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1. Introduction

The focus of this paper is a proposed method
for analysing contingency tables of data obtained
from complex samples, which uses a model based
approach. The model is linear-Togistic as des-
cribed by Cox (1970}, with an addition of random
effects terms to allow for clustered sampling
schemes. The proposed method could provide for
traditional tests of independence and for smooth-
ed estimates of cell totals based on unsaturated
models as described for example in Purcell and
Kish (1979).

After an introduction to the problem and the
need for a solution, we give a brief review of
the recent literature on this issue. We follow
with a section on the distinction between model-
based and design-based inference in finite popu-
lation sampling. Finally, we consider the pro-
posed method of analysis and conclude with a dis-
cussion of the problems of such an analysis and
some tentative solutions.

The problem with analysing data from complex
samples is that the standard techniques for hand-
ling such data are based on an assumption of in-
dependent, identically distributed (jid) observa-
tions. For samples from finite populations, this
assumption is only valid for simple random samples
Such sample designs are rarely if ever used in
social surveys. Instead, they tend to be strati-
fied, clustered and many times unequal probability
sampling schemes.

That such violations of the iid assumption can
lead to erroneous inference in the case of cate-
gorical data analysis has been demonstrated using
Monte Carilo simulation techniques by Cowan and
Binder (1978) and analytically by Fellegi (1978)
and Rao and Scott (1979).

When faced with this dilemma, many data analysts
have resorted to using the traditional tools based
on iid assumptions, and noting that the violation
of these assumptions forces one to be extremely
cautious about the validity of any conslusions
drawn from their analyses. See for example Lit-
tle (1978).

If a {design-based) variance-covariance matrix
for the cell estimates is available, then one sol-
ution to some problems of analysis is to use Wald
statistics for testing hypotheses based on linear
combinations of cell probabilities or logs of cdl
probabilities. This technique can be used for
goodness-of-fit test, tests of independence and
tests of parameters of logistic and Tog-Tlinear
models in general. A description of the techni-
gue can be found in Grizzle, Starmer and Koch
(1968). Examples of its application to the ana-
lysis of data from complex samples can be found
in Koch, Freeman and Freeman (1975), Freeman and
Koch (1976), Freeman, Freeman, Brock and Koch
(1976), Freeman, Freeman and Brock (1977) and
Tomberlin (1979).

Certainly, the calculation of the variance-
covariance matrix of estimates of cell proportion
is to be encouraged, but unfortunately, this is
not common practice. Indeed, for contigency
tables of moderately large dimensions, the size
of the associated variance-covariance matrix is
so large that the routine calculation and report-
ing of such matrices seems quite unlikely.
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Using models for cluster sampling, Rao and
Scott (1979) give approximate methods for test-
ing goodness-of-fit hypotheses which are based
on design effects for cell proportion estimates.
They argue that information about design effects
is more commonly available, even when information
about covariances is not available.

Evidently, an approximate solution to the pro-
blem of testing hypotheses about independence of
ctassification variables is not so simple. How-
ever, after an extensive empirical analysis based
on data from the 1971 British General Household
Survey, Scott (1980) tentatively reports that un-
Tike the case of goodness-of-fit tests, tests of
independence do not seem to be sensitive to the
sample design. This 3s comforting news, but no
reason for complacency. The General Household
Survey is but one example, and one shouid not be
too quick to generalize from it.

The methods so far discussed pertain only to
the problem of testing hypotheses. As we have
stated earlier, many times one is interested in
estimates of finite population and super-popula-
tion parameters. Also, these methods are, for
the most part, design-based. Rao and Scott (1979
make use of models for the purpose of approximat-
ing a function of the eigenvalues of the variance
~-covariance matrix of the cell estimates. They
do not make use of the structure of the population
for estimation purposes.

Purcell and Kish (1979) described a method for
estimation for small areas which is based on fit~
ting log-Tinear models to the data and producing
maximum Tikelihood estimates of cell proportions.
In a similar vein, Dempster and Tomberlin (1980)
proposed a method for fitting logistic models
with random effects terms to data from a complex
survey for purposes of estimation of census under-
count for small areas. It is this method which
we describe here.

Before doing so, let us briefly consider the
distinction between design-based and model-based
inference in the context of finite population
sampling.

2. Design and Model-Based Inference

The foundations of inference in the context of
sampling from finite populations are presently in
a state of controversy. For inference about fin-
ite population parameters, such as means and
totals, the elements of the controversy, are ex-
cellently described in the review paper by TMF
Smith (1976) and the discussion which follows it.

In the extreme, the classical sampling stat-
istician would argue that all inference from
finite population samples derives from the rand-
omization hypothesis, and thus depends on the
sample design rather than on the structure of
the population. This notion of inference in fin-
ite population sampling dates back to the influ-
ential paper by Neyman (1934) and is the basis
of much of the development found in the tradi-
tional sampling textbooks, such as Cochran (1977)
Kish (1964) and Hanson, Hurwitz and Madow (1953).
Some authors, such as Kish and Frankel (1974)
would argue that the design-induced randomization
is of prime (if not sole) importance when estim-
ating regression coefficients and other parameers
which most statisticians would regard as model




parameters. For example, in their study of dif-
ferent variance estimators, Kish and Frankel
(1974) define the regression parameters to be
estimated as the least squares solutions which
would be obtained from the finite population as
a whole if it were available. The sampling var-
iance of estimators of these parameters is de-
fined to be the variance over repeated samples
from the finite population. This contrasts with
the classical definition of the variance of est-
imators of regression coefficients which is
usually conditional on the observed values

of the "carriers" or "independent" variables and
is taken over repeated realizations of the model.

On the other hand, there are those who seek to
bring finite population inference into the main-
stream of statistics by introducing models which
attempt to describe the structure of the popula-
tion. These range from the super-population re-
gression models of Royall (1970), which lead to
predictive estimates, to the Bayesian models of
Ericson (1969) and Scott and Smith (1969). In
the extreme, these approaches can lead to a total
rejection of randomization and probability samp-
Ting. Indeed, Royall deomonstrates that in the
case of estimating the population total for a
variable Y, if a super-population model specify-
ing a Tinear regression of Y on some other vari-
able x, which is known for all elements in the
population, is assumed, a purposive selection of
the elements having x values at the two extremes
of the population will yield an estimator with a
smaller variance than could be expected from
taking a simple or proportionately stratified
random sample. Later he argues that such a stra-
tegy is not in general advisable because of pos-
sible inadequacies in the model.

By assuming that the sample distribution of
the variable x is the same as the population dis-
tribution, Royall and Herson (1973) show that the
estimate for the population total remains (model)
unbiased, even when the model is false. This
property is referred to as balanced sampling.
Later, Holt (1975) argues that randomization or
restricted randomization can lead to sampleswhich
are approximately balanced and are thus robust
against inadequacies in the super-population
model. Ericson (1969), following Savage (1962)
before him, argues that randomization can lead to
the reasonableness of the assumption of exchange-
ability which is necessary for his Bayesian in-
ferences about finite population parameters.
Neither Holt, in a frequentist super-population
framework, not Ericson in Bayesian terms complete-
1y justifies the role of randomization in sample
surveys. Their arguments appear more designed
to justify the use of super-population models or
Bayesian inference in spite of the fact that ran-
domization seems necessary.

Rubin (1978) seems to have combined both of
these approaches by considering joint Bayesian
prior distributions for the finite population
variables and the sample itself. Ignoring, for
simplicity, the aspects -of his paper pertaining
to item non- response th1s joint prior is given
by, h(%.Y,$) = f(X,Y) k(S|X,Y). Here, X repre-
sents a matrix of” data for the finite population
which isknown for all members of the population.
This could be made up of the labels only, or
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could consist of several auxiliary variables.

The matrix

Y represents the data, for which values are re-
corded for sampled units only, and § is a vector
indicating the sampled units. $ would be a vec-
tor of 0's and 1's in the case of a single stage
sample, and possibly more complex for a multi-
stage sample.

This factorization of the prior is useful in
that f(X,Y) is the prior distribution for the
finite population and k(SIX,Y) represents the
sampling mechanism. Let x and y be realization
of Xand S, and Y = ¥ represent a
particular set of observ%f1o£% (1 for sampled
units and the unknown values of % }or unsampled

units, Y é Rubin shows that if the probability
of the o served pattern of sampled units given
(x,y 1% S[x,y , takes the same known value
for al

valués of the unkown Y gy, then the samp-
ling mechanism can be ignored” }n essense, this
condition for ignorability means that the popu-
lation units have exchangeable priors conditional
on the (xsy(1)). Exchange-ability can be acheived
either as the'usual Bayesian subjective prior as-
sumption, or as Ericsen would suggest, through
randomization.

This ignorability of the sampling mechanism is
implicitly assumed on some level by all mode
Thompsen (1978) assumes explicitly that the samp-
1ling and model mechanisms are stochastically in-
dependent in his discussion of regression analy-
sis from complex samples. T.M.F. Smith (1980) in
a paper comparing model-based and design-based
inference for regression analysis of complex sam-
ple data also touches on the problem of the rel-
ationship between the model and sampling distri-
butions.

It would seem that methods which seek to de-
scribe both the model and sampling distributions
as well as the relationship between the two are
1ikely to be more successful than those which
concentrate on one or the other. Completely de-
sign-based inference can be very inefficient
since it ignores much of the population structue
which is often very informative. On the other
hand, completely model-based inference is poten-
tially misleading sinceit ignores the effect of
model inadequacies and, as important, ignores
possible dependencies between the sampling mech-
and the model distributions which could distort
the distribution of the sample.

Having said all this, for the model-based
method of contingency table analysis considered
in this paper, we will, like Thompsen (1978), as-
sume that the model and sampling mechanisms are
independent. In any practical application, the
connection between these two should be explored
and included in the model if necessary, possibly
using techniques similar to those suggested by
Rubin (1978).

Much of the work on finite popuiation infer-
ence focuses on the problem of estimating finite
population summary measures such as means and
totals. When it comes to inference about models
and model parameters (e.g. regression, coeffic-
ients, independence of classification variables,
etc.) the controversy increases. Some, such as
Rubin (1978) and Lax (1980) would argue that
since models are never entirely accurate, model



parameters are hever interesting in and of them-
selves. The finite population {or some expanded
definition thereof) is all that should be of in-
terest. Others would argue that model parameters
are of interest in themselves both for under-
standing the relationship between variables and
for making predictions in new situations. Econ-
ometricians, for example, concentrate on finding
"good" estimates of model parameters. See. for
example Theil (1971). McKennell (1962) and
Fields and Tomberlin (1978) describe studies
which attempt to build models for the reaction
of residents to airplane and railway noise on
the bases of social surveys. The purpose of
such models is to aid in the siting and constru-
ction of possible new airports and rail lines.
It would seem that in these cases, model para-
meters are of interest.

In the case of discrete data analysis, Bishop,
Fienberg and Holland (1974) present many in-
stances where hypotheses can be framed in terms
of log-linear model parameters. So again, they
consider model parameters to be of some interest.

Even among data analysts who agree that para-
meters are of interest, there is still disagree-
ment. Kish and Frankel (1974) investigate the
problem of estimating regression parameters and
multiple correlation coefficients from survey
data. They define the parameters of interest to
be the usual Tleast squares estimates which would
be obtained from the entire finite population if
it were available. In this respect they argue
that such finite population parameters can be
regarded as descriptive statistics.

Even some model based data analysts such as
Fuller (1975) consider design-unbiased estimates
of complete finite population, least squares
(model unbiased) estimates of super-population
model parameters. In an empirical study by
Smith (1980), such procedures are shown to be
quite ineffecient when the sampling mechanism
can be considered ignorable in the terminology
of Rubin (1978). On the other hand, he allows
that they are robust against those cases where
the sampling mechanism is not ignorable.

In this paper, we consider the parameters of
interest to be the (super-population) model par-
ameters and since we assume that the sampling
mechanism is ignorable, conditional on other re-
corded information, we use model-based, maximum
likelihood techniques for inference.

3. Random Effects Logistic Models

In this section a method for analysing fre-
quency data from complex samples is proposed
which utilizes a logistic model with random par-
ameters. For some time now, logistic models have
been used for the analysis of data when the re-
sponse variable has two categories. The tradi-
tional usage of the model is well described by
Cox (1970), among others. It is a special case
of the log-Tinear model described by Bishop,
Fienberg and Holland (1974), and the techniques
described here could also be applied to the fit-
ting of log-Tinear models.

Dempster and Tomberlin (1980) considered the
problem of estimating census undercount for
small areas on the basis of a post-enumeration
survey (PES) by using logistic models. Since
that proble#: was the motivation for the proposed
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analytic technique, we will use it here to illus-
trate the models.

Let the symbol q, with appropriate subscripts,
represent the probability that an individual was
missed in the census, and let p = 1-q denote the
complementary probability of being counted. The
subscripts attached to p and q define levels of
factors which affect the response. For purposes
of illustration we will assume that categories
are defined for sex, age groups, and race groups
represented by subscripts u, v, and w, respectiv-
ely. We will represent the triple (u,v,w) by the
single symbol u for convenience. Let us assume
we have a three stage survey of individuals in
households. Let the symbol v denote (i,j.k,1),
where i represents Primary Sampling Unit (PSU),

j represent Secondary Sampling Unit (SSU) within
PSU, k represents household within SSU, and 1
represents an individual within a household.

A typical logistic model might assume the
mathematical form )

Togit(pyy) = 6y,
where the logit function is_defined by,
Togit(p) - 1n{1{’—p-}

(1)

(2)

Note that,
logit{p) = 1n{g} = -1n£§—} = -logit (q) (3)

The subscript u on 6, in (1) indicates that the
logit is allowed to depend on the sex, age, race
combination defined by p=(u,v,w). The absence of
any v-terms indicates that there is no yariation
in the undercount rates which can be associated
with household or areal (ie sampling unit) char-
acteristics once age, race and sex have been in-
troduced to the model. If a model such as (1)
without v-terms is appropriate, then one could
analyse the data by the usual techniques for
analysis of logistic models.

In the case of measuring census undercount, it
seems reasonable to expect that a model like that
in (1) would not describe all the variation in
undercount rates. It is conceiveable that under-
count rates for local areas (SSU's) might vary
more than could be explained by differences in
sex-age-race compostion alone. One model which
would allow for such variation would be

Togit(p,,) = 6, * ¢5(4) (4)

One could speculate on more complicated models
than (4), and include the possibility of inter-
action between the effect of sex, age, and race
and geographic characteristics. There are, how-
ever, two reasons which make such models difficult,
if not impossible to analyse using existing tech-
nology.

First, in most cases, particularly the case of
national, multi-stage survey such as a PES, the
parameter set for models which incorporate effects
due to the various stages in the sampling proced-
ure, grows rapidly as the models become more com-
plex. Such large numbers of parameters cannot be
handled by classical inference methods, but can
be managed by considering them as random In
addition, since the sample design is a multi-stage
cluster sample, there would be many v-combinations
for which no individuals were observed. Such sit-
uations in the context of design and analysis of
experiments lead to these parameters being treated
as random effects. Not only should this allow for



tests of hypotheses regarding these geographical
parameters, but, as we shall see, it also leads
to empirical Bayes methods of estimation of
totals for small subgroups of the population.

The basic idea is to include terms in the
logistic model which describe variation in the
Pyy Within each of the stages of the multi-stage
design. Specifically, we may write

Togitlpuy) =6, + 9500) * %(iz),  (5)
where the ¢; are regarded as drawn from a 5
N(0,o%) population, the ¢j(i) from a N(Q,0 )
population, and the ¢y (;:y from a N(0,o3) popu-
lation. These random é%%gcts imply that indivi-
duals in a PSU have a common element entering in-
to their p ., and the same occurs for nested
classes of 1ndividuals in a common SSU and a
common household.

Without further research it_remains unglear
how accurately the variances o;,gﬁkand g3 can
be estimated from sample data, nor is it easy
to see, without repeated analyses of thg data,
what effect different choices of the o would
have on final undercount estimates. Thé models
do, however, capture levels of variation which
a priori judgement alone strongly suggests must
underlie such mu1t1~stage survey data.

Once values of the ci are tentatively adopted,
it becomes possible to introduce corresponding
factors into the Tikelihood analysis, and hence
produce approximate normal posterior dustribu-
tions for the logit(puv) which automatically and
correctly weight undercount frequencies observed
at the various levels of the multistage design.
For example, the posterior mean of logit(p v)for
an individual 1(ijk) who appears in the PE§ auto-
matically uses information from the individual's
household, SSU, and PSU. More remarkably, a
posterior mean logit(p v) can be found for an
individual 1(ijk) not in the PES, and again the
PES counts are automatically weighted, where
the weighting scheme depends on which if any
among i, j(i), or k(ij) appear in the sample.
Similarly, we can find posterior variances which
appropriately incorporate the available infor-
mation about each individual.

The basic mathematical development facilitat-
ing approximate computation of the required
posterior means and variances appears in Laird
(1975). Some initial experience with variance
estimation is found in Miao (1977). Neither of
these papers treats examples of the degree of
complexity.required for a real multi-stage survey
so that detailed research and development will be
needed, but the principles are in place.

The problem of testing hypotheses under this
framework needs even more work. One could tmagine
making,interval estimates of the variance compon-
ents oj for model (5), and noting whether they
included the origin. This kind of procedure
whould produce reasonable results for the pur-
poses of model fitting. As is usual for mode]s
with random effects, if a variance component is
not different from zero, then the corresponding
set of random parameters should be dropped from
the model. The tools for hypothesis testing re-
quire much more research.

4, Conclusion

In this paper, we have presented an outline

for a means of analysing categorical data ob-
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tained by complex sampling schemes. It should
be emphasized that this is a proposal, and much
remains to be done before it is established as
a workable option for data analysts.

Once the technology is in place, there will
remain at least onegbstacle to the widespread
adoption of the techniques. Data from many
surveys, particularly those conducted by
government agencies, are widely used by groups
other than those who actually design and im-
plement them. Confidentiality problems alone
would make it very difficult, if not impossible
for the detailed micro-data necessary for this
type analysis to be provided to all users. In-
deed, most users would have neither the inclin-
ation nor the ability to carry out such an
analysis. On the other hand, as the technology
does become avialable, it behooves these
survey organizations to carry out some of these
analyses on their own. This would enable them
to warn or reassure users as to the effects of
clustering in the sample on ordinary contingency
table analyses. Hopefully, observations similar
to those reported by Scott (1980) regarding data
from the General Household Survey in Britian
will apply to most other such surveys.

Our observations on the relationship between
the sample design and the model should have
some impact on sample design. If one of the
major purposes of the survey is to provide
data for complex analyses, then the design
should be planned so as to facilitate these
ends. Specifically, data generated by sampling
schemes which can be treated as ignorabie in
the sense intended by Rubin (1978) are much
simpler to analyse.
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