
DESIGN EFFECTS FOR LINEAR CONTRASTS OF PROPORTIONS AND LOGITS 

James M. Lepkowski and J. Richard Landis 
Survey Research Center and University of Michigan 

SUMMARY 

The design effects of two measures of inter- 
action, linear contrasts of subclass proportions 
(L) and l o g i t s  ( L ) ,  a r e  examined  a n a l y t i c a l l y  
and e m p i r i c a l l y ,  g The e f f e c t s  o f  c l u s t e r e d  
s e l e c t i o n  a r e  e x p r e s s e d  i n  t e r m s  o f  m e a s u r e s  o f  
i n t r a c l u s t e r  h o m o g e n e i t y  and m e a s u r e s  r e f l e c t i n g  
t h e  d e g r e e  o f  c o v a r i a n c e  o f  c l u s t e r  means f o r  
d i f f e r e n t  c h a r a c t e r i s t i c s  a c r o s s  c l u s t e r s ,  o r  
c r o s s - h o m o g e n e i t y .  The d e s i g n  e f f e c t s  L and L_ 
a r e  shown t o  be  n e a r l y  i d e n t i c a l .  Three  d i f f e r -  
e n t  m o d e l s  a r e  p r o p o s e d  f o r  t h e  d e s i g n  e f f e c t s  o f  
t h e s e  l i n e a r  c o n t r a s t s  i n  t e r m s  o f  a w e i g h t e d  
a v e r a g e  o f  t h e  d e s i g n  e f f e c t s  o f  t h e  s u b c l a s s  
p o p u l a t i o n s ,  t h e  i n t r a c l u s t e r  h o m o g e n e i t y  and t h e  
c r o s s - h o m o g e n e i t y  q u a n t i t i e s .  The d e s i g n  e f f e c t s  
a r e  e s t i m a t e d  f o r  f i f t y  t a b l e s  g e n e r a t e d  from 
d a t a  f rom t h e  H e a l t h  E x a m i n a t i o n  S u r v e y .  They 
a r e  shown t o  be  s m a l l e r  t h a n  t h e  a v e r a g e  s u b c l a s s  
p r o p o r t i o n  d e s i g n  e f f e c t s  from t h e  t a b l e s  and to  
depend  on t h e  s i z e  o f  t h e  a v e r a g e  s u b c l a s s  p r o -  
p o r t i o n  d e s i g n  e f f e c t .  

1. INTRODUCTION 

Increasingly, design effects and functions of 
design effects are being used to adjust analytic 
statistics computed under independence assump- 
tions for complexities in the sample design. As 
proposed by Kish (1962), design effects are sum- 
mary measures of the effects of clustered sample 
selection and other features of complex survey 
sample designs on the precision of estimates. 
They are useful in the planning of survey samples, 
especially when models for design effects are 
available which utilize measures that are some- 
what "portable" across survey designs (see e.g., 
Kish, Groves and Krotki (1976)). 

The analysis of contingency table data arising 
from complex sample surveys has recently been the 
focus of developments concerning such design 
effect adjustments. Since many of the variables 
measured in such surveys are reported on categor- 
ical data scales, computational techniques such 
as iterative proportional fitting or weighted 
least squares are frequently used to fit log- 
linear or linear models to the corresponding 
multidimensional contingency tables. Conse- 
quently, the effects of complexities in the 
sample design on the resulting statistics are of 
considerable interest to analysts. 

For instance, Fellegi (1978) suggests that the 
ordinary chi-square statistic for independence 
developed under simple random sample assumptions 
be divided by an average design effect for the 
proportions in the table to adjust for the 
effects of a complex sample design. Rao and 
Scott (1979) find such an adjUstment overly con- 
servative. For a contingency table with r cells, 
and ~p-} and ~deff (p~)} denoting the set of 
proportions and desig~ effects of the proportions 
in the table, respectively, they suggest dividing 
the ordinary chi-square test statistic by a 
factor [i/(r-l)]~.(l-p.) deff (p.). This factor 
will be larger th~n an3average d~sign effect 
since (l-pj) <__ i; hence the adjustment is less 

conservative. 
In the subsequent discussion, design effects 

for two statistics useful in the analysis of 
categorical data will be examined. These will 
suggest the size and nature of factors appropri- 
ate for adjustment of ordinary chi-square test 

statistics in some analytic problems. Two 
approaches to the examination of these design 
effects will be developed. Analytically, the 
design effects will be modeled in terms of 
synthetic measures of homogeneity following Kish 
(1965, chapter 5). Empirically, design effects 
and various parameters suggested in the analytic 
development will be estimated from two survey 
data sets. These developments will be utilized 
to examine the nature of design effects and of 
adjustments to ordinary chi-square test statis- 
tics applied to data from complex sample designs. 

2. NOTATION AND BACKGROUND 

Consider the factor-response framework for the 
analysis of multidimensional contingency tables 
(Bhapkar and Koch, 1968) illustrated in Table I. 
Variables used to classify the sample elements 
into the cells of the table are of two types, 
factors and responses• The factors are variables 
that are used to classify sample elements into 
subpopulations or subclasses, and are often 
referred to as independent variables. The 
response variables are used to classify elements 
into categories of a response profile and are 
often referred to as dependent variables• The 
terminology of experimental design is thus 
borrowed to clarify features of the analysis of 
categorical data from observational studies• 

Table i: An (s x r) Sample Contingency Table 

Response categories 

Subclass 1 2 ... r Total 

1 n ii n12 

2 n21 n22 

• 

s n n s sl 2 

• .. nlr n 1 

• -. n 2 r  n 2 

... n n 
s r  s 

Let ~.. denote the proportion of elements in a 
finite p~ulation from which a sample is to be 
selected that are in the ith subclass and are 
classified into the jth category of the response 
profile corresponding to Table i. Let 
Pi" = nij/ni denote the corresponding sample pro- 
po~tionl I£ the selection procedure is simple 
random sampling, denote the variance of Pij as 

~ j  = ~ i .~ l -~ i j ) /n  i. 
Suppo~ , however, that the sample selection is 

clustered where A primary selections or clusters 
each of k elements are selected such that 
~ k~ = n,~the sample size. Let d~j denote the 
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design effect of Pij, ~" = n./A the average clus- 
ter size for the ith su~ i class, and Roh.. a mea- 
sure of the homogeneity within clustersl]for 
elements in the (i,j)th cell• Then following the 
proposed model suggested in Kish, Groves and 
Krotki (1976), the variance of Pij is 

Var (Pij) = c~2.. d2.. /n. 1J 13 i 

= o 2. [i + i) Rohij] . (I) ij (bi- /ni 

If a model for the variance of Pii in (1) is 
applied to data from a complex samplb, the 
homogeneity term Roh.. reflects more than a 
clustering effect, i~Jparticular the effects of 
stratification, multi-stage selection, weighting, 
and other design features. Empirical investiga- 
tions of Rohij (e.g., Kish, Groves and Krotki, 
1976) indicat~ that Rohij > 0, that d~-~j > i, and2 
that Rohij is useful not only for estimating dij 
for one survey but is portable to other surveys 
and new sample designs. 

For contingency tables derived from data 
obtained by clustered sample selection for which 
subclass proportions are to be compared, the 
covariance among subclass proportions also must 
be considered. In simple random sampling such 
covariances are zero; in clustered sampling the 
covariance is usually greater than zero. Let 
Cov (pi ~, Pi' ") denote the covariance of the two 
subclasJs propgrtions p;j and p;,j, i~i', and let 

Rii, i =Cov (Pi~, Pi '~/ [Var ~Pi~) Vat (p~,~)]½ 
denote the subclass c6rrelation. JThe subclass 
covariance and correlation are induced by the 
homogeneity arising from the clustering in the 
sample design. Just as homogeneity is a useful 
concept for examining the nature of design effects 
for proportions, it is possible to propose a 
subclass cross-homogeneity, denoted Rohsii,i, to 
examine the effects of subclass covariance -and 
correlation on comparisons of subclass propor- 
tions. Subclass cross-homogeneity is a measure 
of the tendency of elements classified into the 
same response category but different subclasses to 
be in the same clusters. In particular, let Rii, j 
be expressed as 

Rii,j = (bii,-l) Rohsii,j/dij di, j , (2) 

Where b me2n/[ (ni-i + ni,-l)A] denotes an average 
harmoni ii of subclass sizes n i and n i, across 
clusters and dij = / d~j, i~i'. That is, 
expression (2j suggests that subclass correlation 
depends on average subclass sizes, on subclass 
proportion design effects, and on some measure of 
cross-homogeneity between the two subclass pro- 
portions. 

Subclass cross-homogeneity is important because 
it can affect the variance of comparisons and con- 
trasts of subclass proportions. If two subclass 
proportions with similar subclass homogeneities, 
Rohij , are based on elements distributed in dif- 
ferent clusters, Rohsii,j can be smaller than 
Rohi-; in fact it can be negative. However, the 
empi~rical rule of thumb for data from complex 
samples, 

(~j/ni) + (°i'j/ni') < Var(Pij - Pi'j) 

< Var(Pij ) + Var(p i,j) (3) 

(Kish 1965, section 14.1), suggests that, in 
practice at least, 0 < Rohsii, j < Rohij. As a 

result, design effects for differences of sub- 
class proportions are smaller on the average than 
those for the subclass proportions themselves. 

3. LINEAR CONTRASTS FOR SUBCLASS PROPORTIONS 

Consider the design effects of linear con- 
trasts of subclass proportions and subclass 
logits for a fixed level of the response category 
j (hence the subscript j is ignored). For both 
contrasts let {c i} be a set of fixed, known 
constants such that ~ici = 0. Furthermore, for 
the ith subclass let h i = ~n [Pi (l-Pi)] be the 
observed sample logit. Then let 

L = [iciPi (4) 

be the linear contrast of subclass proportions 
and let ^ 

L =~. c ~  (S) 
g i ii 

be the linear contrast of sample logits under 
investigation. 

Models for the design effects of (4) and (S) 
can be proposed under various sets of assumptions 
regarding parameters such as the subclass propor- z 
tion design effects d i and the subclass corre- 
lations, Rii,. For ~his purpose, the variance of 
the linear contrast L in (4) can be expressed as 

^ 

Var(L) = ~ic~Var(Pi) + 2~i<i, c ic i, Cov(Pi,Pi,) 

= Zi Ci 02. e 1 di / ni 

+ 2 ~i<i,cici, (bii'-l) 

• Rohsii,oioi,//(nin i,) . (6) 

The first terms on the right hand side of (6) are 
a function of subclass homogeneity, Roh i, through 

2 the design effects di, while the other terms are 
a function of the cross-homogeneities, Rohsii,. 
On the other hand, the simple random sampling 

A 

variance of L can be expressed as 
^ 

zo.2 
VarsR S(L) = ~.ici z/ni ' (7) 

since the covariances among subclass proportions 
are zero. Consequently, the design effect of L 
can be expressed in terms of (6) and (7) as 

Deff(L) -- Vat(L) /VarSRs(L ) . (8) 

For the linear contrast of subclass logits, 
L_, it is useful to examine first the design . 
e~fect of the subclass logit, ~.. Since ~. is a 
nonlinear function of the subcl~ss proportion Pi, 
its complex sample and simple random sample 
variances can be approximated by a first order 
Taylor series expansion as 

Var(~i) - Var(Pi)/[~i(l-~i)]z (9) 

and 

VarsRs(~i) - VarSRS(Pi)/[~i(l_~i) ]2 
(io) 

As a result the design effect of ~., the ratio 
of (9) to (i0), is identical to d~ I, the design for 
the subclass proportion Pi. Because of this 
identity, the design effect of Lg^is similar, 
although not identical to Deff(L). For this 
reason, the subsequent development focuses on 

^ 

Deff(L) in examining models for design effects of 
linear contrasts. 
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4 .  MODELS FOR D e f f ( £ )  

Several different models for the design effects 
of linear contrasts of subclass proportions can 
be posited under various sets of assumptions 

• 2 2 
about the relatlve values of di, ~-~., R~,, Roh i, 
and Rohsi=,. These models can be u~ilized to 
explain t~e nature of Deff(L) and provide 
estimates directly from the model. The following 
subsections enumerate some specific models of 
particular interest to this investigation. 

4.1 Ordinal Model 

The empirical model of Kish and Frankel (1974) 
for design effects of analytic statistics and the 
empirical rule of thumb summarized in (3) suggest 
that Deff(L) is greater than 1 but less than an 
average of subclass proportion design effects 
denoted as d 2~ That is, the ordinal model for 
Deff(L) can be given as 

1 < Deff(~,) < a 2 (ii) 

The relationship in (ii) describes the range of 
values expected for Deff(~,),Abut it does not 
provide an estimate of Deff(L) directly. The 
upper limit, ~2 , is a conservative estimate of 
Dell(L), as suggested by Rao and Scott (1979), 
for instance, while unity is an uninteresting 
lower bound. 

4.2 proportional Reduction Model 

Let ~2 denote the weighted average of subclass 
proportion design effects 

a z = ~ (c 2. qz d 2. / ~ (c 2. ~2 w i l i/ni ) l i l i/hi ) " (12) 

Considering the relation in (ll), define the 
proportional reduction of Deff(L) relative to the 
weighted average a z to be 

W 

Pref(£) = [Deff(~,) _ dw ]-2/d w-z 

= [2 ~i<i' ci ci' (bii'-l)R°hsii ' °ioi '/ 

, c 2. o 2. d~/n i (13) /(nini )]/Yi i 1 

From this definition the proportional reduction 
model for Deff(~) can be expressed as 

Deff(L) = a 2 [i + Pref(£)] . (14) 
W 

Obviously Deff(L) < ~ whenever Pref(L) < 0. 
But the nature of Pref(L) is not obvious from 
expression (13). A detailed discussion of the 
conditions for which Pref(L) < 0 is given in 
Lepkowski (1980) and is not elaborated here. 

4.3 Attenuation Model 
,% 

Consider the subclass difference L = p. - pj, 
which is a special case of L with c.=-c.,=11 a~d 
c i,,=0 for all i''#i,i'. Suppose t~at ~he 
homogeneities for the two proportions are the same 
(i.e., Roh i = Roh i, = Rob), and let 
Rohsii, = ~Roh, for some constant ~. Also, 
suppose that the population subclass proportions 
corresponding to Pi and Pi'' namely ~i and ~i'' 
are in the same general range of values so that 
the element variances o~ and ~, are approximately 
equal, i.e., q~ = d~, =~oz. Let 
B = (W 2. n.+W~?n.,)~/ [(W 2. + W2.,) A] be a weighted 
W 1 ± I- I 

average o# the subclass sizes n i and ni, where as 
before W i = cioi//ni, i=l ..... s. Within this 

context th~ attenuation model for the design 
effect of L can be given as 

Deff(£) = 1 + (bii,-1)(l-~)Roh. (15) 

Under these assumptions the design effect for 
a subclass difference can be expressed in a form 
similar to expression (i) for means, but with an 
attenuated homogeneity for the subclass difference 
(l-~)Roh. For Roh > 0 and 0 < ~ < i, this effec- 
tive homogeneity for the subclass difference will 
be smaller than Roh, and hence Deff(~) < d 2. The 
attenuation effect in (15) is a direct effect of 
the cross-homogeneity between Pi and Pi'' 

Extending the attenuation model in (15) for 
subclass differences to an attenuation model for 
linear contrasts in general requires stronger 
assumptions, especially about subclass sizes. 
Such a model for linear contrasts of subclass 
proportions in general is given by 

Deff(£) : I + (bH-l)[(l-~)Roh] (16) 

,where bH = (~.ic~)/[ (~ "c2"n-1)A] is a harmonic mean 
i i 1 - 

of subclass sizes across clusters. Expression 
(16) is useful for modeling Deff(L) provided 
values of ~ are available (values for Roh and 
(b~-l) should be available already). The value 
oF'~ for linear contrasts with more nonzero 
values of the constants c i will be larger than 
for subclass differences and therefore Deff(L) 
is less than the design effect for a subclass 
difference. 

5. EMPIRICAL INVESTIGATIONS 

Estimates of the design effects and various 
other related quantities were made for contin- 
gency tables from two survey datasets. The first 
dataset was obtained from the National Center for 
Health Statistics Health Examination Survey Cycle 
II (HES). The HES is a large multi-stage national 
probability sample of 7119 children ages 6-11 
conducted from 1963 to 1965. The sample design 
is highly clustered (b = n/A = 178) and the 
homogeneities for the dental variables from that 
dataset considered here are large (some as large 
as 0.1-0.2). As a result the design effects for 
the HES are large (most larger than 2.0) facili- 
tating the examination of small subclasses. The 
second dataset is the Fall,- 1974 University of 
Michigan Survey Research Center Omnibus Survey 
(OMNI) of 1519 adults. The variables concern 
attitudes about social, economic, and political 
issues and have smaller homogeneities than those 
for the HES dataset. With small average cluster 
size (b = n/A = 15), the design effects for the 
OMNI are smaller than for the HES being mostly 
between 1.0 and 2.0 for the subclass proportions. 
The OMNI results contrast with the HES results 
and illustrate the limits and utility of the 
models suggested earlier. 

Fifty 2 ° tables in which two of the three 
variables can be considered factors were generated 
from each dataset. Specifically five subclass 
configurations were created and applied to ten 
different dichotomous response variables to 
generate 50 (4 x 2) tables in each dataset. Two 
linear contrasts for interaction among the two 
factors, one of subclass proportions 
(~ = pl- p -p +p )and the other of subclass logits 

2 3 4 (E g = ~i-~2-~3+~4 ), were estimated together with 
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their design effects, deff(~,) and deff(~g), 
respectively, for each table. In addition, sev- 
eral other related quantities were estimated for 
each table. In particular, the six possible sub- 
class difference design effects were estimated 
for each table and averaged, the average being 
denoted as diff for a table. The average of the 
four subclass proportion design effects (denoted 
as a 2) and the proportional reduction in design 
effect of Deff (L) relative to a 2 (denoted pref 
(L)) were also computed. The subclass homoge- 
neities were estimated as roh. = (d2.-l)/(b.-l) • 

• i i ' 
while the subclass cross-homo~eneltles were 
estimated as rohs.:~, = cov(p.,p.,)/(6..,-l). 

± ½ 1 1 ii 
[ var~oq LPi) varSRSLPi, ) ] . Finally, the value 
of t~attenuation factor ~ was estimated for the 
linear contrast L as 

= [d 2 - d e f f ( £ ) ] / ( a  2- 1) . (17) 

These results are examined first for a single HES 
table and then summarized by dependent variable 
for all I00 tables from the two datasets. 

5.1 An Example  f rom t h e  HES D a t a s g t  

C o n s i d e r  t h e  (4 x 2) t a b l e  i n  Tab le  2. The 
q u e s t i o n  t o  be c o n s i d e r e d  and summarized  i n  t e rms  
o f  t he  l i n e a r  c o n t r a s t s  L and Lg i s  t h e  e x t e n t  t o  
which t h e  p r o p o r t i o n  o f  c h i l d r e n  w i t h  no 
P e r i o d o n t a l  Index  v a r i e s  w i t h i n  a f ami ly ,  income 
group for different ages. That is, the contrasts 
measure the interaction of family income and age 
for Periodontal Index. As family income in- 
creases, the proportion of children with no 
Periodontal Index increases for both age groups. 
However, the age groups effect seems to be 
stronger for low family income children. 

Table 2" Number and Proportion of Children with 
None and Some Periodontal Index by Age and Family 
Income Subclasses 

Subclass Periodontal Index 

Age Family Income None Some Total 

6-8 

9-11 

< $7000 

> $7000 

< $7000 

> $7000 

1307 (0.~,1) 82s (0.39) 2132 

882 (0.70) 382 (0.30) 1264 

1061 (0.,53) 953 (0.47) 2014 

887 (0.67) 441 (0.33) 1328 

Total 4137 (0.61) 2601 (0.39) 6738 

The estimated linear contrasts of subclass 
~roportions for interaction in this table is 
L = 0.056 with estimated design effect 
deff(~,) = 1.66, a 66% increase in variance due to 
the complexities of the sample design. The 
average subclass proportion design effect is 
a 2= 5.70, indicating that for this table there 
is a 70% proportional reduction in the design 
effect of L over an average subclass design 
effect. 

The four homogeneities and six cross- 
homogeneities for the four subclass proportions 
were also estimated. They are given in the upper 
triangular matrix of homogeneities, H, as 

I 
0.I17 0.077 0.115 0.065] 

0.075 0.090 0 072 1 

H = (symmetric) 0.140 0 078 1 | 

I 
0 1082 

The homogeneities along the diagonal are fairly 
similar across the subclass with an average of 
0.II0. The cross-homogeneities are the six 
off-diagonal values with an average of 0.083. 
Although there is some variation in the cross- 
homogeneity values, they are the same order of 
magnitude and are approximately 75% the value of 
the homogeneity values. 

Interpretation of the relationship between the 
homogeneities and cross-homogeneities is difficult 
without examining the proportions in each subclass 
cluster by cluster. Given the close relationship 
evident here, one interpretation is that children 
without any Periodontal Index tend to occur in 
the same cluster within a subclass to almost the 
same degree that they do among the different 
subclasses. Such a phenomenon is more likely a 
reflection of the nature of the clusters 
themselves as substantive units (in this instance, 
counties or groups of counties) than it is a 
substantive quality associated with Periodontal 
Index. Perhaps for smaller, more homogeneous 
clusters the intra-cluster homogeneities would 
be large while the cross-homogeneities would tend 
to be much smaller, if not negative in value. In 
such an instance, deff(L) might be larger than 
the average subclass design effect, a 2. 

The results for the linear contrast of subclass 
logits Lg are virtually identical. The estimated 

contrast is ~,g = 0.213 with estimated design logit 
effect of 1.63. Again, the proportional reduction 
is 70% over average subclass proportion design 
effect. In the subsequent developments, therefore, 
references to design effects for L also apply to 
those for ~, . 

g 
5.2 Results from i00" (4 x 2) Tables 

The full set of fifty 4 x 2 tables and results 
from the HES and OMNI datasets are described 
elsewhere (Lepkowski 1980). The results are 
summarized here by dependent variable and by^ 
dataset. Table 3 presents the average deff~L), 
average subclass proportion design effect, d 2, 
average estimated pref(L), and average attenuation 
factor, ~, by dependent variable for the one 
hundred tables examined. 

Examining the average subclass proportion 
design effects ~2 across the two surveys, it is 
apparent that larger design effects occur for the 
HES with an average of 3.91 over the 200 propor- 
tions in the 50 tables. However, there still 
remains considerable variability among design 
effects by dependent variable within surveys. 

Similar remarks apply to the average design 
effects for L. For the HES tables, overall there 
is an average deff(~,) = 1.17, but average values 
for dependent variables (5 tables each) range 
from 0.80 to 1.54. The OMNI tables show an 
average deff(L) - 0.99 with a range of 0.75 to 
1.19. Since the subclass sizes of the subclass 
configurations are identical across dependent 
variables, the variability in average design 
effects can be attributed to different levels of 
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homogeneity among the dependent variables• 

Table 3" Average deff(~,), a 2, pref (~,), and ~ by 
Dependent Variable, HES and OMNI 4 x 2 Tables 

Variable deff(L) a 2 pref(L) 

a. HES Tables 

Periodontal Index 1.32 6.42 -0.80 0.95 
DEF Score 
Gingivitis 
Oral Hygiene 
Malocclusion 
Last Dental Visit 
Overbite 
Decayed Primary 
Extraction 
Filled Primary 

Total 

Fuel Shortages 
Marijuana Use 
Anti-democracy 

1.39 1.81 -0.23 0.63 
1.26 6.69 -0.82 0.97 
i. 07 7.53 -0.86 0.01 
i.i0 2.35 -0.54 0.94 
1.17 5.66 -0.79 0.96 
1.03 1.66 -0.39 1.14 
0.80 1.67 -0.52 1.30 
1.54 3.43 -0.56 0.78 
1.00 1.89 -0.45 1.03 

1.17 3.91 -0.60 0.97 

b. OMNI Tables 

1.07 1.02 0.05 1.86 
0.75 1.03 -0.27 6.71 
1.02 0.91 0.12 -i.I0 

Physician Attitudes 0.93 0.91 0.02 -0.65 
Unions 0.83 1.39 -0.41 1.53 
Communist Books 1.12 1.22 -0.09 0.81 
Male/Female 
Politicians 1.06 0.98 0.08 -4.27 

Atheists i. 19 i. 34 -0.12 0.67 
Liberal/Conservative 0.97 1.13 -0.14 1.76 
Vietnam War 1.00 i. II -0.i0 2.02 

Total 0.99 I. i0 -0.09 0.93 

Nonetheless, in both surveys^deff(L) < ~2 on 
the average. The size of pref(L) is consistent 
with this observation, although there is consid- 
erable variability not only across surveys but 
also across dependent variables. While the HES 
survey has an average of 60% proportional 
reduction from a z to deff(~,), the OMNI tables 
have only a 9% average reduction. 

The proportional reduction is related to the 
size of the initial average subclass design 
effect, ~2, for each table as illustrated in 
Figure A for the HES tables. As the average 
subclass proportion design effect increases, so 
does the proportional reduction in deff(L) from 
a 2. A similar although somewhat weaker 
relationship can be demonstrated for the OMNI 
tables. Since the average subclass design effect 
depends on the homogeneities, roh i, and the 
proportional reduction depends on the cross- 
homogeneities, rohsii,, there is a likely 
relationship between the homogeneities and cross- 
homogeneities. 

The average estimated subclass proportion 
homogeneity of the (4)(5)=20 subclass proportions 
in the five tables for Periodontal Index (PI) is 
0.131. The average estimated cross-homogeneity 
[(6)(5)=30 values] is 0.083 for those five tables. 
The average estimated rohsii, value for PI is thus 
0.63 times the average roh i value. The relation- 
ship between roh i and rohsii, is fairly consistent 
across dependent variables with an overall 
rohsii,/roh i ratio of 0.64 for the 400 roh i and 
600 rohsii, values. The relationship is 
illustrated for the HES tables in Figure B where 
the fifty average rohi and rohii, values from each 

table are plotted• Although there is some 
variability present, there is a strong linear 
relationship indicated with rohsii, < roh i 
consistently across the tables• The results are 
not presented for the OMNI tables because the 
relationship is not as clearly demonstrated by 
dependent variables or by individual tables, 
although the overall results are consistent with 
those of the HES data. 

Figure A: pref(~) by a 2 for Fifty HES 4 x 2 
Tables 
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Figure B: Average roh i by average rohsii~ for 
Fift F HES 4 x 2 Tables 
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Finally, Table 3 also presents the average 
estimated attenuation factor ~ for the fifty 

A 

deff(L) values from the two surveys as estimated 
by (17). There is considerable variability among 
the average ~ across dependent variables. Overall 
the average ~ "for the HES is 0.97 and for the OMNI 
0.93. Thus the effective homogeneity for the HES 
and OMNI are (0.03)roh and (0.07)roh, respectively. 
Since the OMNI has small average cluster sizes and 
homogeneities, the effective homogeneity for the 
linear contrast ~, is negligible and Deff(L) is 
essentially i. For the HES, however, the average 
cluster sizes and homogeneities are larger; the 
effective homogeneity for L, although small, 
yields an average Deff(L) across fifty tables of 
1.17. 

6. DISCUSSION 

The empirical results demonstrate the validity 
and the utility of the models discussed previously. 
The ordinal model in (ii) is correct for nearly 
every dependent variable across both survey 
datasets. The model can be extended to include 
the design effect for subclass differences diff, 
as 1 < deff(~) < diff < a 2. Even this refinement 
in the ordinal model is not sufficient for 
estimation of Deff(L) in instances when a 2 is 
large. 
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The proportional reduction model in (.13) and 
(14) would provide estimates of Deff(L)using the 
empirical values of pref(~) and a 2 given for HES 
and OMNI. However, since pref(~.) and a 2 are 
related, it is difficult to predict a useful 
value for pref(L) for other dependent variables 
than those given here. 

The attenuation model in (15) and (16), 
however, offers estimates of Deff(L) provided 
values of & are available from the survey. It 
is based on an intuitively appealing model for 
design effects of proportions which demonstrates 
the nature of the relationship between Deff(~) 
and cross-homogeneity through the attenuation 
factor ~. Thus, for a particular response 
variable for which rob i is known or can be 
estimated, and for a particular set of subclass 
sizes, values of Deff(L) and Deff(Lg) can be 
estimated for subclass differences and inter- 
action contrasts as given here. Additional 
empirical results on other survey^datasets should 
indicate whether these values of ~ can be applied 
to other surveys. 

Adjustment of an ordinary chi-square statistic 
for the effects of the complex sample design 
using design effects estimated from the atten- 
uation model is a straightforward division of the 
ordinary chi-square statistic by the design 
effect to obtain the adjusted chi-square 
statistic. The effect would be the same for a 
linear or a log-linear modeling situation in 
which the contrasts L or Lg could be used to test 
the hypothesis of no second-order interaction for 
the contingency table. It is important to note 
that for health survey data, where large average 
cluster sizes and large homogeneities are to be 
expected, the adjustment will not necessarily be 
negligible. Further investigation of the problem 
is warranted on the basis of these findings. 

7. SUMMARY 

Three models for the design effects of linear 
contrasts of subclass proportions (Deff(L)) and 
subclass logits (Deff (Lg)) have been suggested 
analytically and investigated empirically. The 
ordinal model is an adequate description of the 
general nature of Deff(L) and Deff(Lg) but a 

useful estimate based on the model cannot be 
obtained. The proportional reduction model is 
more useful for estimating the design effects 
provided estimates of certain parameters are 
available from the survey. However, those 
parameter estimates are usually not available. 
The attentuation model also depends on the 
estimation of a parameter not usually available 
for all surveys, the attenuation factor. However, 
the model is intuitively appealing and the 
attenuation factor may be portable across survey 
datasets facilitating the application of the 
mode i. 
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