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The purpose of this paper is to explore a po- 
tential analytic solution, termed here the "rela- 
tive assignment variable" approach, to the pro- 
blem of selection bias in pretest-posttest group 
designs. The presentation includes a description 
of the most common pretest-posttest group designs 
and an explanation of why some of these are sus- 
ceptible to selection bias problems. In addition 
there is a discussion of the relative assignment 
variable approach, and the illustration of this 
approach through simulations and the analysis of 
real data. 

Pretest-Posttest Group Designs and Selection 
Bias. Pretest-posttest group designs have in 
common the existence of an observed pretest, xi, 
and posttest, Yi, and can be distinguished by the 
manner in which persons are assigned to condition 
(e.g., program and comparison groups, program 1 
and program 2, etc.) where the assignment is 
usually represented by the variable z i (i.e., z i = 
1 if the research participant is in the program, 
0 otherwise). 

Four such designs are defined here in terms of 
their assignment strategies. The first of these 
is the true randomized experiment which is charac- 
terized by random assignment to condition. As a 
result, the groups which are created can, on the 
average, be assumed equivalent on the pretest 
(i.e., the expected value, E(xi) , is equal for 
both groups). Although the true experiment does 
not require a pretest, the version of the design 
which is of interest in this paper includes one 
as a covariate to increase the statistical pre- 
cision of the program effect estimate. The second 
of these, the regression-discontinuity design, is 
characterized by assignment on the basis of a cut- 
off score on the pretest. That is, all persons 
scoring on one side of a selected cutoff value are 
assigned to one condition with the remaining par- 
ticipants assigned to the other. The third of 
these, the "fuzzy" regression-discontinuity design, 
occurs when there is misassignment relative to this 
cutoff value. Here, some persons who should have 
been assigned by the cutoff to one condition are 
incorrectly included in the other. Finally, the 
non-equivalent group design allows for non-equi- 
valence between the groups on the pretest and can 
occur when the random assignment in a true experi- 
ment is not maintained or when individuals or 
intact groups (e.g., classrooms, agencies, govern- 
mental units, etc.) are assigned to condition in 
a nonrandom manner. In fact, the distinction be- 
tween the fuzzy regression-discontinuity and non- 
equivalent group designs is somewhat arbitrary 
(Reichardt, 1979). As will be shown later, data 
representative of both designs can be generated 
for simulation purposes by means of the same 
general models. 

Pretest-posttest group designs are commonly 
chosen techniques for the evaluation of social 
programs. For information on the use of these 
methods one can consult Boruch et al (1978) who 
describe a number of randomized experiments, Cook 
and Campbell (1979) and Reichardt (1979) who speak 
of the utility of non-equivalent group designs, 
and Campbell (1-969) and Trochim (1980) who discuss 

applications of the regression-discontinuity and 
fuzzy regression-discontinuity designs. 

Despite an apparent conceptual similarity be- 
ween pretest-posttest group designs in terms of 
observed xi, Yi and zi, no general small sample 
analytic strategy is known to the authors. While 
the regression of Yi on x i and z i (and perhaps 
polynomials in x i and interactions of x i and zi) 
will yield unbiased estimates for some of these 
designs, it cannot be used for all of them, at 
least in part because of the selection bias pro- 
blem. The problem of selection bias has been 
viewed as specification error or omitted-variable 
bias by Barnow, Cain and Goldberger (1978) who 
state: 

"Selectivity bias addresses the question of 
whether there is some characteristic of the 
treatment (or control) group that is both 
associated with receipt of the treatment 
and associated with the outcome so as to 
lead to a false attribution of causality 
regarding treatment and outcome. So stated, 
selectivity bias is a version of omitted- 
variable bias, which is commonly analyzed 
under the rubric of specification error in 
econometric models." (p. 4) 

Selection bias may affect program estimates when 
a variable related to z i and Yi is not included 
in the analytic model. The developmen t of a 
general analytic scheme which can compliment the 
conceptual similarity of pretest-posttest group 
designs is seen here then as dependent, at least 
in part, on an analytic solution to the selection 
bias problem. 

The four designs outlined above can be examined 
for their potential for selection bias. If cor- 
rectly implemented, the true randomized experiment 
is free of selection bias because assignment is 
random and independent of all pre-program measures. 
Within the context discussed in this paper, Gold- 
berger (1972)has shown that the regression-dis- 
continuity design is free of selection bias as 
long as assignment is adhered to and the under- 
lying model is linear. This is because assignment 
is entirely based on a cutoff value on the pretest 
and any other measures related to assignment must, 
by definition, be related to the pretest (and will 
be accounted for in the regression of Yi on x i 
and z i by the presence of the pretest). In the 
fuzzy regression-discontinuity design assignment 
is not based entirely on the pretest alone. In 
fact, "fuzziness" can be defined as misassignment 
relative to what the pretest cutoff value would 
have dictated. As a result, the pretest does not 
perfectly account for assignment (as in regression- 
discontinuity) and the potential for selection 
bias exists. This is also the case for the non- 
equivalent group design. Here, assignment is not 
based on the pretest but rather on a judgment or 
determination of the pre-program "equivalence" of 
the groups. The extent to which the factors which 
determine the assignment to group affect z i and 
Yi and are unaccounted for in the analytic model 
determines the potential for bias. 

The need for an analytic solution to the selec- 
tion bias problem in the fuzzy regression- 
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disctoninuity and non-equivalent group designs is 
especially apparent when one considers the fre- 
quency with which these two designs occur in prac- 
tice. While both can occur in their own right, 
they also represent the degraded versions of the 
true regression-discontinuity and randomized ex- 
periment (i.e., versions where the assignment 
strategies for either are incorrectly implemented). 
Connors (1977) for example, points out the diffi- 
culties of adhering to random assignment in prac- 
tice while Trochim (1980) describes the almost 
universal occurrence of misassignment relative to 
the cutoff value in implementations of the 
regression-discontinuity design within the context 
of compensatory education evaluation. 

To summarize, in the true experiment and re- 
gression-discontinuity designs the assignment pro- 
cedure is known and is perfectly accounted for by 
the inclusion of the pretest, x i and the assign- 
ment variable, z i in the analytic model. With the 
fuzzy regression-discontinuity and nonequivalent 
group designs assignment is not perfectly accoun- 
ted for by regressing Yi on x i and z i and an ana- 
lytic model based on these is likely to exhibit 
selection bias. The development of an analytic 
solution to the selection bias problem is seen 
here as a step towards unifying analytically this 
set of conceptually similar designs. 

The Relative Assignment Variable Approach . 
Suppose as in Spiegelman (1976, 1977 and 1979) 
that x*, v i and qi are unobserved variables where , 
x i denotes true ability, v i denotes pretest ran- 
dom measurement error and qi denotes posttest 
random measurement error. The data analyst and 
program evaluator observe xi, Yi, and z i which are 
related to the unobservables (.for simplicity of 
exposition) by the equations 

x i = x i + v i 
and 

Yi = b0zi + bl + b2x~ + qi 

where z. = 1 if the research participant has 
receive~ the program and 0 otherwise. In general 
terms, the approach to selection bias recommended 
here relies on an estimate of E(zilxi), which is 
termed the relative assignment variable, ~i, in 
place of z i in the analytic model. Spiegelman 
(1976, 1977 and 1979) has shown that an appro- 
priate estimate of b 0 based on an estimate of 
E(zilxi) is asymptotically unbiased under rather 
general conditions. Specifically, it is argued 
here that the regression of Yi on x i and z i 
(instead of zi) will yield unbiased estimates for 
common selection bias situations. The estimate, 
z i i~ not assumed to be related in any way to x i 
or x i except that it may not be perfectly colinear 

with x i (i.e., z i ~ a I + a2x~). 
It is useful to picture what z i is estimating. 

First, consider assignment in the true experiment. 
Here, E(zilxi) = .5 for any given xi, which is to 
say that for any given pretest value one expects 
on average about half the cases will be assigned 
to the program and half to the comparison group. 
In this case, the relative assignment variable 
can be described in relation to x i by a horizontal 
straight line at z i = .5 as shown in Figure i. In 
these graphs, z° is on the vertical axis and can 
take values from l 0 to i (i.e., none or all in the 
program group). The pretest values, xi, are shown 
on the horizontal axis. Second, consider the re- 
gression-discontinuity design when assignment is 
"sharp" relative to a pretes~ cutoff value. Here, 
it might be that E(zilx i) = if x i is less than 

or equal to the selected cutoff and 0 if it is 
greater. This step-function is shown in Figure 2. 
Finally, for fuzzy regression-discontinuity or the 
non-equivalent group design the relative assignment 
can be described by a function which ranges between 
the horizontal line of the true experiment and the 
step-function of the sharp regression-discontinuity 
design. Several functions of this type are sketched 
in Figure 3. It is clear that z i can be viewed as 
the estimated probability of assignment or as an 
estimate of the proportion of cases assigned to the 
program for any given pretest value. 

Two methods for estimating relative assignment 
are offered here. The simplest and most straight- 
forward can be termed the "assignment percentage" 
method. It can be calculated in two ways. With 
the first procedure, cases are ordered by their 
pretest values and divided into equal size pretest 
intervals. In the second procedure, cases are 
similarly ordered by the pretest but are divided 
into intervals having an equal number of cases. 
For both procedures, the percent of cases assigned 
to the program is calculated within each defined 
interval and then divided by i00 to yield values 
which range from 0 to i. These values are then 
assigned to the individual cases within the inter- 
vals. Spiegelman (1976) has shown that for 
extremely large n estimates from both procedures 
will on average be equal. 

The second method for estimating the relative 
assignment variable comes from the work of 
Spiegelman (1976, 1977 and 1979) and can be termed 
the nearest neighbor moving average method. Three 
steps are involved: 

(i) The set of observations (x i, Yi and zi) 
are put in ascending order according to 

the pretest, x i 
(2) values of A and B are computed as the 

greatest integer part of: 
7110 

A=n /2 
4/5 

B=n /2 % 

(3) The relative assignment variable, z i (i.e., 

E!zilxi)' ~i 2 (i'e" E(YilXi))and 
(i.e.) , Ixi)i are estimated: E(Y i 

i+A 
% 

z i = E z./2A 
1 

i-A 

= z A if i < A 

= Zn_ A if i > n-A 

i+B 
Yi = Z Yi/2B 

i-B 
% 

=YBif i< B 
% 

= Yn_B if i > B 

% 2 i+B 
= 2/ 

Yi Z Yi 2B 
i-B 
% 2 =YB if i< B 

~2 if i> B 
= Yn-B 

Then o 2(x) = E(y. 21xi) - (E(Y ilx i))2 
Y ~2 ± 2 

= Yi - (Yi) 

Essentially, the procedure involves computing the 
moving average of the zi's for cases ordered by x i. 
The window for the moving average is of width 2A. 
Conditions are specified such that the A-I values 
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of z. at either end of the series are assigned the 
i 

values of the first and last estimates having 2A 

observations. The estimate $2 in the procedure is 
a weighting factor for the re~ressions. In this 
paper the assignment percentage and moving average 
procedures will be shown with and without this 
weight ing. 

A third procedure which might be useful for 
estimating relative assignment is suggested in the 
work of Maddala and Lee (1976) and Barnow, Cain 
and Goldberger (1978). Essentially it uses the 

maximum likelihood probit analysis of z i on x i to 
estimate relative assignment. There are three 
reasons for not including the probit analysis 
approach here. First, it is based on the assump- 
tion that the procedure on which assignment was 

based is known. This will often not be the case. 
Second, probit analysis is only appropriate here 

if the relative assignment variable follows the 
cumulative normal distribution. Finally, the 
probit approach tends to be more complex computa- 

tionally than the other procedures. 
To summarize, the relative assignment variable, 

zi, is an estimate of E(zilxi) , that is, an esti- 
mate of the probability of assignment to the pro- 
gram for any given x i value. Two methods are sug- 

• ~ . 

gested for estlmating z,, the asslgnment percen- 
I 

tage and moving average approaches. 
Illustrative Simulations. The relative assign- 

ment variable approach is illustrated here on 

simulated data. This requires constructing a pre- 
test, x i, a posttest, Yi, and an assignment vari- 
able, z i. For the true or "sharp" regression- 
discontinuity design in the case of compensatory 

education (where the most "needy" student receives 
the program) the assignment might be represented 
as 

z i = 1 iff x i < x 0 

= 0 otherwise 

where x i is the pretest value for a given student 

and x 0 is the pretest cutoff value for assignment 
to the program. To generate data for the fuzzy 
regression-discontinuity or non-equivalent group 
designs one must assign using a variable which is 
not perfectly related to the pretest. The differ- 
ences between these two designs is one of degree 

not of kind. To generate fuzzy regression-discon- 
tinuity data one can begin with true regression- 

discontinuity data and introduce slight misassign- 

ment in terms of the cutoff value, x 0. To generate 
non-equivalent group design data one allows 
greater amounts of misassignment thus leading to 
groups which are more nearly equivalent on the 

pretest. For convenience, the discussion pre- 
sented here is phrased in terms of fuzzy 
regression-discontinuity rather than the non- 

equivalent group design. 
Five models of misassignment are used to 

generate data for the simulations and are indi- 
cated by the symbols zl i to,z5 i. To begin with, 
we generate a true score, xi, such that 

x i ~ N(~,qx,2). In all runs, ~ = 0 and Ox,. 2 = 9. 
In addition, I we generate three error terms, I vi, 

qi, and w i such that each is normally distributed 
with variances equal to 1 or 4 units depending on 

the simulation. Here, w i can be considered assign- 
ment error and v i and qi are pretest and posttest 
error, respectively. We can now construct a pre- 

test, x i, such that 

x i = x. + v i 
i 

Once we generate z i using one of the five models 
described below we can construct a posttest, Yi, 
such that 

Yi = b0zi + x* + qi 

where b0, the program effect, is either 0 or 3 (i.e. 
the null case or a gain of three units). The five 

models used to generate z i are 
(i) Assignment by pretest plus independent 

assignment error : 

zl i = 1 iff (x i + v i + wi) <_ 0 

= 0 otherwise 
(2) Assignment by true score: 

z2 i = 1 iff x* _< 0 

= 0 otherwise 
(3) Assignment by true score plus independent 

assignment error : 

z3 i = 1 iff (x i + wi) <__ 0 

= 0 otherwise 
(4) Assignment by true score and pretest 

, 
z4 i = i if f x i <_ 0 and x i <_ 0 

= 0 otherwise 
(5) Assignment by true score intervals: 

z5 i = i iff x* < -i.0 or (.5 < x.<0) 

= 0 otherwise 

where 

For each of the five models of misassignment we use 

relatively low or high error variances (i.e., equal 

to 1 or 4) and a gain, b0, of either 0 or 3 units. 
Thus we have 5(assignment models) X 2(gain) X 
2(error variance) = 20 separate conditions. For 

each condition twenty independent simulations were 
carried out yielding a total of 20 X 20 = 400 runs, 
each based on i000 individual cases (i.e., n=1000). 

For each run the following general linear re- 
gression model was used to estimate the effect: 

! 

Yi = b0zi + bl + b2xi + ei 

Yi = posttest for individual i 

x i = pretest for individual i 

b 0 = parameter for program effect 
estimate 

b I = parameter for intercept 

b 2 = parameter for linear slope 

= residual ~ N(0,o 2) e i 

zi = real assignment^ (i.e., zl i ... z5 i) 
or estimate of z ~. as described 

I 
below 

For each run five analyses were conducted: 

(i) Analysis using real assignment (i.e., zl i 
... z5i, depending on the simulation) in 

! 
place of z i. 

(2) Analysis using moving average estimate of z i. 
(3) Analysis using assignment percentage 

estimate of z.. 
(4) Weighted anal~sis using moving average 

estimate. 
(5) Weighted analysis using assignment 

percentage estimate. 
With the analysis based on real assignment we 
expect treatment estimates to be biased for all 
assignment models except for zli, assignment by 
pretest plus independent assignment error. In 
this case misassignment occurs randomly with 
respect to the pretest and will be reflected 
equally on the average in both groups. If the 
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relative assignment variable approach successfully 
=emoves selection bias, the four analyses based on 
'~i should yield unbiased estimates for all five 
assignment models. 

The results are presented in Table 1 (b 0 = 0; 
low error variances) Table 2 (b 0 = 0; high error 
variances), Table 3 (b 0 = 3; low error variances) 
and Table 4 (b 0 = 3; high error variances). Each 
table presents, for all five assignment models 
and all five analyses, the average gain, the 
standard error of the average gain and the minimum 
and maximum obtained gain for twenty runs. Results 
will be considered biased ~if the true gain, b0, 
lies outside the interval b-0 + 3SE(~n). 

Several conclusions can be--drawn-~-from the 
tables. First, as expected, estimates from the 
analyses based on real assignment are biased 
except when misassignment is random. Second, the 
moving average estimates of relative assignment 
appear to yield unbiased estimates of gain for 
most of the models and conditions which were 
studied. Even for the three (out of twenty) sets 
of conditions where bias is detected two of these 
had average estimates which were not greatly 
biased, especially when considered relative to 
estimates from the analyses by real assignment. 
Third, it appears that estimates from the moving 
average analyses are in general less biased than 
the ones from the assignment percentage ones. This 
may be in part because the assignment percentage 
functions in these simulations are bases on only 
50 intervals of only 20 z i values each. Thus, 
the estimate of z i can only take on twenty values 
between 0 and 1 (i.e., 0, .05, .i0 .... 95, 1.0) 
whereas the moving average estimate is more 
finely differentiated. Finally, the estimates 
yielded by relative assignment variable analyses 
appear to be less biased when error variances are 
low. It may be that with large sample sizes (i.e., 
larger than n=1000) and correspondingly greater 
statistical power, estimates would in general be 
unbiased. In fact, Spiegelman (1976, 1977 and 
1979) has been careful to point out that the 
method is efficient only for large sample sizes. 

Illustrative Real Data Analyses. Two sets of 
fuzzy regression-discontinuity data were con- 
structed from the Third Grade Reading scores for 
a Title I compensatory education reading program 
in Providence, Rhode Island (Trochim, 1980). It 
is useful to apply the relative assignment vari- 
able approach to such data to see how the assign- 
ment functions differ from the simulations and to 
detect any unforseen difficulties in application. 
The linear model used in the simulations is 
applied here because visual inspection of the data 
indicates that a linear model may be appropriate 
and because there are relatively few program par- 
ticipant cases available for estimating changes 
in slope or function. Only the weighted and un- 
weighted moving average analyses were carried out 
(in addition to analysis by real assignment) 
because the illustrative simulations indicate 
that they were less likely to exhibit bias than 
the assignment percentage estimates. In a pre- 
vious analysis of data from this program where 
sharp regression-discontinuity data were used, 
the estimate of gain for the same linear model 

b0 = 29.73 with a standard error of 6.12 was 
(Trochim, 1980). 

The first set of fuzzy data results from the 
use of the vocabulary subscale of the reading 
pretest rather than the total score. Assignment 

was sharp relative to the total score but is fuzzy 
relative to the subscale. The bivariate plot of 
the data is shown in Figure 4. Here, the analysis 
by real assignment, zi, showed no significant gain 
(b0 = 11.13, SE(b0) = 6.22) whereas the relative 
assignment variable analyses showed gains similar 
to the one found in the sharp regression-disconti- 
nuity case (b0 = 30.05, SE(b0 ) = i0.13 for the un- 
weighted moving average analysis and bo = 29.43, 
SE(~ 0) = .56 for the weighted moving average 
analysis). 

The second set of fuzzy data is from the same 
program and results from the inclusion of the scores 
of children who come from schools in the district 
which were ineligible for service. Some of these 
students qualify for the program on the basis of 
their pretest score. The total reading score is 
used for the pretest and posttest and the bivariate 
distribution is shown in Figure 5. Here, all esti- 
mates of program effect are significant at the .05 
level although the estimate from the analysis by 
real assignment appears smaller than the relative 
assignment estimates (~0 = 23.32, SE(b ) = 5.60 
for real assignment analysis, b0 = 47.~2, SE(b 0) = 
7.37 for unweighted moving average analysis and 
b0 = 48.77, SE(b 0) = .41 for the weighted moving 
average analysis). 

Clearly, the results of analyses based on real 
assignment tend to differ from those based on rela- 
tive assignment. Given that the former are likely 
to be biased and the latter are not (at least under 
the conditions specified here), one might place 
greater faith in the relative assignment analyses 
and conclude that this reading program had a posi- 
tive effect. 

Conclusions. While the relative assignment vari- 
able approach, especially using a weighted moving 
average analysis, appears in general to yield un- 
biased estimates in several models where selection 
bias is expected, there are still important unan- 
swered questions. For example, it is not clear 
whether unbiased estimates will be obtained under 
more realistic or complex assignment models. Spe- 
cifically, it is important to determine by simula- 
tions whether estimates are biased when the pretest- 
posttest relationship is nonlinear, when a wider 
variety of sample sizes are tested, and when mis- 
assignment occurs nearer the extremes of the pre- 
test distribution. In addition, it is not yet 
clear whether the assignment percentage procedure 
yields biased results in general or whether the 
biases obtained here are related to sample size, 
interval size or other conditions chosen for these 
simulations. More definitive simulations than 
these illustrative ones require a greater number 
of runs for a wider variety of conditions. 

It is reasonable to conclude that appropriate 
estimates of the relative assignment variable can 
be used to produce realistic estimates of program 
effect under many conditions where selection bias 
is expected. On this basis we might tentatively 
advance the outline of a more general analytic 
approach for pretest-posttest group designs. First, 
if the true randomized experiment or regression- 
discontinuity design are used and assignment has 
been implemented correctly the analysis may be 
based on the regression of y. on xi, z i polynomials 
in xi, interactions of x i an~ zi, and other appro- 
priate covariates. Second, if the fuzzy regression- 
discontinuity or non-equivalent group designs are 
used or if the assignment procedures of a true 
regression-discontinuity or randomized design are 
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not correctly implemented, an estimate of zi, the 
relative assignment variable, can be used in 
place of z i in the analytic model, at least as 
one part of a multiple analysis scheme (as des- 
cribed in Trochim, 1980) for estimating program 
effect. 
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Table 1 

b 0 = 0, error variances = 1 
^ ^ 

Model Analysis* b0 SE(b0) min(____~b 0) max(b0 

zl i Real .007 .027 -.293 .210 
MA .023 .050 -.375 .545 
AP .037 .043 -.306 .482 
MA(w) .040 .055 -.394 .553 
AP(w) .050 .051 -.342 .514 

z2 i Real -1.171 .026 -1.356 -.918 
MA -.051 .056 -.540 .283 
AP -.185 .058 -.745 .251 
MA(w) -.086 .058 -.552 .290 
AP(w) -.167 .057 -.613 .288 

z3 i Real -.922 .022 -1.105 -.728 
MA -.178 .054 -.701 .316 
AP -.350 .047 -.686 .067 
MA(w) -.143 .058 -.685 .328 
AP(w) -.265 .049 -.744 .129 

z4 i Real -.623 .033 -.843 -.361 
MA -.003 .033 -.248 .423 
AP -.054 .032 -.283 .341 
MA(w) .009 .038 -.239 .491 
AP(w) -.032 .036 -.272 .431 

z5 i Real -.979 .024 -1.177 -.771 
MA .040 .059 -.316 .641 
AP -.129 .055 -.437 .385 
MA(w) .078 .065 -.405 .648 
AP(w) -.054 .057 -.409 .429 

Table 2 

b 0 = 0, error^ variances = 4 

Model Analysis* b 0 SE(b0) min(b0) max(b0) 

zl i Real .001 .054 -.422 .606 
MA -.019 .187 -1.253 1.794 
AP -. 060 .148 -. 969 i. 664 
MA (w) -. 049 .184 -i. 246 i. 931 
AP (w) -. 074 .150 -. 914 i. 695 

z2 i Real -2. 715 .034 -2. 979 -2. 418 
MA -.398 .183 -1.518 .946 
AP -1.113 .142 -2.154 .131 
MA(w) -.371 .183 -1.586 .866 
AP (w) -i. 031 .148 -2.143 .191 

z3 i Real -1.685 .038 -1.985 -1.350 
MA -.231 .266 -2.486 1.823 
AP -i. 020 .207 -2. 654 .685 
MA(w) -.163 .246 -2.563 i. 751 
AP (w) -. 922 .207 -2. 703 .620 

z4 i Real -1.706 .045 -2. 268 -1.423 
MA .039 .080 -. 722 .791 
AP -. 141 .081 -. 954 .530 
MA(w) .045 .083 -.631 .935 
AP(w) -.137 .083 -.864 .677 

z5 i Real -2.490 .054 -2.939 -2.157 
MA -.143 .173 -1.335 .929 
AP -1.020 .153 -2.331 .321 
MA(w) -.ii0 .167 -1.356 .892 
AP(w) -.945 .148 -2.220 .163 

*Real=real assignment ; MA--moving average; AP=assign- 
ment percentage; MA(w)=weighted moving average; 
AP (w)=weighted assignment percentage 
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Table 3 

b 0 = 3, error variances = i 

Model Analysis* b-- 0 SE(b%) min(b 0) max(bo) 

zl i Real 2.992 .025 2.808 3.135 
MA 3.141 .048 2.747 3.535 
AP 3.025 .043 2.679 3.442 
MA(w) 3.126 .053 2.646 3.510 
AP(w) 3.017 .048 2.593 3.425 

z2 i Real 1.860 .021 1.686 2.079 
MA 2.995 .047 2.659 3.380 
AP 2.804 .049 2.393 3.209 
MA(w) 2.995 .049 2.653 3.355 
AP(w) 2.830 .048 2.435 3.199 

z3 i Real 2.086 .027 1.785 2.225 
MA 2.976 .066 2.316 3.485 
AP 2.758 .053 2.257 3.160 
MA(w) 2.976 .062 2.365 3.532 
AP(w) 2.783 .048 2.277 3.055 

z4 i Real 2.425 .034 2.012 2.705 
MA 3.184 .041 2.812 3.564 
AP 2.969 .039 2.616 3.278 
MA(w) 3.158 .040 2.790 3.572 
AP(w) 2.975 .038 2.626 3.323 

z5 i Real 1.992 .023 1.862 2.231 
MA 3.098 .058 2.599 3.431 
AP 2.908 .049 2.479 3.199 
MA(w) 3.117 .063 2.588 3.648 
AP(w) 2.960 .056 2.553 3.431 

Table 4 

b 0 = 3, error variances = 4 

Model Analysis* b% SE(b%) min(b 0) max(b O) 

zl i Real 2.908 
MA 2.944 
AP 2.874 
MA(w) 2.951 
AP(w) 2.876 

z2 i Real .401 
MA 2.969 
AP 2.007 
MA(w) 3.017 
AP(w) 2.134 

z3 i Real 1.277 
MA 2 .001  

AP 1.553 
MA(w) 2.038 
AP(w) 1.596 

z4 i Real 1.343 
MA 3.139 
AP 2.841 
MA(w) 3.164 
AP(w) 2.892 

z5 i Real .524 
MA 2.568 
AP 1.901 
MA(w) 2.650 
AP(w) 2.019 

.056 2.203 3.356 

.148 1.844 4.146 
122 1.867 3.855 
157 1.851 4.273 
127 1.889 3.936 
047 -.134 .785 
130 1.930 4.131 
102 1.304 2.956 
125 2.047 4.261 
098 1.437 3.047 
043 .894 1.508 
271 .039 4.764 
168 .363 3.016 
266 .047 4.697 
176 .351 3.335 
051 .869 1.821 
081 2.248 3.869 
081 1.814 3.627 
084 2.242 3.936 
083 1.847 3.713 
038 .235 .900 
165 1.001 3.895 
126 .908 2.806 
183 1.094 4.229 
141 1.032 3.161 

*Real=real assignment; MA=moving average; AP = 
assignment percentage; MA(w)=weighted moving 
average; AP(w)=weighted assignment percentage 
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Relative Assignment Variable Functions for 
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Figure I 
Relative Assignment Variable Function for the True Experiment 
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