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where t k ( X l . .  ,x k) i s  the k th • von Mises deriva- 

General results concerning the behavior of 
nonlinear statistics calculated from complex 
survey are difficult to obtain although their 
need is well-documented (Kish and Frankel 1974). 
Even the presently available asymptotic results on 
variance estimation and asymptotic normality are 
limited by restrictive assumptions concerning 
independence of primary selections or equal 
selection probabilities. 

In this work we outline how the theory of von 
Mises (1974) statistical functionals can be 
applied to finite population sampling to obtain 
some very general results concerning the 
asymptotic behavior of nonlinear estimators. 
Particular attention will be given to the Taylor 
and jackknife variance estimators. This effort 
stems from the work of Hinkley (1978) and 
Jaeckel (1972) who have shown that the von Mises 
expansion may be fruitfully employed to study the 
Taylor and jackknife variance estimators for lid 
data. First we present a brief review of the 
theory and then discuss estimating a distribution 
function for a finite population. The applica- 
bility of this theory to finite population 
sampling is then demonstrated. Finally we give a 
general definition of a jackknife pseudovalue 
that is applicable for unequal probability 
sampling, and generalize the jackknife variance 
estimate so that it applies to any sample design 
for which the variance of an estimated mean can 
be estimated. 

B. Theory O f Statistical Functionals 

In this section we draw primarily on the work 
of Reeds (1976) while remembering that earlier, 
less general survey articles on von Mises 
functionals are the origninal work by von Mises 
(1947) and a later paper by Filippova (1962). 
Initially we consider the situation for which 
XI,... , X n (possibly vector-valued) are lid 

random variables with cumulative distribution 
function F. Let F be the empirical distribution 

n 
function of XI,..., Xn. We consider only 

statistics T which can be expressed as T =T(Fn). 
n n 

Some simple examples are 

n 
= 1 E X. = SxdF(x) 

n i 
i=l 

n-i 2 
s =I/2 f~ (x_y)2dF(x)dF(y) 

n 

Sample quantiles, maximum likelihood estimates, 
and many rank statistics can also be expressed 
in this format. The k th order von Mises 
approximation of T can be expressed as 

n 

T(F)= T(F) + I tl(X)dFn(X) + ... 

+ 1/2 II t 2(x,y)dF n(x)dF n(y) 

+...+ i, I''" It k(x I ..... x k)dF n(x I)... 

dF ), n (Xk 

tive o-f the functional T(°) evaluated at F. We 
have adopted the convention that 

Exi [ tk(X I ..... ,), X.=x.j J j # i] = 0 

In this case, the first derivative tl(- ) corre- 

sponds to the influence function of T(.) and can 
be defined as 

dt T (l-t)F + t = It (x)dG(x) 
t=O i 

subject to the restriction It (x)dF(x)= 0. 
i 

Results of von Mises, Filippova, and Reeds 
have been directed primarily toward finding 
conditions on F and T(F) so that the asymptotic 
distribution of~ (T(F) -T (F)) is the same as 

the asymptotic distribution~ ft l(x~dFn(x ), 

the first-order term of the expansion. The con- 
ditions as Riven bv Reed are 

(i) an analytical conditon: T(.) 
is compactly differentiable 
at F. 

(ii) stochastic conditions : 
F = F + 0 (I,~, and the 
n p 

remainder term is a measurable 
random variable. 

The differentiability condition will always be 
assumed in this work. 

When XI'''''Xn are lid random variables, 

1 n 
It I = -- E (x) dFn (x) n i=l tl(X i) 

The usefulness of the first-order approximation 
n 

1 
is immediately apparent:--n i--E1 tl(Xi) is the 

sample mean of n lid random variables, hence 

V~ ft l(x)dF n(x) ~ N(O o 2) 
' t " 

A natural "estimator" of o 2 would be 
t 

n 

~2 i i__l t 2 
°t = n 1 1 (Xi) 

but the realization of tl(Xi) is not known 

because it depends on the unknown distribution 
function F. To make this dependence explicit, 
we use the notation tl(Xi;F). 

Different general methods of estimating the 
asymptotic variance of T(F n) have been 

proposed. Two of these, the Taylor or ~-method 
and the jackknife method can be better understood 
and compared via the von Mises expansion. 

Each method relies on the use of a different 
predictor of tl(Xi;F). Hinkley (1978) has 
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studied the jackknife variance estimator via 
the von Mises expansion and has shown that 

Pi " T(F) + t I(X i;F) 

th 
as n-~o, where P. is the i pseudovalue. The 

1 

implied predictor of tl(Xi; F) is given by 

either tl(Xi;F) = Pi-T(Fn ) 

or 

n ~ 

tl(Xi;F) = P'- 1 7 p. 
i n i=l i . 

Jaeckel (1972), and Gray, Schucany, and 
Watkins (1975), have shown, in different ways, 
that the 6-method variance estimator can be 
obtained as a limiting special case of the 
jackknife method when the weight on the "omit- 

i 
ted" observation is-- c instead of 0. The 

n 

limit is taken as e + 0. Jaeckel called this 
estimation procedure the infinitesimal jack- 
knife and showed that this procedure leads to 

n 

tl 2 t2= in E (X i;F) 
i= i 

where 

t I(Xi;F) = t I(Xi;F n) 

is the influence function evaluated at the 
empirical cdf F . 

n 
Most of the results on jackknife variance 

estimation and use of von Mises functionals 
have been developed for independent, indenti- 
cally distributed random variables. A few 
exceptions do exist to the assumption of 
identical distribution: von Mises (1947), 

Arvesen (1969), Miller (1974), and Hinkley 
(1977). Nevertheless, the widespread use of 
Taylor and jackknife-type variance estimators 
in survey sampling led us to wonder if the 
theory of von Mises functionals has any general 
application in finite population sampling. Our 
initial attempt (Campbell, 1979) to apply 
this theory relied upon von Mises (1947) theorem 

which gave asymptotic results for XI,...,Xn in- 

dependent, but not identically distributed. 
The results there applied only to a specific 
stratified sample design with independent 
primary selections within strata. 

By using Reeds' more general formulation we 
have now developed a very general theorem 
giving the asymptotic behavior of nonlinear 
estimators for finite population sampling with 
unequal probabilities and without replacement. 
We have also developed a jackknife variance 
estimator for use in these same situations. 

In the following section we examine implicit 
estimates of a distribution function in the 
finite population context. Then we discuss 
asymptotic behavior of parameter estimates, and 
finally develop a finite population jackknife. 

C. Distribution Functions for Finite Populations 

I. Population Distribution Function 

To apply the von Mises theory it was first 
necessary to ascertain that finite population 
parameters could be written as functionals T(F) 
of some "distribution function" F and their 
corresponding estimators as T(F), where F is an 
estimator of F. 

Let YI'''" 'Y be the values of a variable 
N 

that are attached to the N elements of a finite 
population. The finite population version of F 
is found by noting that: 

N 
- 1 
Y = ~ 7 y.= lydF(y) 

i=l 1 

where 
#Y.<y 

1 

F(y)= N 

For notational simplicity we consider only 
scalar-valued Y. since the multivariate general- 
ization of F(y)Zis readily apparent. Simple 
inspection allows one to verify that other para- 
meters such as ratios, variances, regression 

and correlation coefficients, can also be ex- 
pressed as functionals of the appropriate 
distribution functions. 

2. Implied Estimates of F 

We examined estimators of Y for a variety of 
sample designs in order to determine what esti- 
mator of F is implied in each case. This was 
done by expressing each estimator of Y as 

^ ^ 

Y =lydF to determine an expression for F. As 
these examples are taken from Cochran (1977), 
we have followed his notation. In most cases, 
the implied estimator of F was intuitively 
appealing, but a few more interesting cases 
were also discovered. 

a. Simple Random Sample 

^ y= 1 n 
-- E 
n Yi 

i=l 

< 

^ #Yi -Y 
F(y)= ~ ,  the empirical cdf. 

n 

b. Single Stage Cluster Sample 

(i) Simple random sample of equal-sized 
clusters. 

^ n M 
~= i -6N r z 

i=l j=l 
^ n 

1 r. F (.y) 
F(y)= n i=l i 

Yij 

where F. is the distribution function for the 
m 

M elements in cluster i. 
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(ii) Simple random sample of unequal- 
sized clusters. 

The simple inflation estimator of Y is 
^ 

i N n 
= -- -- Z M, Y. 

M n m i 0 i=l 

I N n 
-- ? MF (y) F(Y)= M--~- n ii 

o i=l 

n 

l M . / n  
^ 1 

Note that F(~)= IdF(y)= i=l M /N which is 
O 

n o t ,  i n  g e n e r a l ,  e q u a l  t o  1 .  I f  we s t a n d a r d i z e  
F(y) by dividing it by its integral, we obtain 

n 

l MiFi (y) 
F (y)= i=l 

S n " 

l M. 
1 

i = l  

The c o r r e s p o n d i n g  s t a n d a r d i z e d  e s t i m a t o r  o f  
Y i s  

n 

Z "Mini ^ i-i 
Y= 

S n 

Z M. 
i=l l 

the usual ratio estimator of Y. 

(iii) PPS sample of clusters 

n 
y=! ~ 7 .  

n i=l l 

n 

1 F~ Fi(Y ) 
(Y)= n i=l 

(iv) General unequal probability 
sample of clusters 

Let ~. = nz i be the probability that cluster 
1 

i enters the sample and let W. = Mi/M o be the 
1 

relative size of cluster i. 

n W. 
y=l r -5-i- 

i=l Z i Yi 

FZ(y) i n W. = _ ? i 

-- Fi(Y ) . 
n i=l Zi 

Again, f dF# I and a standardized F can be 
round, as before. 

c. Stratifie d Sample 

L 
y= Z W.Y 

i=l m i 

n 

F(y)= Z WiFi (y) i = l  
^ 

where F i(y) is an estimator of F. the cdf for 
l' 

the elements in stratum i. The actual form of 
Fi (y) depends on the within-stratum sample 

des ign. 

d. Multi-stage Sample 

Implied estimators are obtained by replacing 

Fi(Y) with Fi(Y) in the corresponding single- 

estimator. The form of Fi (y) stage depends on 

the within-cluster sample design. 

e. Genera ! Unequal Probability S ampl e of 
Element s 

i n Yi 

i=l ~i' the Horvitz-Thompson estimator 

1 i &.. 
~lY) = ~ Z ~-- 

{i :yi< y} i 

This is another estimator of F with S dF# i. ^ 

Standardizing F by dividing by its integral 

gives I 

E 
{i:y i <-- Y}~i 

(y)= 
s n 

i Z -- 

i=l i 

The corresponding estimator of Y is 

^ 

y = 
S 

n Yi 
l 

i=l i 
n 

i Z - 
i=l i 

which is a ratio-type estimator that we have 
not seen before. 

3. Direct Estimation of F 

For each element in the population, de- 
fine a collection of variables 

Z i (y)= 

i Y.<_y 
l 

0 Y.>y 
i 

y e(_o~, o~) • 

Then for each y, F(y)= Z(y), the popula- 
tion mean of the variable Z(y). Standard 
methods for estimating population means can, 
therefore, be used to estimate F(y) for any 
y. In each case, the direct estimate for 
a particular design and estimation procedure 

will be the same as the implied estimate given 
earlier. 

While it is seldom of interest to estimate 
^ 

F(y) directly, expressing F(y) as an estimator 
of a mean allows easier study of its properties. 
For instance, if the sample design and estima- 
tor are such that 

^ 

E(Y)=Y, 
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then 

E[F(y) ]=F(y) • 

More importantly for our purposes, if 

~_ 

Y + Y as n,N+ ~, 
P 

then 

÷ F(y) as n,N÷ ~. F(Y) p 

In general, the estimators of F(y) assume all 
the properties of their companion estimators 
of population means. 

D. Asymptotic Distribution of Nonlinear 
Estimators 

We are now in a position to investigate the 
conditions under which 

~[T(F)-T(F)] ~ ~ft l(y)dF(y) as n,N÷ ~. 

The conditions, as stated in the following 
theorem, are quite general. 

Theorem: Let the sample design and an esti- 
mator of Y be given. Let F be defined impli- 
citly via 

Y= fydF. 

If 
^ 

(i) Y ~ Y as n,N + ~ 

( i i )  v(~-)-- 0 n as  n , N ÷ ~  

( i i i )  T ( - )  i s  c o m p a c t l y  d i f f e r e n t i a b l e  
a t  F, t h e n  

~ n - [ T ( ~ ' ) - T ( F ) ]  ~ ~ I t l ( Y ) d F ( y )  as  n ,N ÷ ~' .  

The p r o o f  f o l l o w s  d i r e c t l y  f rom Theorem 
4 . 2 . 1  of  Reeds ( 1 9 7 6 ) ,  which  g i v e s ,  i n  a v e r y  
g e n e r a l  s e t t i n g ,  t h r e e  c o n d i t i o n s  t h a t  must  
be s a t i s f i e d  f o r  t h e  r e m a i n d e r  t e rm  of  t h e  
T a y l o r  e x p a n s i o n  to  c o n v e r g e  to  O. These  
c o n d i t i o n s ,  a p p r o p r i a t e l y  r e w o r d e d  f o r  t h e  
a p p l i c a t i o n  h e r e ,  a r e  

(i) T is compactly differentiable 

(ii) F converges uniformly to F and 

(iii) The remainder term is a measurable 
random variable. 

Condition (i) is an assumption of our theorem 
and condition (iii) is trivial. 

The uniform convergence of F follows from 
two observations. Pointwise convergence of 
^ 

F(y) to F(y) is guaranteed by the convergence 
^ 

of Y to Y, as noted in the previous section. 
Lemma 8.2.3 of Chow and Teicher (1978), 
states that pointwise convergence of F(y) to 
F(y) for all y e(-~, ~ ) implies that 
converges uniformly to F in (-~, ~ ). 

The theorem was, in a sense, already proved, 
because the very general framework used by 
Reeds does not involve the usual restrictive 

assumption that the data yl,...,y n are inde- 

pendent, identically distributed observations 
from a distribution F. The key, in this 
setting, is that the sequence of functions 
converges uniformly and at the proper rate 
to a limit function F. Whether or not these 
are true distribution functions is irrelevant. 

The power of the theorem lies in the weak- 
ness of the assumptions. Sampling with 
and without replacement, equal and unequal 
probability sampling all fall within its scope. 

As in the case of iid random variables, 
the asymptotic behavior of T(F) is the same as 
the asymptotic behavior of the estimated mean of 
the variable tl(Yi;F). This can be seen by 

^ 
^ ^ 

observing that Y = I ydF(y) and T(F) - T(F)~ 
;t I (y;F)dF(y). An immediate implication 

of this fact is that T(F) will usually have 
an asymptotically normal distribution for 

same sample designs that Y does. 
Some specific results concerning asymptotic 

normality of Y are available. See Hajek (1960, 
1964), Rosen (1972 a,b), and Holst (1973). 
With these results we can verify the asymptotic 
normality of Y for several situations and hence 

^ 

assert the asymptotic normality of T(F) for 
these same situations. Use of a ratio estimator 
for Y, and hence for F, poses no problem here. 
If both the numerator and denominator, which 
are estimates of means, are normally distributed 
th@n application of the asymptotic approximation 
yields asymptotic normality and consistency for 
their ratio. 

In the following section, we examine variance 
estimation for non-linear estimators T(F). 

E. Estimation of Asymptotic Variance of T(F) 

We shall now assume that 
n 

T(F)-T(F)~ftl(Y)dF(y) = E w tl(Y ;F) 
i=l i i ' 

i.e., that (n,N) are large enough that the 
asymptotic approximation is valid. We shall 
also assume that 

n 
E w. - 1 although only the consistency of 

i=l 1 

F is necessary under our conditions. With 
the above formulation, on~ can see that the 
asymptotic variance of T(F) is simply the 
variance of the estimated mean of(t.(Yi;F). 

The important properties of t I .~F), for 
purposes are: 

(i) its form depends only on the 
parameter T(F) being estimated 
and is independent of the sample 
design; 

(ii) the value t I(Y.;F) is well- 
defined, thoug~ unknown, for 
every element in the population 

(iii) the population average of 
tl(Yi;F) is equal to 0. 
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Although the function tl(.;F) is often called 
the influence function, that name is not entirely 
appropriate for finite population sampling since 
the influence of an observation depends on its 
selection probability as well as the value of the 
observation. 

Following the logic presented in section B, 
suppose 

^ n x 

l and that v(Y) = h(Yl " Yn ) Y = i=l wiYi' ''" ' 
^ 

is the proposed estimator of V(Y). 
Since 

n 

T(F) - r(F)~i__E 1 Witl(Yi;F), we would 

propose using 

v(T(F)) = h (tl(Yl;F) ..... tl(Yn;F)) 

to estimate V(T(F)) if the arguments were known. 
The function h(., .... -) does depend on the sample 
design and will usually be an unbiased and/or 
consistent variance estimator for the particular 
sampling plan. 

As pointed out earlier, the Taylor and jack- 
knife methods of variance estimation can be 
differentiated by the implied estimates of 
tl(Yi;F) that are substituted in h(., .... .). 

For example, if the Yates-Grundy-Sen variance 
estimator is proposed for estimating 

V(Y), then tl(Yi;F) would be substituted for 

Yi in that variance estimator to give the Taylor 

estimate of 

V(T(F)). 
Although the jackknife variance estimator 

has a finite population analog, as we shall 
develop, its derivation from the iid case is 
not as straightforward. 

When (YI' .... yn) are realizations of lid 

random variables, jackknife pseudovalues are 
calculated as 

P. = nT(F)-(n- i) T(F i ) 
1 

where F . is the empirical cdf obtained when the 
--i 

• th 
m observation is omitted. This leads to using 
either 

P. - T(F) or P. - P as the implied "estimate" 
1 1 

of t l(yi;F). 

For unequal probability sampling, however, 
the usual definition of P. does not lead directly 

1 

to an estimator of t i(yi;F) for use in h(, ,.. . ,.). 

We have found a more general definition of a 
pseudovalue that applies for both equal and 
unequal probability samples. Define 

dF_i (y) = 

dg(y) - wi 
1 - w .  Y = Y i  

1 

dF(y) 
l-w. Y # Yi 

1 

th 
Then defining the i pseudovalue as 

1 -w. 
P. = T(F) - m [T(F) - T(F ill 

l W. -- 
1 

leads to 

I--,~T ¢ 

~iCYi;F) = Lw.i [T(F) - T(F_i)I 
i 

as the jackknife estimator of ti(Yi;F ). 

These values may then beused in the 
appropriate variance estimator. The algebraic 
form of the unequal probability pseudovalue 
is the same as that given by Quenouille (1956) 
and Hinkley (1977) for use with linear 
regression where the observations are 
differentially weighted. 

For stratified sampling,this definition 
of a pseudovalue differs from that used by 
Frankel (1971)and others. Their definition 
incorporates knowledge of the stratification. 

If the i th observation is omitted from stratum 
p, Frankel would define pseudovalues based on 

^ Ni F +N ^ 
F-Cpr) =i~p ~- i N -~ FpC-r) 

whereas  our  d e f i n i t i o n  i s  e q u i v a l e n t  to 

F_(pr ) = i - np% P --N- Fi 

N A ] 
__P_P (np-l)F 

+ N n p(-r) . 
P 

The two methods can be shown to be 
asymptotically equivalent, however. 

F. Summary 
We have shown that results derived from the 

von Mises expansion can be fruitfully applied 
in finite population sampling. After defining 
a finite population "cdf" and its estimation 
under various sample designs, we then demon- 
strated that the general first-order approxi- 
mation obtained by Reeds (1976) also applies 
for finite population sampling with unequal 
probability sampling. Using this approximation 
we were able to define jackknife pseudovalues 
and a jackknife variance estimatior for any 
design for which an estimator of 

A 

V(Y) exists. 

We have not yet attempted to show the 
consistency of the Taylor or jackknife 
variance estimators, but conjecture 
that this will hold, under weak 
conditions, whenever 
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