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SUMMARY 

The sampling distribution of an estimator that 
subsumes all the estimators considered in the 
literature of sample surveys is defined. A new 
expression for kurtosis which is much simpler 
than the usual one based on the central moments 
or the conditional central moments is presented. 
In general the attainment of approximate normal- 
ity of distributional form or otherwise, depends 
on all features of the sampling design of which 
overall sample size is one. More caution, and 
less reliance on asymptotic normality, is 
suggested by this ~ result in making probability 
statements about the characteristics of a 
finite universe. 

1. INTRODUCTION 

In large-scale sample surveys many hundreds of 
ultimate sampling units are observed and there 
is a view that because the total sample size is 
large, the distribution of an estimate, particu- 
larly when it is linear in the variates involved, 
will be somewhat like the normal distribution 
thereby justifying its use, for example, in 
setting confidence limits. This traditional 
view persists despite Cochran's (1963, pp. 
38-43) note of caution in his famous text book. 
His illuminating comments on the work of Hdjek 
(1960) in regard to the conditions that are 
necessary and sufficient to ensure that the 
sample mean, in simple random sampling from a 
finite universe, tends to normality with increas- 
ing sample size are interesting. The substance 
of his remarks is that subasymptotic normality 
is more relevant. These remarks would also 
apply to more recent work, e.g., Fuller (1975) 
and Krewski and Rao (1978). 

The work of Hastings (1974) for one-stage 
stratified sampling, and Koop (1963) for two- 
stage sampling, both with equal probabilities 
and without replacement, shows that normality 
can be seriously disturbed, as judged by the 
values of the skewness and kurtosis coefficients 
of the relevant linear estimators. 

The question which arises is whether or not 
such important reservations hold for all 
sampling designs ' and all estimators~ linear or 
nonlinear, and whatever the total sampie Size, 
short of the total number of ultimate sampling 
units in the finite universe. The main purpose 
of this note is to answer this question. 

2. THEORY AND RESULTS 

For the purpose in mind, we define the sampling 
distribution of an estimator of a universe value 
or estimand, both of which subsume all the esti- 
mands and their corresponding estimators con- 
sidered in the literature of sampling theory. 
Note that this would include linear and nonlinear 
estimators, e.g., studentized or t-like statis- 
tics in multi-stage sampling. Before we do so 
we present some basic definitions and notation. 

2. I. Definitions and Notation 

There is a finite universe U consisting of N 
different identifiable units where u. is the ith 

1 
unit, i.e., 

U = { u . -  i = I, 2,..., N } ( 2 . 1 . 1 )  
1 

with a set of N corresponding vectors of 1 real- 
valued components, (x, y, z, . . .) for each unit, 

i.e." 

{ ( x i '  Y i '  z i '  " " ")  " i = 1,  2 ,  . . . ,  N } . 
( 2 . 1 . 2 )  

The units of U may be clustered in a hierarchy 
of units, but for the sake of generality we do 
not specify the structure of U. The frame F 
identifies the units of U and is assumed to be 
perfect. 

We have a physical randomization procedure R 
(e.g., tested random numbers and playing cards) 
for selecting samples from U through the frame F 
and according to a set of rules H (for drawing 
the units) and a probability system P that 
defines the respective selection probabilities 
of the units and which in turn is implemented by 
R. See Koop (1979) for explanations about these 
definitions. 

The sampling procedure for selecting samples 
from U is defined by the combination 

(P, R) . (2.1.3) 
Through the application of (P, R) a sample of 

distinct units, i.e., 

s = { ui, uj, . . . , u m } (2.1.4) 

is eventually realized with probability p(s). 
The number of units in s, i.e., the effective 
sample size, is n(s). The entire possible 
collection of s is designated 

S = { s: soU } . (2.1.5) 

The probability p(s), regarded as a function 
defined on S, is also called the sampling design. 

We are interested in estimating A(U) which is 
a real-valued function of the variate values of 
U given by (2.1.2). 

To estimate A(U) we define a real function 
a(s), defined for all sgS , that is a function 
of all the variate values of the distinct sam21e 
s and with a certain number of undetermined 
constants and also such that 

a ( S ) m i  n < A(U) < a ( S ) m a  x ( 2 . 1 . 6 )  

The constants in a(s) are determined by some 
method. This function naturally represents and 
subsumes all the estimators considered in the 
literature of sample surveys. 

By definition, the sampling distribution of 
a(s), i.e., the distribution generated by the 
randomization procedure R, is given by the 
entire set of such values with their correspond- 
ing p(s)-values namely, 
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{ ( a ( s ) ,  p ( s ) ) "  sgS and a (S)mi  n < A(U) < a(S)max}.  

( 2 . 1 . 7 )  

Note that (i) p(s), for all sgS , is calculable 
as a numerical value, and in simple random 

sampling it is equal to i/(~), and (ii) the 

distribution (2.1.7), unlike its classical 
analogues (density functions), is not character- 

ized by parameters, unless by convention we 
choose to regard A(U) as a parameter. 

The properties of this distribution may be 
described by its first moment and its second and 
higher central moments, but particularly by its 
skewness and kurtosis coefficients. Thus we 
have the first moment 

E { a ( s ) }  = ~ p(s )  a ( s ) ,  ( 2 . 1 . 8 )  
sgS 

and the higher central moments 

~ r { a ( s ) }  = ~ p ( s )  [ a ( s )  - E { a ( s ) } ]  r 
sgS (2.1.9) 

for r = 2, 3, 4, ...... By definition 

2 3 
~ l { a ( s ) }  = P3{a ( s )}  / ~ 2 { a ( s ) } ,  ( 2 . 1 . 1 0 )  

and 2 
~2{a(s)} = P4{a(s)} / P2{a(s)} • (2.1.11) 

If this generalized distribution has an approx- 
imate normal form, and this may be the case when 
n(s), its effective sample size, is sufficiently 
large, then ~l{a(s)} should be close to zero and 
~2{a(s)} should be approximately 3. Let us see 
whether this is so. 

2.2. Results 

We shall deal with the kurtosis coefficient 
first as it is relatively more tractable. By 
Lagrange's identity we find 

4 
p(s) ~ p(s) [a(s) - E{a(s)}] 

s~S s~S 

2 2 
= [ Z p ( s ) [ a ( s )  - E { a ( s ) } ]  ] 

sgS 

2 
+ 2 ( [ a ( s i ) -  E { a ( s ) } ]  { P ( s i ) P ( S j ) } a  

i> j  

2 2 
- [a(sj)-E{a(s)}] {p(sj)p(si)}½ ) . 

(2.2.1) 

In (2.2.1) we have attached subscripts i and j 
to s; these subscripts should run from 1 toC 
where C is the number of possible samples in the 
set S. Thus the summation indicated by ~ is over 

i>j 
C(C-I)/2 terms. 

On the right-hand side of (2.2.1) the second 

term is zero if and only 
if 

2 
[ a ( s )  - E { a ( s ) } ]  = a c o n s t a n t  f o r  a l l  sgS . 

( 2 . 2 . 2 )  
2 

D i v i d i n g  b o t h  s i d e s  of  ( 2 . 2 . 1 )  by p 2 { a ( s ) }  we 
find 

2 

~ 2 { a ( s ) } = l  + i>j  ~ P (S i  ) p ( s j ) [ a ( s i ) - a ( s j ) ]  . 

2 2 
[a(si)+a(sj)-2E{a(s)}] /~2{a(s)}. 

(2.2.3) 

Note that the term following unity in (2.2.3) is 
always positive, except when (2.2.2) holds, in 
which case it is zero. Then ~2{a(s)} = I; this 
result is certainly not trivial. 

For example when 

(i) C = 4M, where M is a large postive 
integer, 

(ii) p(s) = I/4M for all sgS , 

(iii) a(si) = h, i = I, 2, ..., M and h is 
a real number, 

(iv) a(si) = k>h, i = M+I, M+2, ..., 2M, 

(v) a(si) = h+(k-h)/g, g>l and i = 2M+I, 
..., 3M, and 

(vi) a(si) = k+(k-h)/g, i = 3M+I, ..., 4M, 

then after computations according to 
(2.1.11) we find 

~2{a( s )}  = I + 
4 4 

2 - • 2 2 • (2.2.4) 
1+g (1+g) 

Note that ~2 + 1 when g + m . For values of g 
less than I0 we find- 

~z{a(s)} 
1.5 1.85 
2 1.64 
3 1.36 
4 1.22 
4.899 1.15 
9.95 1.04 . 

Thus when g is a little more than I0, ~2 is 
virtually I. The value of this example lies in 
the indications that it gives for sampling 
designs that produce discrete distributions 
which are somewhat rectangular in form. Such 
distributions would have ~2-values between I and 
3. 

We now consider the skewness coefficient. An 
expression that is suggestive of the values that 
it can assume cannot be derived as in the case 
of ~2. However, we can obtain its upper and 
lower bounds. 

From Pearson (1916) we find that 
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~2{a(s)} > ~l{a(s)} + 1. (2.2.5) 

For ready reference see David and Barton (1962). 
If we denote by y the expression following unity 
on the right-hand side of (2.2.3), then the 
limiting inequality for the skewness is given 

- Y < $~l{a(s)} < y , (2.2.6) 

in view of (2.2.5). Note that ~I=0 in the fore- 
going example. 

From (2.2.3) and (2.2.6) we see that the values 
of the skewness and kurtosis coefficients for any 
finite universe, any sampling design and any 
estimator can be very different from 0 and 3, 

the values that would indicate subasymptotic 
normalit~ ~" for distributions resulting from 
large-scale sample surveys with many hundreds or 
thousands of observations. 

We also see from (2.2.3) that kurtosis, and 
therefore also skewness by virtue of (2.2.6), 
depends principally on the sampling design p and 
the form of the estimator or statistic a. The 
effective sample size n(s) only plays an indirect 
role, implicitly, through the sampling design. 

3. COMMENTS 

The practical upshot of the foregoing results 
is that we cannot always guarantee that t-like 
statistics based on the data of large-scale 
surveys would always yield reasonably accurate 
confidence intervals based on normality assump- 
tions. On this question all the anomalies in 
the empirical work of Frankel (1971), Bean 
(1975), Neter and Loebbecke (1977), Campbell and 
Meyer (1978) are explained by the results at 
(2.2.3) and (2.2.6). With survey data, more 
caution and more empirical studies are needed 
before making meaningful probability statements 
based on normality assumptions. 

Again it should be pointed out that with the 
method of independent replication exact prob- 
ability statements can be made about the median 
without any assumptions, and for other statistics 
such statements can be made with assumptions or 
qualifications that are not restrictive (Koop, 
1960). See also Murthy (1967). More considera- 
tion should be given to this method where in my 
view the advantages outweigh the disadvantages, 
taking into account nonsampling errors. 

In Koop (1979) it is argued that restrictions 
on randomization can be injurious to normailty. 
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