a 
different population characteristic represented 
by C columns. Let n. denote the sample count of 

1 
members that fall in category i and N. the count 

1 
of category i in the population, i=l, ...,q where 

q=RxC so that q q 
Z n.= •n and Z N. = N. Further, let 

1 1 
i i 

~. represent the probability that the %th member 
1 
of the ~th cluster falls in category i with Z~.=l 

1 
and ~.> 0 where %=1,...,M, ~=l,...,b, and 

i 
i=l,... ,q. 

Denote by Pij...t the probability that the 

first member of the cluster falls in category i, 
the second member in category j...and the last 
member in category t (i,j ..... t=l ..... q). Spe- 
cific forms for this parameter have been recently 
proposed to define the probability of positive 

association between the members of the cluster in 
terms of the ~i and a (0<a<l) as shown below in 

(2.1) and (2.2). 
Cohen (1976) considered a random sample of b 

clusters, each containing two siblings. Each of 
the 2b sibilings is classified in one of q cate- 
gories. Let P.. be the probability of a family 

Ij 
in which the first sibling falls into category i 
and the second sibling into category j. Cohen 
suggested the model relationship: 

~a~i+ (l-a) ~2 i (i=j) 

Pij = ~ (l-a)~i~ j (i~j) (2.1) 

< < 

where Pij >0,7p..= i, and 0=a=l. 
zj 

The probability table of P.. is symmetrical and 
Ij 

marginally homogeneous. 
If a=O, P..=~.~., the two members are totally in- 

1 j  1 j 
dependent and if a=l, Pij=~i(i=j) and 0 (i#i), the 

two members are totally dependent. Altham (1976) 
extended Cohen's model to the case of families of 
size three, employing the relationship: 

~ a~i+(l-a) ~ .3 (i=j=k) (2.2) 
i 

Pijk= \(l'a)~i~j~k otherwise< < 

where Pijk >0, 7. Pijk = i, and 0=a = i. The ex- 

tension to families of any size is straightforward 
Other modeis appeared in recent literature are 

another model by Altham (1976), Dirichlet model 
(Plackett and Paul 1978), and Dirichlet-Multinomial 
model (Fienberg 1979). The variance form of the 
cell counts depends totally or partially on the 
choice of a model and this form arising from using 
such a model in cluster sampling is generally 
different from the variance form of multinomial 
dis tribution. 

3. Chi-Square Tests of a Simple Hypothesis 

Pearson's statistic (1900) is used 
conventionally to test the simple hypothesis 

o 
Ho:~i=~i, i=l,...,q. The statistic for testing 

goodness of fit is 

q t ~ 2 
Q = 7. ~ni-n~iJ (3.I) 

i n~. 
1 

However, in a complex sample survey situation 
when the elementary counts are dependent variables 
and weighted, the statistic Q is not appropriate. 
In this section, we discuss the problems arising 
from such a nonstandard situation, viz. that in 
which the data come from a weighted cluster sample 
survey. 

When the data consist of a random sample of b 
clusters, each including two members, Cohen (1976) 
showed that a valid goodness of fit test statistic 
is 
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q 0 < < ' = a = 1 (3.2) 
QC= l+a 

2 
where QC has a limiting Xq_l distribution as b÷~o. 

Altham (1976) extended Cohen's result to clusters 
of size M, that is, 

< < 

QA = Q 0=a= i (3 3) 
l+a (M-I) ' " " 

2 
QA also approaches the distribution of Xq_ I as 

b÷o~. When the members in the cluster are 
totally independent (a=O), QA = Q and the 

conventional test statistic Q in (3.1) can be 
used as if there were no clusterings. When they 
are totally dependent (a=l), then QA = Q/M 

because the observed sample size of bM is M times 
the actual number of independent observations b. 
Here the effective sample size is b. 

Before introducing a new statistic for the 
weighted cluster sample survey, certain basic 
aspects of this survey design need emphasis. 
i. Denote by w Ithe statistical weight for the 

kth member of the vth cluster (I=I,...,M =i,..., 

b). We assume that the weights of individual 
members are known from previous data collection 
procedures regardless of the category into which 
each may fall later. In fact, w i is the 

reciprocal of the probability that the (9,1)th 
member is selected from a post-stratified geo- 
graphic and demographic domain to which it belongs. 
Such weighting is aimed at bringing the contrib- 
ution of each member into closer alignment with 
the known population figure of its domain. Bryant, 
Baird, and Miller (1973) illustrated such a 
weighting scheme for the National Health Exami- 
nation Survey, and Bean (1974) used a similar 
weighting system in the National Health Interview 
Survey. Observe that i -< w % ~ N and unweighted 

data are obtained as a special case by setting 

w = i. Further w 1 91 = i for b=B. If only one 

person is sampled from the population, w I = N. 

In practice, most sample surveys are so designed 
that the weights assigned to individual members 
are not much different. 
2. We assume that a random sample of b clusters 
is to be drawn with replacement from the popu- 
lation and all the members in the cluster are 
included in the sample without second stage 
sampling within the cluster. 
3. Using the known weights defined previously, 
we can obtain the overall weighted counts N where 
^bM 
N=Z Zw ~ . M and w are known positive 

integers. Following the theorem (Chung 1968 
p196) the limiting distribution of b independent 
random variables, each containing M dependent 
variables, the standardized sum of the b variables 
coverges to normality as b becomes large. When 
each of the members is multiplied by a known 
weight, the central limit theorem still holds so 
long as the sum indexed by b has the finite mean 
and variance. 
4. Define the indicator function 

rl if the (9-A)th memberfalls in the 

ith category 

6i91 = 0 otherwise 

The sample count of members falling in category 
bM ^ 

i is n where n = Z Z ~ ~ Denote by N 
i i i~k" i 

the weighted count of members that fall in the 
^ bM ^ q^ 

ith category so that N = Z ZVw i~ and N=ZN . 
• i ~ i~k . i 

l~ ~ l 

In both unweighted and weighted cases, the cell 
count is the sum of independent clusters, each 
including M dependent (~=l ..... b) variables 

that may or may not fall in the ith category. 
The problem of interest is to investigate the 

goodness of fit of ~. to the weighted cell counts 
^ 1 

N. arising from the weighted cluster sampling. 
l 

The conventional chi-squared test statistic for 
the investigation is 

q 2 
QW = I (Ni-N~i) (3.5) 

1 

N~i 
Because of the poss ib l e  dependence between the 
members in the same cluster with weighting of 
individual member, the joint distribution of 

Ni is not a multinomial distribution, therefore, 
the conventional statistic QW in (3.5) will not 

provide an appropriate test statistic. Under 

^ N Nq_ 1) model (2.1), Y = ( I ..... has the finite 
^ 

mean N~ and covariance matrix G(D -~'~) where 

~=(~I' .... ~q_l ) , D~ is diagonal matrix based on 

and G is a known positive number defined in 
(3.6) below. If the simple null hypothesis is 
true, the correct test statistic under model 
(2.1) is 

QT = (N/G) QW (3.6) 

where b M b M 
G = a Z Z ~ ' + Z Z~w 2 and 0 < < ~%#l,w lw i ~ I ~i = a = i. 

G measures the combination of clustering and 
weighting effects in the weighted cluster samp, 
ling situation. The largest value of G is 
obtained at a=l for fixed w O+~ if the weights ~I" ^ 

> 

become large and a = 0. Observe that N is the 

proportion of the effective size of the ~ weighted 
^ ^ ^ 

sample counts N and 0 <_N __< i, where N = 1 if 
^ G G 

w =i and a=0 and N__+ 0 as the weights become 
V l  ' G 
large for a -~0 
Thus if the model (2.1) is used and if the weights 
and parameter a are known, the conventional test 
statistic % in (3.5) can be corrected by multi- 

^ 

plying the scale factor N/G and this final result 
can be used to test the goodness of fit of the 
weighted cluster sample data for ~, that is, if 
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G 2 where G/N is known constant that 
QW+N Xq-1 

factored out, then _N QW-> X 2 as b ÷ o~. 
G q-i 

The statistic QT in (3.6) is true only if 
< < 

0 -- a = i. If a < 0, it indicates negative de- 
pendence between members in the cluster; this 
situation is seldom encountered in practice. 

4. Estimation of Parameters 

When likelihood functions do not have closed 
form solutions in the maximum likelihood 
estimations, Bishop, Fienberg, and Holland 
(1976 p84) suggested the use of Newton-Raphson 
method Dodes (1978 p76~ for a solution by 
iteration. Cohen (1976) considered a particular 
case arising from a cluster sampling situation 
for which each cluster included two members and 
obtained the open form solutions for the param- 
eters in model (2.1). Starting from the initial 
sample estimators, he derived the final esti- 
mators applying Newton-Raphson method to the 
open systems. 

Cohen's method is easily extended to the 
clusters' of three members. The general case 
follows readily. Using the unweighted^ data, we 

find the initial sample estimators ~l of ~i' that 

is, n. 
~o. 1 

- , i : l  . . . . .  q ( 4 . 1 )  
1 n 

that are unbiased and consistent under the model 
(2•2)• From model (2•2), by considering i=j=k 
(only the diagonal elements) and replacing 

Piii=Xiii/b. and ~ =n ° we can find the initial i i' 
sample estimator a ° of a by summing over the 
subscript i and solving for a, that is, 

q Xii i q Z - ~ ~.°3 
O b l 

a i i 
(4.2) 

q 
o3 I- S ~. 
1 

i 

where X... is the observed number of clusters 
ill 

that all three members of a three member cluster 
o 

fall in category i, i=l,...,q. The estimator a 
depends only on the sufficient configurations n. 

1 
and Xiii, which also remain true of the final 

estimators as will be seen below in (4.3) and 
(4.4). 

Suppose that the joint distribution function 

of Xi~k is multinomial with parameters b and Piik 
.J 

which is defined in (2.2). We can obtain the 
open form solutions for the parameters a and ~i' 

that is, for a, 

q Xii i(1 - ~2) q 
Z = b - Z X... (4.3) 

a 2 ill 
i ~ + ~i i 

and for ~. 
1 

1 

n° - 
1 

q 

3b- Z 

J 

2Kli i 

l + ( l a  - i ) ~  (4.4) 

reX.°. 
333 
1 ~2 1 + ( ~ - 1 )  ] 

It can be easily checked that the solutions of 
(4.3) and (4.4) are consistent with the known 
results in the limiting values of a=l amd a=0. 

^ 

If maximum likelihood~ estimator a exists in the 
interval between 1 and 0 and if ~. are known, the 

^ I 

variance of the estimator a can be estimated by 
^ 

substituting^a^by a in Fisher's information. If 
a solution (a,~l,...,~) in (4.3) and 4.4) exists, 

q 
O O 

starting with the initial estimates a and ~i' we 
^ ^ 

can obtain the estimators a and ~. by the Newton- 
m 

Raphson method• If the estimates exist, this 
method always converges to the required set of 
maximum likelihood estimates; a stopping rule may 
be used that ensures accuracy to any desired 
degree; any set of starting values may be used 
that conforms to the model being fitted; and if 
direct estimates exist, the procedure yields the 
exact estimates in one cycle• 

5• Chi-Square ,T,e, stl of a Complex Hypothesis 

The problems of asymptotic distribution of 
the chi-squared statistic in testing independence 
arise when the parameters are unknown and the data 
come from weighted cluster sampling. 

Consider a two-way contingency table of ng h of 

R rows C colums based on a random sample of size rL 
We use usual plus "+" summation convention so that 
the row and column margins are expressed as n g+ 

and n+h. Let ~gh be the unknown true cell prob- 

abilities, and ~g+ and ~+h are the row and column 

margins• If the columns and rows are independent, 
then the cell probability ~gh satisfies the rela- 

tionship H : 
o gh=~g+~+h, g=l ..... R, h=l,...,C 

(5.1) 
where T ~gh = 1 and ~gh>0. To test the 

hypothesis H , conventionally we use the test 
o 

statistic 
R C (n " ng+n+h) 2 

X 2 =Z Z gh n (5•2) 

g h n g+n+h 

n 
When data come from a random sample of clusters 

X 2 in (5•2) may not generally have a limiting chi- 
square distribution because of possible dependence 
between the members in the same cluster• If the 
cell counts are based on the b clusters, each 
including two members, Cohen (1976) showed how to 
correct for the inappropriateness in the use Of the 
conventional statistic X 2 in (5•2). He proved that 
under H 

o 1 
v~ = i+a X2 2 as b ÷ = (5 3) 

÷ X(R-1) (C-1) 
^ < ,,  < 

where a is a consistent estimator of a (0 = a = i)• 
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Altham (1976) generalized Cohen's results for 
clusters of size M, showing that 

1 X 2 ÷ X 2 as b + 
X~ : i + a(M-l) (R-I)(C-I) (5.4) 

Brier (1979) assumed that the independent 
clusters have Dirichlet-Multinomial distribution, 
and he corrected the shortcomings of the usual 
chi-squared test statistic by a scale factor, 
derived from the covariance matrix of the 
Dirichlet-Multinomial distribution, which is 
somewhat similar with the scale factor of (5.4). 

When data arise from a weighted cluster 
sample survey, we again want to know the degree 
of inappropriateness in using the conventional 
chi-squared statistic X2 defined below in (5.5). 

w 
Using the same notations and the results 

shown in section 3, let NI1,...,NRc be the 

weighted cell counts of RxC contingency table 
from a weighted cluster sample survey. Let Ng+ 
and N+h be the row and column margins, re- 
spectively. Then the conventional test statistic 

is N ^ 2 
R C _ __$+ N+h) 

X 2= E Y (Ngh 
w 

g h Ng+ N+h (5.5) 
^ 

N 
Due to the effects of weighting and clustering 

in the process of sampling, the statistic X 2 in 
(5.5) does not have a limiting chi-square dWs - 
tribution. It can be shown that under H 

^ o 
~ = N ~ ÷ 2 asb÷ ~ (5 6) 

6 w X(R-1) (C-1) 
where X 2 is given in (5.5) and ~ is given in 
( ~ . 7 ) .  -w ,, 

X is the product of the scale factor-~ and the 
G 

conventional test statisticX 2 defined in (5.5). 
w 

The effects of clustering and weighting are 
measured simultaneously by G. If wg%= w and 

M = M bM<l+=<M-ljjw 2 and so that the 
" ^ 

N i ' which is exactly~he scale factor ~ = (I+~(M_I)) w 

same scale factor of Altham's result in (5.4) 
when w = i. 

If a is replaced by a consistent estimator a 

in G, we have b M 
^ ^bM 
G a E E w ~w %, + E %~ 2 = ~)~ (5.7) 

which converges to G as b ÷ o~. 

^ G X2 When G ÷ G and X 2 ÷ -- the product 
"w N (R - l )  (C-1) ' 

of--N and X 2 converges to X 2 
G w (R-l) (C-1). 

Cohen (1976) discusses that the result in (5.4) 
applies if M is the size of the largest cluster 
which occurs in the sample when clusters are of 
unequal size within a single sample. This is 
useful when w ~ = I; otherwise we may use the 

generalized form C (~) illustrated in the 
K 

numerical example ~or practical purposes. 

6. Numerical Example 

The 1975 Health Interview Survey included data 
from the St. Paul-Minneapolis primary sampling 
unit (PSU), a simple random sample of clusters 

of fou,rhouseholds. The grouping of households 
induces no clustering effects for the variables 
of interest, which are age and presence of chronic 
conditions. Therefare, we assume that these house- 
holds come from random sampling. Bean (19 74) 
described the details of the sample survey design 
and procedures for weighting. 

All persons residing in each sample household 
are interviewed for sociodemographic and health 
characteristics. The data are weighted to 
reflect the population size of the poststratified 
geographic and demographic domain to which the 
interviewed individual belongs. This weighting 
of elementary units is necessary to estimate 
certain characteristics of the target population 
at reasonable cost in actual sample survey 
situations. 

However, clustering of household members and 
weighting of data pertaining to individuals in- 
validates the simple random sample assumption 
that is used for conventional statistical methods. 
The example presented in this section illustrates 
the use of the new test statistic in correcting 
the shortcomings of conventional test statistics 
for a valid statistical inference. This statis- 
tic corrects the combined defects of the conven- 
tional technique; that is, the effect of 
clustering and the differential weighting of 
elementary units. 

Among 1,009 persons interviewed in the St. 
Paul-Minneapolis PSU, 503 persons are from 
families of one, two, or three members; 506 
persons are from families of four persons or 
more and are excluded from this sample. Our 
interest is in testing of the hypothesis concern- 
ing the independence of age and the prevalence of 
chronic conditions among the sample persons, 
using the following 2X2 contingency tables. 
Table I. Unweighted Data 

0 Y 

C 98 85 
N 112 208 Total 

503 

0 = 45 years of age and over 
Y = Under 45 years of age 
C = One chronic condition or more 
N = No chronic condition 

In a report published by the National Center for 
Health Statistics (NCHS), the weighted data of 
503 persons are distributed in a 2x2 table as 
follows: 
Table 2. Weighted Data 

0 Y 
C 167,371 150,483 
N 194,806 364~665 Total 

877,325 

0 = 45 years of age and over 
Y = Under 45 years of age 
C = One chronic condition or more 
N = No chronic condition 

Individual weight ranges from 1,750 to 1,500, 
excluding a few extreme values. The average 
weight is about 1,744. When the conventional 
statistical method is used to analyze the 
weighted data published by NCHS, the results of 
chi-square testing of independence are signifi- 
cant in most cases as will be seen later. 
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The method developed in section 4 is use4 for 
the estimation of parameters. Since the data 
consist of the three different sizes of house- 
holds, the parameters ~. and a are separately 
estimated for the same ~ize of households except 
one member households. For two person households, 
Newton-Raphson method using the initial value of 

^ 

O 

a 2 = 0.5196 produces the final estimator a2=0.5189. 

The initial and final estimators for the three 
member family are a~ = 0.1647 and a_ = 0.1285 
respectively. The standard deviations of the 
final estimators are 0.0617 for a_ and 0.05666 -j 

a 3. For both cases, the final estimator is for 

not much different from the initial estimator. 
Now we use estimators a2 and a3 to adjust the 

conventional X 2 statistic for testing of in- 
dependence of columns (age) and rows (presence of 
chronic condition). We introduce the analyses 
of unweighted data in Table 3 which is compared 
with the analysis" of weighted data in Table 4 
below. 
Table 3 Chi-square Test Results of Unweighted 

Data 

ue 

16.476 
(I ~.F.) 
16.476 
(i D.F. ) 
16.476 
(i D.F. ) 

16 476 
(i D.F.) 

Scale 
. F;~cl-or 

c(& =0)=1 
~) 

C(a~): 
O. 7506 
c(~:1): 
0.4479 

C(a' ,M'): 
0.4908 

C rrected ×2 
. . . . . .  . . . ,. ~ l  ~ , 

16.476 
(i D.F.)** 
12.3673 
(i D.F.)** 
7.3797 

(I D.F.)** 

Si0865 
(I D.F.)** • 

Remark 

Maximum 

Minimum 

a' =maX(~ i) 
M'=max (MS) 

Table 4 Chi-square Test Results of_~~hted Data 
~ -~cale Co~ed X L 
Value 
26,604. 258 
(i D.F.) 
26,604. 258 
(i D.F.) 
26,604.258 
(I D.F. ) 

Factor 

Cw($k =0)= 

0.00056764 
Cw(gk )= 
0.00042774 

^ 

%(a. =i) = 

0 . 0 0 ~ 2 5 5 6 4  

Value Remark 
15.1016 
(i D.F. ) ** Maximum 
11.3795 
(i D.F.)** 
6. 8011 Minimum 
(I D.F.)** 

significant at the 1% level (i.e.× 2 > 6.635 with 
1 n.F.) 

Table 3 shows the results of the analysis of 
Table i. The first and third rows give the max- 
imum and minimum chi-square values. The minimum 
value is obtained by usual chi-square value 
multiplied by minimum scale factor derived by 
setting a~ =i in (6.1). The maximum value is 
attained by adjusting the usual chi-square value 
by the maximum scale factor attained by setting 
a~= 0 in (6.1). The second row gives an actual 
test score when the conventional test score was 
multiplied by the scale factor 

n I + n 2 +n 3 
C(a~ )= 3 ^ = 0.7506 (6.1) 

7. nv (l+av (My-I)) 

^ ~=i ^ 
where a I = 0, a 2 = 0 . 5 1 8 8 7 ,  a 3 = 0 . 1 2 8 4 7  

n 1 = 81,  n 2 = 224 ,  n 3 = 198 ,  (n 1 i s  t h e  

number  o f  p e r s o n s  f r o m  one  member h o u s e h o l d s - ,  
similarly for n 2 and n 3) M I = I, M2=2 , M3=3. 

^ 

C(a ) can be interpreted as an effective sample 

proportion out of overall sample size n (n=nl+n 2 

+n3). The last row gives the chi-square value 

when usual test score is adjusted by the scale 
factor (6.1) by setting a~,,=~1 a' where a'=max 
(ala2a3) and M~=M' where = max(MiM2M3). Since 

the minimum chi-square value is 7. 3797 with i D.F. 
and hence significant at the i percent level, the 
hypothesis of independence between age 8nd the 
presence of chronic condition is rejected regard- 
less of the real chi-square value. 

Table 4 includes the conventional chi-square 
test scores and the scores corrected for the 
combination of clustering and weighting effects 
arising from weighted cluster sample survey. The 
first and third rows show the obtainable maximum 
and minimum chi-square values. The minimum value 
is obtained from the usual chi-square test score 
multiplied by the minimum scale factor derived 
by setting ~k = i in (6.2). The maximum value is 

similarly attained by the product of the conven- 
tional test score and maximum scale factor 
obtained by setting ~ = 0 in (6.2). The second 
row shows that the usual chi-square value is 
corrected by a more realistic scale factor 

N +N +N 
Cw (ak) = I 2 3 

b ^ 
E Ek(a. w xw X'+ 2 

k=l v=l K%#%, % w %) 

877,325 
= . . . . . . .  0.0004277 6.2) 

2,051,103,490 
where b I = 81, b 2 = 112, b3=66(b I is the number of 

households of one member, similarly for b 2 and b 3) 

N I = 143,999, N 2 = 387,801, and N3= 345,525 

(N I is the weighted person counts from one member 

households, similarly for^N 2 and N 3) 
^ ^ 

a I = 0, a 2 = 0.51887, a 3 = 0.12849, 

M 1 = i, M 2 = 2, and M 3 = 3. 

%(~) can be interpreted as an effective weight- 

ed sample proportion out of total weighted counts 
of 877,325. C($ ) in (6.1) is merely a special 

case of Cw(ak ) when w~%=l. Since the minimum chi- 

square test score is 6.8011 and is significant at 
the one percent level, the null hypothesis of 
iadependence is rejected. 

When the test statistics are corrected by the 
methods presented in this paper, the results 
based on the unweighted but clustered data anal- 
yses are remarkably close to those results based 
on the weighted and clustered data. If the 
hypothesis of independence is rejected, most 
likely it will be rejected regardless of the type 
of data used for the analysis, that is, the 
conclustion drawn from the analysis of unweighted 
data will not be altered from the analysis of 
weighted data. For instance, the independence of 
age and the presence of one chronic condition or 
more is rejected by both types of data analysis 
in the present example. 
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