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i. INTRODUCTION 
Prediction models in finite population sampling 

theory can reveal relationships which are essential 
for making inferences but which are often concealed 
in probability sampling analyses. Here we examine 
the Horvitz-Thompson estimator under some linear 
prediction models and compare the results with those 
derived through probability sampling theory under a 
probability-proportional-to-size (~ps) sampling 
plan. Various estimators of variance are compared 
theoretically, using prediction models, and empiri- 
cally, using a ~ps sampling plan to draw samples of 
n=32 repeatedly from six real populations. 

2. THEORY USING THE PROBABILITY SAMPLING 
DISTRIBUTION 

With each of the N population units two numbers 
are associated: the variable of interest y and an 
auxiliary variable x whose value is known. A sample 
s of n units is chosen, leaving a set r of N-n non- 
sample units. The sample means are denoted by Xs 
and Ys, the non-sample means by ~r and Yr and the 
population means by ~ and ~. The sampling fraction 
n/N is denoted by f. 

A probability sampling plan p specifies for eve- 
ry possible sample s the probability p(s) that s 
will be selected. The probability that unit i will 
be in s is ~i=ls3ip(s). When xi > 0 is a measure of 
the size of unit i, any plan p for which ~i is pro- 
portional to xi is called a probability-proportion- 
al-to-size, or ~ps, sampling plan. We consider only 
sampling without replacement with a fixed sample 
size n. In this case ~i=fxi/~ for all i=l, ..., N 
(possible only when max xi_<~/f), and the Horvitz- 
Thompson estimator of the population total T=N~ is 
@HT=Nb~ where b=ls(Yi/nxi). With respect to the ~ps 
sampling plan, this estimator is unbiased with 
variance 

NN 
varp(THT)=YlY.l(~ij-~i~j) (yi/~i) (yj/~j) (2.1) 

where ~ij is the probability that a sample contain- 
ing both units i and j will be selected. Two vari- 

^ 

ance estimators are commonly presented with THT. 
One (Horvitz and Thompson 1952) is 

VHT=Y~sYs (l-~i~j/~ij) (yi/~i) (Yj/~j) 

and the other (Yates and Grundy 1953, Sen 1953) is 

VyG=½ZsZ S (~i~j/~ij - I) (yi/~i-Yj/~ j ) 2 . 

It is less obvious but also well-known that vyG 
too can take on negative values. On the other hand, 
vyG but not VHT has been shown to be non-negative 
for any sample chosen using some particular ~ps 
sampling plans (see Cochran 1977). The available 
empirical evidence favors vyG over VHT , but this 
is based primarily on samples of n=2 from small 
populations (Rao and Singh 1973). 

A third variance estimator sometimes recommend- 
ed for its simplicity is one derived under the 
assumption of sampling with replacement. If we de- 
fine di-Yi-bxi, then this estimator is 
vc=(N~2/f)Es(di/xi)2/(n-l). Under a ~ps sampling 
plan v C is biased. The bias is positive if the ~ps 
plan is more efficient than sampling independently 
with replacement and with probability xi/NE of 
choosing unit i on each draw (Durbin 1953). 

The ~ps sampling plan we have used in this study 
is the well-known one investigated by Hartley and 
Rao (1962). The sampling procedure consists of a 
random permutation of the units followed by a ran- 
dom-start systematic sample with step size ~/f 
through the interval (0,N~). Unit i is selected if 

~-ix j i for of the Z _< U < ZlX j one systematic sample 

points U. For this plan v C has a positive sampling 
bias. 

3. THEORY USING PREDICTION MODELS 
The preceding theory treated the y's as fixed 

constants. All probabilistic calculations referred 
to the distribution created by the probability 
sampling plan p. For instance, the bias in THT was 
defined as Z*p(s)[N~Zs(Yi/nxi)-Z~yi] where Z* de- 
notes the summation over all s. The only random 
quantity was s, the set of units chosen as the 
sample. 

In many applications it is useful to regard the 
y's as realized values of random variables (YI,Y2, 
• --,YN). Knowledge about relationships among the 
Y's is represented in a probability model for their 
joint distribution. In such cases a different ap- 
proach to inference becomes available, one based on 
the probability model instead of the sampling plan. 
For instance, the bias can be defined as 

^ N EM(T- HT-T)=EM [NxZs (Yi/nxi)-YlYi ]'_. Here the expecta- 
tion E M is with respect to the Y-distribution 
model and is conditioned on the sample s. 

3.1 P erf0rmance of ~NT- The estimator T~HT is 
If the probabilities ~ij are positive for all (i,j) often studied under a model which represents Yi 
pairs, then both VHT and vyG are unbiased estimators as a realized value of a random variable Yi gener- 
of varp(@HT), ated according to the model 

Theoretical comparison of these two variance es- EYi=~xi, varYi=O2xi 2, cov(Yi,Yj)=0 i#j. (3.1) 
timators has proved difficult. Although all ~ps 
sampling plans for a given population and sample 
size n have the same inclusion probabilities, the 
joint inclusion probabilities ~-- can be different 

~J 
for different plans. This means that varp(THT), 
VHT, and vyG and the relationships among them can 
be different for different plans. In the special 
case of perfect ~roportionality @HT=T for every 
sample, so varp(THT)=0. In this case vyG=0, but VHT 
need not equal-zero. This implies that VHT has 
greater sampling variance than vyG in populations 
where Yi is very nearly proportional to x i. It also 
shows that VHT can be negative in such populations. 

A 

Under this model THT is unbiased with variance 

varM (@HT- T) =O2N~ (~/f- 2~s+C) (3.2) 
i N 2 where c=N- Zlx i /~ and the subscript M is a re- 

minder that t~is calculation is made with respect 
to the model for a fixed sample s. This variance 
is a decreasing linear function of Xs" 

3.2 Performance of Variance Estimators. If in- 
ferences are to be made conditional on s, then un- 
der model (3.1) the variance to be estimated is 
(3.2), not (2.1). Standard techniques for estimat- 
ing 02 from the weighted squared residuals give 
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o2=ls(di/xi)2/(n-l), and substituting this estimate bias-robust: as an estimator of varM(THT-T) , v D is 
in (3.2) yields the least squares variance estimator unbiased under the model (3.1) and is asymptoti- 
v L. This estimator is unbiased under model (3.1) and cally unbiased under the model (3.6) in the sense 
is closely related to Vc: VL=Vc[l-f(2~s-C)/~ ] . that the rel bias(vD)÷0 as n÷ ~ and f÷0. Since 

Royall and Cumberland (1978) have studied pro- the other variance estimators have the same domin- 
cedures for generating bias-robust variance estima- ant term as v D, all these estimators have the 
tots for linear statistics. These techniques produce bias-robust property. 
estimators of varM(T~HT-T) which are unbiased under The flaw in VHT* is also robust, persisting un- 
model (3.1) and which remain approximately unbiased 
when var(Yi) is not proportional to xi ~. One of 
these was used in this study: 

VD= (Nx ~ / f) Zs (di/xi) z / (n-l) -2NxZs (di ~/xi) / (n-l) 

+n (Z~xi 2/ZsXi 2) Zsdi z / (n-l) . 
The statistics VHT , VyG , and v C can also be 

viewed as estimators of (3.2) under model (3.1). 
For the sampling plan we have chosen Hartley and 
Rao (1962)showed that for i#j 

n~i~/~i~=(n-l) [l+ai~/N+bi~/N2+0(I/N ~) ] (3.3) 
"J -- J J 2 2 - - 2  

where aij=(xi+xj-c)/x and bij=2(x i +xj +xixj/x ) 

-3c(xi+x'-c)xZ-2N-iI N(xi/~) ~ Approximating the i " 
right hand side of (3.3) by (n-l)(l+aij/N) and sub- 
stituting in the formula for vYG leads to the fol- 
lowing approximation: vyG =(N~2/f)Zs(di/xi)2/(n-l) 

-NxZ s (di ~/xi) / (n-l)-N~ (~s- c) Z s (di/x i) z / (n-l). 

der the general model (3.6). This is because the 
term in EM(VHT*) which depends on B, namely 
B2N~(~s-C), which caused the problem under model 
(3.1), remains unchanged under the more general 
model (3.6). 

Failure of the assumption that E(Yi)~x i in 
(3.1) can seriously bias the estimator THT. For 
example, under the genera I jth order polynomial 
regression model 

j 
EYi=Zj_0Bjxi 3, var(Yi)=vi, cov(Yi,Yj)=0 i#j (3.7) 

the bias ms 
^ J 

EM (THT-T) =NZ j =0Bj Aj (s) (3.8) 

where Aj(s)=~ZsxiJ-i/n-N-iZ~xi j . The bias vanishes 
when Aj~s)=0 for j=O,l .... ,J, and we describe a 
sample satisfying these conditions as "~-balanced". 
Note that Al(s)-0 and that the ~-balance conditions 

A similar substitution leads to an approximation are met in expectation under a ~ps sampling plan: 
for VHT: VHT*=VyG*+N~ls[~s-C-(Xi-c)/n](yi/xi)2,/(n-l) Ep[Aj (s) ]=0. 

All the variance estimators vc, vn, v L, VHT and The ~-balance conditions are analogous to the 
VyG* have the same leading term, (NE~/f)Ys(di~xi)2/ balance conditions studied by Royall and Herson 
(n-l), and are thus asymptotically equivalent (as (1973) for the ratio estimator. Scott, Brewer, and 
n÷~ and f ÷0). But when f is moderate there are ira- Ho (.1978) discussed different balance conditions 
portant differences among the estimators. Under the 
model (3.1) VD, VL, and VyG* are unbiased estimators 
of the variance (3.2), while EM(VC)=~2N~ 2/f and 
EM(VHT *)=~2N~2/f-~2Nx ~s +B2Nx(xs-C) • Defining the 
relative bias of an estimator by 
rel bias(v)=[EM(V)-varM(@HT-T ) ]/varM(T~HT-T) we have 
the following approximations under model (3.1): 

rel bias(vc)-f(2xs-c )/x 
rel bias(vHT~) " (l+g)f(~s-C)/~ (3.4) 

where g=(B/o) 2. These expressions show that the re- 
lative bias in v C is small, for moderate f, except 
when there is extreme variability among the x's 
and the sample units are chosen from the extreme 
x's. The only variance estimator whose expected 
value depends on B is VHT* , and this dependence 
ensures that VHT* will perform disastrously when g 
is large unless~the sample is one where f l~s-C]/E 
is very small. Not only ca___n_n VHT take negative val- 
ues, its expectation is negative when ~s < x*, where 

x =(c-Elfg)( ) . (3.5) 

Since EM(VHT* ) is a linear function of ~s, the 
situation gets progressively worse with smaller Xs. 
In the limit, when o2=0,yi=Bxi, and g =m, we have 
VHT*=B2NE(~s-C), a linear function of Xs with 

2 slope B NE while the actual variance (.3.2) and the 
estimators vc, VD, VL, and VyG all equal zero for 
every sample. Note that c is the expected value 
of Xs under ~ps sampling: Ep(~s)=C. 

3.3 Effects of Model Failure. Failure of the 
variance specification in (3.1) does not bias ~HT 
but does affect its variance as well as all of the 
variance estimators. Under the more general model 

EYi=~x i, varYi=vi, cov(Yi,Yj)-0, i#j (3.6) 

the variance of THT is given by 
^ N 

varM(THT-T) = (NxZ / f) Zsvi/nxi2-2N~Ysvi/nxi+ZlV i • 

Modifications of the arguments given in Royall and 
Cumberland (1978) show that the estimator v D is 

appropriate for the BLU estimator under the model 
(~.z). 

When the regression function contains an omitted 
or unknownregressor z, say EYi=Bx4~zi, Tt'HT incurs 
a bias EM(~,T-T)=[NRZs(zi/nxi)-ZNz~.]~.~ ~ The bias is 
zero when (N~)Zs(Zi/nxi)=Z~zi, and this is again a 
condition which is met in expectation under a ~ps 
sampling plan. Here ~ps sampling plays the same 
role in producing approximately ~-balanced samples 
(on both x and z) as simple random sampling plays 
in producing approximately balanced samples. For 
a discussion of this role see Royall and Herson 
(1973) Section 6. 

Failure of the condition EYi=Bxi biases the 
variance estimates but does not affect the variance 
of ~HT" At ~-balance the effect is to make v C, v D, 
and v L conservative as estimates of EM(~NT-T)2.. in 
that their biases are positive when EY i is a poly- 
nomial. 

4. EMPIRICAL STUDY 
Six real populations described in Table 1 were 

used in an empirical study of the preceding theo- 
retical results. These are the same populations 
used in a previous study of the ratio estimator ex- 
cept that the four largest units have been removed 
from the original Sales population so that max x i 
< ~/f. These are populations where a straight 
line through the origin regression model with vari- 
ance proportional to either x or x 2 might be a 
reasonable first approximation. More detailed de- 
scriptions of the populations, including scatter 
plots, appear in Royall and Cumberland (1980). 

From each population we drew i000 ~ps samples of 
n-32 using the sampling plan described in Section 
2.1. For each sample we calculated the Horvitz- 
Thompson estimator, the actual error, and the five 
variance estimates. The estimators VHT and VyG were 
calculated from the Hartley-Rao formula (3.3), in- 
cluding the terms of order I/N 2. The average values 
are presented in Table 2. As expected, v C tends to 
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overestimate the variance. The averages for the 
other estimators are consistent with their being 
unbiased under wps sampling. 

The prediction theory outlined in Section 3 
suggests that the performance of the variance esti- 
mates will depend strongly on Xs- The bias incurred 
by THT when EM(THT-T) contains a quadratic term al- 
so depends on R s. To examine performance as a func- 
tion of Xs, we arranged the i000 samples from each 
population in order of increasing value of Xs" We 
then grouped the samples in 20 sets of 50, so that 
the first group contains the 50 samples with the 
smallest ~s, the next group the samples with the 
next 50 smallest Xs, etc. For each group we calcu- 
lated the average values of ~s, the average error, 
the mean square error (mse), and the averages of 
each of the five variance estimates, Vc, VD, VL, 
V-HT and ~YG. We then plotted the average errors and 

can have a serious bias when Es#C. Under the model 
(3.1) this bias is a linear increasing function of 
Xs. When E s<x*, given in (3.5), the bias will be 
so large that the expected value under (3.1) of VHT 
is negative. This will also be true of VHT , if 
VHT is an adequate approximation. The theory 
sketched in Section 3.3 suggests that the larger 
82/~ 2, the more severe the bias in VHT. For each 
population the least-squares estimates of B and a 2 
under (3.1) based on the entire population were 
used to estimate B2/o 2 (.see Table i). These values 
were used to estimate x ~ (3.5) where EM(VHT*)=0. 
The points x* are on the x-axes in Figures 7-12. 

The extent to which prediction theory has cor- 
rectly summarized the performance of VHT in these 
populations is remarkable. In every population the 
VHT line increases linearly with Xs" In the popula- 
tions in which the VHT line becomes negative (Cities, 

the values of (mse)½, ~C ½, V-D½ , V--L½ and ~yG ½ against Counties 1960, Counties 1970, and Sales), it crosses 
the average values of Xs. The trajectory showing the the axis near x*. In those populations with the 
average error plotted against average value of Xs is largest values of B2/O 2 (Counties 1960 and Sales) 
labelled error. Those showing vc2 , VD2 , etc., are performance of VHT is worst. Cancer and Hospitals, 
labelled C, D, etc. Figures 1-6 show the results, having the smallest values of B2/o 2, are the only 
The performance of VHT was so dramatically different two populations for which the VHT line is non-nega- 
from the others that we have made separate figures, 
7-12, for comparing VHT with vYG. 

Probability sampling theory assures us that THT 
is unbiased in ~ps sampling. Table 2 confirms this. 
However, the error curves in Figures 1-6 show that 
the bias defined with respect to the prediction 
model and conditioned on s is more appropriate for 
inference from a given sample. In four populations 
(Cities, Counties 60, Counties 70 and Hospitals) 
there is a clear bias in THT as a function of ~s" 

tive. In both of these populations, x is smaller 
than the smallest average ~s value plotted. As the- 
ory predicts, the lines for vyG and VHT cross when 
~s=C in every population. 

5. CONCLUSIONS 
The variance estimator vyG is generally recom- 

mended over VHT. The present study provides strong 
theoretical and empirical support for this advice. 
It also suggests that v D and v L deserve considera- 
tion as practical alternatives. These have two im- 

The positive and negative biases at the extremes portant advantages over vyG--they are always non- 
cancel each other when the results are averaged over 
all samples. Thus averaging over the sampling dis- negative and they do not require that the joint in- 

tribution conceals an important property of the es- 
timator, its bias in samples not achieving good w- 
balance. The bias seen in THT as a function of Xs 
can be explained in terms of curvature of the true 
regression function. The term in the bias of THT 
found in (3.8) resulting from quadratic curvature 
is N~B2(~s-C). Hence for populations like Counties 
70 with a convex regression (slope increasing with 
x), the bias should be an increasing function of Xs" 
For populations like Counties 60 and Hospitals where 
the regression is concave, the bias should be de- 
creasing linear function of Xs- This bias will be 
near zero when ~s=C. This is precisely the behavior 
suggested by the error curves in the figures. 

Note that wps sampling has not provided adequate 
w-balance to protect THT against bias in these popu- 
lations. This is particularly true of Counties 60, 
where the 10-20% of samples in which l~s-Cl was 
greatest produced biases which are large relative to 
the (mse)½. This illustrates an important point: 
the fact the wps sampling produces w-balance "on the 
average" does not imply that we can make inferences 
as if each sample were approximately w-balanced. 

The variance estimates behave as predicted under 
model (3.1). The curves for VD, v L and VyG all tend 
to decrease as ~s increases, and all three estima- 
tors track the mse curve reasonably well except in 
cases when a large bias influences the mse. The 
difference between v C and the others increases as 
Xs increases in all the populations. 

To examine the performance of VHT we plotted the 
average values of VHT and VyG against the average 
values of Xs in Figures 7-12. Although vyG and VHT 
are unbiased in expectation with respect to a ~ps 
sampling plan, prediction theory reveals that VHT 

clusion probabilities wij be available. 
We believe these results show again that finite 

population inferences should be based on prediction 
models, not on the probability sampling distribution. 
They help to clarify how probability^sampling can 
contribute to robust inference with THT by produc- 
ing samples which are approximately w-balanced. 
But they illustrate the danger in making inferences 
which are not conditioned on the sample s actually 
observed. 
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TABLE i: STUDY POPULATIONS 

Cancer 

Population x __y__ T 

301 counties in adult white female breast cancer 11994 
N.C., S.C. and Ga. population 1960 mortality 1950-69 

Cities 125 U.S. cities population 1960 population 1970 35.691xi06 

Counties 60 304 counties in 
N.C., S.C. and Ga. 

Counties 70 304 counties in 
N.C., S.C. and Ga. 

households 1960 

households 1960 

population 1960 i0. 007x106 

population 1970 ii.243xi06 

Hospitals 393 hospitals from number of beds 
national sample 

patients discharged 320159 

Sales 327 U.S. Corpora- 
t ions 

gross sales 1974 gross sales 1975 667.88xi09 

2 
tb and s are weighted least-squares estimates of B and oz under the model (3.1). 

t 
b2/s 2 

9.5 

16.0 

210.6 

39.6 

11.9 

50.9 

Population 

TABLE 2: RESULTS FOR i000 ~ps SAMPLES OF n = 32 (HORVITZ-THOMPSON ESTIMATOR) 

(Average in i000 samples) ½ 

Average Error (~HT_T) 2 Vc VD VL Vy G VH T 

Cancer 4.2 502 539 479 464 489 487 

Cities (millions) 

Counties 60 (thousands) 

.02 1.26 1.46 1.18 1.13 1.23 1.24 

.155 ii0 124 108 105 109 107 

Counties 70 (thousands) 15.4 267 318 271 269 266 269 

Hospitals (thousands) -.42 1.4.0 14.9 14.1 13.9 14.0 14.0 

Sales (billions) .i0 13.0 14.1 12.7 12.3 12.9 13.1 
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