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Ab s t rac t 

Bayesian approach to the problem of well known 
Neyman's stratified allocation, assuming prior 
information concerning the unknown coefficient of 
variation (cv), is presented. Only the case of 
non-sequential estimation based on one-stage 
sampling is considered. The solution ensures 
that the larger the relative variability in a 
stratum, the larger will be the sample size from 
that stratum, every stratum being represented by 
at least a specified number of sampling units in 
the stratified sample. The "least-cost" solution 
discussed in this note differs from the existing 
statistical literature on optimal design of sam- 
pling from finite populations in that it is based 
on the assumption that an "inadequate" represen- 
tation of any stratum in the stratified sample 
may result in an irreparable loss of information 
to the investigator. The logic and operation of 
the solution for the case of cv being negative 
exponentially distributed is illustrated. 

i. Introduction 

The allocation of resources in a stratified 
sampling design aimed at estimating a population 
parameter is usually carried out, keeping in mind 
either one of the following two alternatives: 
(i) to achieve maximum precision for a given 
total cost of the survey, or (ii) to achieve a 
given precision at a minimum cost. The well 
known Neyman optimum allocation is one, based on 
this type of approach. From the Neyman optimum 
allocation (c.f., Cochran (1963)), it is apparent 
that the statistician planning the sample survey 
needs to have some prior information on the be- 
havior of the character under consideration, 
other than the size of each stratum. The avail- 
able literature on optimum stratified sampling 
using prior information consists of the papers by 
Aggarwal (1959), DeGroot and Starr (1969), Eric- 
son (1965, 1968), Zacks (1970), and many others. 
An excellent review and criticism of all these 
may be found in Solomon and Zacks (1970). 

In classical decision theory, the merit of a 
decision is examined by setting up what is called 
a loss function which with reference to the allo- 
cation problem under consideration, is usually 
made up of two components, one representing the 
error in the estimate, and the other representing 
the cost of observation. Then a Bayesian deci- 
sion maker chooses a decision that minimizes what 
is called the "average risk" (see Aggarwal 
(1979)). Another alternative that seems to be 
appropriate and popular in statistical inference 
making is to consider the posterior variance 
(c.f., Ericson (1965); Zacks (1970)) as the aver- 
age risk and to minimize it subject to a cost 
constraint. Whatever the approach may be, the 
basic question is: what prior information is 
available or can be assumed about the character 
under study? However, without entering any de- 
bate in this context, reference may be made again 
to Soloman and Zacks (1970). We assume prior 
information is available concerning the coeffi- 

cient of variation (cv) of each stratum. 
An important factor that is considered while 

determining the sample size is the inherent vari- 
ability in the statistical distribution of 
measurements. In many applied fields, the coeffi- 
cient of variation (cv = ~/~ or o/~ x I00) has 
been used as a quantitative index of the measured 
variability. Nevertheless, in statistical infer- 
ence making wherein normality assumption is in- 
volved, the cv may help to decide whether a normal 
approximation could be reasonable (c.f., Cochran 
(1963); Searls (1964); Rogowaski (1972)). In this 
article, it is assumed that "loss" associated with 
the error in the absence of an "adequate represen- 
tation" of any stratum in the sample happens to be 
very large and perhaps unknown. Consequently, an 
expression for the expected prior risk that en- 
sures an "adequate representation" of all strata 
in the "total sample" has been derived. 

2. General Framework of the Problem 

At the outset of this section, we state the 
fundamental objective of the sample survey in a 
normative way, and then introduce the essential 
requirements and subscripts definitions of this 
allocation model. 

2.1 Statement of the Problem 

Consider a set U = {Ul, u 2 ..... u N} of N dis- 
tinguishable elements wnlcn are classified into k 
strata, the size of the ith stratum being N i. Let 

~--= (~i, ~2 .... , ~k ) be a vector of given con- 
stants, where ~i = Ni/N" With each element u i 
there is associated a real number X i = X(ui). 
Furthermore, let C be the budget available for 

sampling, and c = (Cl, c2, ..., Ck) be a vector 
of given constants, c i being the cost per obser- 
vation of sampling within the ith stratum. Sup- 

pose ~ = (~i, ~2, "'', ~k) is a vector of the un- 
known means of k strata. The fundamental objec- 
tive of the sample survey is to make inference 
about, say, the population mean ~ defined by 

V = ~_~' e R (the real line) 

on the basis of an optimum stratified sample 

n = (nl, n 2 ..... nk) , n i >_ 0 

and where n I + n 2 + ... + n k = n, a preassigned 
integer. Of course in this paper, we define an 
optimum stratified sample as the one that mini- 
mizes the expected prior risk r defined by (2.8). 

2.2 Basic Assumptions and Definitions 

The following preliminary definitions and 
assumptions may help to understand the formulation 
of the risk function given by (2.7) and the expec- 
ted prior risk of (2.8). Let 8 i denote the cv in 
the ith stratum. It is assumed throughout this 
paper that 8i (i = i, 2, ..., k) are mutually 
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independently distributed random variables with 

prior density gi(8) and that 

Gi(u ) = Pr[O i < u]. (2.1) 

It is further assumed unless otherwise mentioned 

that 

P[8 i e (O,~)] = i, i = i, 2, ..., k. (2.2) 

It is important to note that we always assume 

" E(Oi) < ~, i = i, 2 ..... k. (2.3) 

Let Z = max(Sj). Define I bY XI, and w£g, 
l<_j <_k 

let Z i denote the Z given that I = i. We use Pi 
to represent the probability that I = i•, 
i = i, 2, ..., k. 

k We call the k-dimensional Euclidean space n 
defined by 

{ n ~ n ] " i [ n  i - 

t h e  " a c t i o n  s p a c e "  f o r ,  u l t i m a t e l y  t h e  p r o b l e m  
r e d u c e s  t o  t h a t  o f  c h o o s i n g  a p r o p e r  v e c t o r  n .  
S p e c i a l t y  .of t h i s  p a p e r  r e s t s  on t h e  a s s u m p t i o n s  
u n d e r  w h i c h  t h e  l o s s  f u n c t i o n  L i s  I d e f i n e d  a n d  on 
t h e  way t h e  r i s k  f u n c t i o n  i s  o b t a i n e d .  L e t  t h e  
f u n c t i o n  L i n  ( 2 . 4 )  be  a n o n - n e g a t i v e  f u n c t i o n  
d e f i n e d  on R x R, a n d  r e p r e s e n t  t h e  l o s s  i n c u r r e d  
when V i s  e s t i m a t e d  by  l~(X, n ) .  

k 

L(~,_e,~) = ~" £i (~' @i' ~) + 
i=l 

k 

= e + I C i (n i) 
i=l 

k 

Ci(n i) 
i=l 

(2.4) 

wherein for each i = i, 2, ..., k, £i is non- 
negative unknown, and assumed to be very large 
whenever for "large" 8 i the sample size n i hap- 

11 ,1 ! pens to be small and c i s are defined in (2.6). 

Definition 2.1. The point n = (n01, n02, 
..., n0k ) e n k at which e in (2".~) is supposed to 
reach the unique minimum is said to be the "ade- 
quate" stratefied sample. 

Let 0 = 0(n_n_0)~nk represent the base for the 
over neighborhood system at _no" 

Definition 2.2. A point n e 0 is said to be 
a stratified sample "admissible with respect to 
error. 

Thus, £i becomes inadmissibly large faster 
than the difference n0i -n i + n for every 
i = i, 2, ..., k. Then the requirement of the 
stratified sampling design viz, "larger the rela- 
tive variability in a stratum larger be the size 
of the sample from that stratum" is met by intro- 
ducing a non-negative continuous, monotonically 
increasing auxiliary function, 

Y = n(0), 0 e (0,~) (2.5) 

with n(0) = a, a non-negative number, and con- 
firming that "the sample size from the ith stra- 
tum is n(Si)": w£g, we sometimes write ~i(8) for 
n(8 i) For instance one may set 

(i) H i(0) = ~ + ~ o i ,  s > 0 

or 

(ii) hi(O) = exp(e + Sei), S > 0 

depending upon the total sample size n. The con- 
stants e and 8 are to be chosen taking into con- 
sideration n, C, etc. 

For the sake of simplicity, as mentioned at 
the beginning of this section, we assume that the 
cost of observation in the ith stratum is propor- 
tional to n(ei), i.e., for a given set of posi- 
tive constants c = (Cl, c2, ..., Ck) , we let 

C i = cini(8), O e S. 
1 (2.6) 

• = 0 otherwise 
where 

S i = {8: a < hi(8 ) < ni} , i = I, 2 ..... k, 

in which n i is the size of the sample to be drawn 
from the ith stratum. We now put forth the fol- 
lowing heuristic arguments. Since £i are unknown, 
and with an almost adequate stratified sample, e 
in (2.4) approaches the admissible minimum, it may 
be treated as a constant. Then as the second term 
on r.h.s, of (2.4) is independent of X, we define 
the risk function R (ignoring e) as follows: 

k 

R(~,8__,~) : ~ C i[~(0i)] 
i = l  

k (2.7) 

i.e., R : I Cini(O) 
i =  

by virtue of (2.6). Then an important task is to 
ensure an "adequate stratified sample," which is 
accomplished through the derivation of the expec- 
ted prior risk r as a function of n, as given in 
(2.8) below. 

r(n) = E(RIn_ e 0) (2.8) 
e 

Thus, from the foregoing discussion, it is 
obvious that ultimately the problem is to find a 
non-negative vector n e 0, that minimizes r of 
(2.8) subject to the constraint Zn i = n. It may 
be pointed out in advance that the average prior 
risk of (2.8) would be different from the tradi- 
tional Bayes risk which is usually defined as the 
unconditional expected value of R in that (i) in 
its derivation the weightage given to e i differs 
from its actual prior density, and (ii) it is 
independent of the error component, that is to say 
that it happens to be simply a cost-function. 
Therefore r may be sometimes called the "co'st- 
function" rather than the Bayes risk. 

3. The Two Strata Case 

The derivation of the expression for r needs a 
special attention as it is nested deep in the 
mathematics of probability and order statistics. 
Therefore, before going directly to the general 
case of k(>2) strata, it is worth describing the 
case of only two strata. The following lemma 3.1 
is found useful in deriving the expression for the 
average prior risk r. 

Lemma 3.1. Let Z = max(X0,Xl) , where X 0 and X 1 
are two independent r.v.s., and if I is defined by 
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Z = XI, then the p.d.f, fi of Z i is given by 

Pifi = gi(Z)Gl_i(z), i = 0, i (3.1) 

where Pi = Pr[l = i]. 
Proof. Proof of the lemma is simple, straight- 

forward, and directly follows from No'das (1970). 
In case of two strata, the admissible average 

prior risk (the average cost) is obtained as fol- 
lows: When e i > 8j, we set 

Ri (_8) = ciq(Si) + cjq(maxSj 18i>8j), i#j (3.2) 

and evaluate the expected prior risk r as 

2 

r(nl) = ~. PiE(R ill=i) (3.3) 
i=l 

Note that r is shown to be a function of n I alone 
as n 2 = n - n I. Thus the problem now reduces to 
that of finding a n I that minimizes (3.3). In 
order to obtain the r.h.s, of (3.3), we make use 
of the lemma 3.1 and a result on conditional 
expectation of section 6.5.2 in Ash (1972). Then 
by virtue of (2.6), the usual technique of trans- 
formation of r.v.s, gives 

. ' I r(n I) = I {ciI Y'gi [q (y) ]Gj [q (y) ] -n-l(~-dy 
i=l a 

ni>_n j 

+ c. 2Jy[ 7r g i (n  (y)) n (y) .dy} (3.4) 
] a i=l 

3.1. A Particular Case: Uniform Priors 

Assume e I and 82 to be two independent random 
variables uniformly distributed, respectively 
over (al,b I) and (a2,b2). Without loss of gener- 
ality, let 

0 < a I < a 2 < b I <__ b 2 < ~ 

It may be noted here that we are slightly devia- 
ting from the assumption (2.2), and consequently 
we have to add constraints (3.6) to the expres- 
sion (3.5) of y. Then the expression (3.5) 
directly follows from (3.1) through (3.4). 

n id. I WlW2r = ~ {ciI1y[n - (y)-ai] ~y (y) .dy 
i=l m 
i#j 

i 

I (Y) • dy} n.i] dn-i 

+ cj Yl dy 
m 

(3.5) 

with n i >_ nj for i = I, 2, and where w i = b i - a i, 
m = q (a2), and where we should have 

n i <_ q(bi) , n - n i = nj <_ q(bj), i#j (3.6) 

If however 

q(Si) = ~ + BOi, i = I, 2 

the expression (3.5) reduces to be 

WlW2r = 

2 ni 
{ci i y(y_=_Bai)dY + c_i ydy} 

i = l  ~ -  m 6 m 
i#j  

with n i _> nj, for i = i, 2. This can be simpli- 
fied to be 

2 (=+6a i) 
WlW 2 r = ~ {(~)~i, 3 3, ~ ( n  2 - m 2 [~tni-m ) - 2 i ) ] 

i=l 
i#j 

cj 2 m 2 
+ 2 (L~j - )} (3.6) 

wherin ni _> nj, for i = I, 2. Convexity of (3.6) 
wrt n I can easily be verified. 

4. The General Case of k Strata 

The derivation of the cost function for a 
general k(>2) is slightly complicated and is based 
on concepts similar to those studied in Koti 
(1979) and No'das (1970). Suppose the k strata 
are serially numbered from i to k, and let for a 
given i 

V(k_l,i ) = max (8 j#i) (4.1) 
i<j<k J' 

Denoting again the p.d.f, of Z i by fi' intuitively 
we should have that 

Pifi(z) = gi(z)Pr[V(k_l,i)<_z] (4.2) 

Generalizing the notation given in (4.1), for a 
specified set (il, i2, ..., ir) , we use the nota- 
t ion s 

V(k-l,il,...,i# : 

max (Sj, j # il, i 2 ..... ir) , (4.3) 
1<j <_k 

and H(k_r,il ,...,i r)(.) to represent the distribu- 

tion function of V defined in (4.3). Let 

EiJlJ2 "'" ]k-I be the set of points on the 

orthant l=i, such that 

O. > O .... > O. 
1 -- Ji -- 3k-i 

°. , a possible observation Then on ElJl,J2,...,jk_ I 

on R would be of the form: 

RiJlJ2...Jk_l(Z) = ciq i (z) + Cjl(maxOjlleJl_< 8i ) 

r 

+ ~2cj q(maxOj~IOj~ _< Oj~_l ) 
C~ 

(4.4) 

Perhaps, at this stage, it is worth making the 
following observation viz "If we assume for a 
moment that, for some 0 < a. < b. < ~, that ] ] 

Pr[Ojs(aj,bj)] = I, j = i, 2, .... k 

then on EiJlJ2...Jk_l , we should have in (4.4)that 
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max 8. = min (z, bj ) 
Jl i 

max 0. = min (z, b .... b. ) , 

Jk- I J I Jk- I 

and we further add to the complexity." That is 
why we stick to the assumption (2.2). As a re- 
sult (4.4) may be rewritten as 

k 

RiJlJ 2 . . .Jk_l(Z) = cini(z) + £=I[ c.3 nj£(z) (4 .5) 

In order to evaluate r i = E(RII=i) , i = I, 2, 
.... k, again we make use of section 6.5.2 of Ash 
(1972) and (2.6). Then by the usual technique of 
transformation of r.v.s., we obtain the expres- 
sion for r i given in (4.6). 

ni -I 
Piri = ci/ Y'gi[n (Y)] 

a 

x H i Ld I (k-l,i)[n (y)] ~y n-l(y) .dy 

k n£ y -i 

+ ~ ~. ~ c£1 y[s~igj [n (Y)] 
r=l £=i ji <...<j a = s 
£#i r 

× g£[n-l(y) ] 

x H 
-i Id~-l(y) I 

(k-r-2,i,Jl...jr,%)[~ (Y)] " dy -dy 

(4.6) 

wherein n i > nj > ... > njk_l, n being the deci- 

sion vector. Then making use of (4.6) we obtain 
the expression for the expected prior risk as 
given in (4.7) 

k 
r(n) = [ P r (4.7) 

-- i = l  i i 

which is to be minimized w.r.t, n such that 

k 

In =n 
i=l i 

5. Case of 3 Strata 

An lllustration: • Exponential Priors 

We consider here the allocation of resources 
to three strata, wherein cv of each stratum is 
exponentially distributed. 

Definition 4.1. A random variable U is said 
to have an "exponential distribution" with 
parameter I, whenever for I>0, 

-lu 
gU(u) = %e , u > 0 

(5 .i) 
= 0 otherwise 

We state the following lemma 4.1 without proof. 
Lemma 4.1. If Ui, i = i, 2, 3, are three 

r.v.s., independently, exponentially distributed 
with parameters li, i = i, 2, 3, and if 

= max (Uj) 
(2,i) j#i 

then 

H(2,i )(z) =l-eXJ z - el£ 'z + e(lJ +le)z, z>0 (5.2) 

Let us assume that all practical considerations 
led us to set 

Y = n(8) = e ~+Be (5.3) 

We use throughout this section the following nota- 
tions. 

I = Ii + 12 + 13' ~ = 111213 ' 

and 

u = (~n(n) -a)/B i i 

Then the expression (4.7) after proper substitu- 
tion and simplifications works out to be as 
follows. 

3 u i 
ear(n) = ~ {c.l.I [e(li-B)t-e(li+lJ B)t 

i=l i 10 

_e (Ii+I£-8) t+e (l-B) t ] d t 

3 u. 
+ ~ c.~ I 3 [e(li+lj-8)t-e(l-8)t]dt 

j=l j i%J0 

3 u 
+ ~ ~.c 0 / e(X-B)tdt} 

£=I £ 
#i,~ 

(5.4) 

which is to be minimized with respect to n = 

(nl, n2, n 3) such that n I + n 2 + n 3 = n. 

6. Concluding Remarks 

The basic assumption underlying the model viz 
"larger the cv, larger be the sample size" seems 
to be satisfactory and is the ideal one in many. 
real-life problems. However, as a precaution, it 
is worth stating here that, though in a different 
context, Rao et al. (1978) have asserted in their 
study that a larger sample size was required with 
decreasing coefficient of variation. 

Since we have a least-cost allocation that is 
"admissible w.r.t, error," the result of this 
paper may help the statistician still at the 
planning stage, to set an optimal C, the total 
cost of the sample survey. 

With the approach discussed here, the case of 
unknown strata size N i as studied by DeGroot and 
Starr (1969) does not arise. In other words, the 
advantage of this model is that, for all practical 
purposes for the sake of finding an optimal n, the 
knowledge of N i is unnecessary. 

We do admit here that this work is incomplete 
in many respects. If however the practitioners 
accept the solution of this paper as the feasible 
one for some sample surveys, further research may 
be carried on the following lines: (i) at the 
outset, a multivariate analogue of the results of 
this model seems to be essential and persued, 
(ii) though derivation of the posterior distribu- 
tion of O i certainly is a hard exercise, a two 

336 



stage or sequential sampling design is worth 
attempting, (iii) finally application of this 
model in regression analysis employed to study 
problems in econometrics (c.f., Ericson (1965)) 
may be considered. 
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