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Over a period of decades, the ingenuity of 
sample survey design techniques has far 
surpassed the ability to specify and manipulate 
reasonable probability models for resultant 
data, and hence likelihood functions for 
parametric analysis. Controversies regarding 
the foundations of inference from survey data 
have inhibited the application of techniques 
from the mainstream of data analysis to 
statistics from complex surveys. Thus, 
sophisticated methods for point and interval 
estimation of simple functions such as means and 
ratios have been articulated for a variety of 
complex designs to which asymptotic normal 
distribution theory is felt to be applicable; 
practical devices, such as balanced repeated 
replication (BRR), have allowed survey analysts 
to bypass difficulties of variance derivations 
and computations. However, statistical 
inference based on variational or structural 
modeling (see Koch and Stokes (1980)) for survey 
data, e.g., multi-factor analysis of variance, 
has not been wi~ely used by survey 
statisticians. Such inferences have appeared 
relatively frequently in the literatures of 
several disciplines which utilize surveys, but 
undertaken naively assuming probability dis- 
tributions based upon simple random sampling 
(srs). 

With the recent ascendancy of modeling 
techniques for the analysis of contingency 
tables (Grizzle, Starmer, and Koch (1969), 
Bishop, Fienberg, and Holland (1975), Gokhale 
and Kullback (1980)) and the attractiveness of 
their application to complex survey data, the 
various issues involved in modeling such data 
are receiving increasing attention within the 
domain of categorical data analysis. Thus, 
Koch, Freeman, and Freeman (1975), Freeman and 
Koch (1976), Freeman, Freeman, Brock, and 
Koch (1976), and Freeman, Freeman, and 
Brock (1977) essentially advocate use of 
weighted least-squares model-fitting and 
Wald (1943) statistics to model functions of 
counts from categorical data whenever, by 
randomization theory or superpopulation 
assumptions, these functions may be assumed 
Gaussian with consistently estimable covariance 
matrix. Their methods rely upon the 
practicality of full covariance estimation. 
Other authors have attempted to explore and 
adjust the usual srs-based test statistics to 
compensate for the effects of a complex survey 
design (e.g., Nathan (1975), Cowan and 
Binder (1978), Fellegi (1978), Rao and 
Scott (1979)), usually on the assumption that 
full design-based covariance estimation is 
impractical, but that variances or some limited 
set of design efficiencies (dells) can be 
estimated and used in the adjustment process. 
Tomberlin (1979) has. compared the distributions 
of a Wald statistic and Fellegi's (1978) 

statistic for the same hypothesis concerning the 
fit of a log-linear model. Fellegi's statistic 
utilizes less information about the survey 
design effects. Simplifying models for complex 
data collection processes have been proposed 
(e.g., Altham (1976), Cohen (1976), Brier 
(1978), Rao and Scott (1979), Tomberlin (1980)). 
Koch, Freeman, and Tolley (1975) have discussed 
a naive heuristic estimator for log-linear 
models, obtained by substituting data from a 
complex survey design into srs-based likelihood 
equations. Imrey, Francis, and Sobel (1979) 
have shown that certain efficiency results for 
estimating means apply equally well to 
estimating parameters in a modeling context. 

The purpose of this note is to summarize 
certain aspects of our state of knowledge 
through remarks upon and straightforward 
extensions of previous work by several authors. 
The point of view will derive from weighted 
least-squares model fitting; the topics of 
1) covariance structure, 2) estimation 
efficiency, and 3) null distributions of 
conventional test statistics will be discussed. 

II. Weighted Least-Squares Model-Fitting 
A population P has s subpopulations, Pi' 

~ 

corresponding to different values of the vector 
subscript i. Independent random samples are 

drawn from the Pi' and their elements classified 

into categories ~indexed by the vector subscript 
j, yielding an observed vector n of subpopula- 

tion category counts n.. ordered lexicographi- 
z3 

cally by subscript ij.~~The sample from P. may 
~N 1 ~ 

result from srs or a complex multi-stage sample 
design, possibly with stratification. The 
design may differ for different values of i. 

The proportion or probability vector character- 
izing the finite or infinite population P. is K. 

i ~i 
~ 

and the vector K, which strings-out the K. 
~l 

~ 

lexicographically by subscript, thus character- 
izes the joint subpopulation-response category 
structure of P. The vector n, in conjunction 

~ 

with knowledge of the sampling conditions C 
under which it was generated, is to be used to 
draw inferences about functions of K. 

Letting ~i be the segment of n corresponding 
~ 

to ~i' define Pij' ~i' and p by ~i = ~i/!'~i, 

where i is a vector of units. Let V. be the 
^~ 

true covariance matrix of ~i and V. be a 
~ 

consistent estimator of Vo based on the data. 
~I 

212 



^, 
[To arrive at ~i' more information than that 

contained in n. is typically needed--for 
~i 

instance, counts within sampled clusters, prior 
, ^, 

to aggregation into n..] Let V and V be 

block-d iagona l  matr ices  formed from the V. and 
~ 1  

~ ^, 
Vi, respectively. 

~ 

When asymptotic conditions apply, weighted 
least-squares procedures may be used to fit 
linear models to functions of survey data. Let 
F(~) be a u-vector of continuous, linearly 

independent functions with partial derivatives 
through second-order, and let 

H (z)= [(dFl) (dF~) (~u)] ''~ evaluated 
~ ~ d ~  ' d ~ '  ' " " " '  ' 

at z; write H = H(~),  H = H(p).  When F(p) = F 

is asymptotically normally distributed, its 

asymptotic covariance matrix is VF=( '), 

estimable by VF=( '). Under a consistently 
~ ~ 

general linear hypothesis F(~)=X~, 

~ * : ( X , ~ I X ) - I  X , ~ I F  is  an a sympto t i ca l l y  
~ ~ 

e f f i c i e n t  (BAN) es t ima to r  of ,the parameter  
vec to r  .~, with asymptot ic  covariance matr ix  

~ ^~ ^~ 
V~ = (X'V~IX) -1 es t imable  by V~ = (X '~ IX)  -1 

~ ~ ~ ' ~ • 

The residual quadratic form statistic 
^~ ^~ ^~ 

)'[FI(~(~)-~ ~ ) _  = QFit is a Wald (1943) ([(p)-X~ 
statistic asymptotically X2 for the fit 

' rank X 
~ 

of X, while the form 
~ 

, = -̂~ -I 
OC (C ~*)' [C V~C ' ] (C ~*) is  a l so  a Wald 

~ 

statistic, asymptotically Xran k2 C for 
~ 

H • C~ = O against the general alternative. 
O ~~ 

This formulation for categorical data analysis 

includes linear and log-linear models for cell 
probabilities as well as models of complete, 
partial, and marginal symmetry and a variety of 
other approaches of interest (Grizzle, Starmer, 
and Koch (1969), Koch and Reinfurt (1971), 
Grizzle and Williams (1972), Forthofer and Koch 
(1973)). 

III. Covariance Matrix Estimation 
Implementation of the above approach requires 

a consistent estimator V. from each subsample. 
~i 

However, the estimation- of covariances from 
survey data has not been common practice, and in 
most cases is claimed to added a substantial 
increment to the overall computational burden of 
survey analysis. As a result, there has been a 
tendency to disregard the possibility of direct 

J. 

plug-in estimation of covariance matrices V i in 
~ 

favor of either" i) general procedures such as 
BRR (Kish and Frankel (1974)) for estimation of 

IF without formulation and estimation of the [i; 

ii) sampling models which simplify the structure 

and estimation of the Vi;. or iii) adjustments of 
~ 

conventional srs-based methods to approximate 
the results of covariance-based methods. 

While all these approaches are valid and 
desirable, they do not fully substitute for 
explicit formulation of a design-based covari- 
ance structure and subsequent covariance esti- 
mation independent of restrictive assumptions 
about the nature of clustering. True covariance 
structure can be used for sensitivity analyses 
(with respect to sample design and nature of 
clustering) of linear model parametric 
inference, using both analytic and simulation 
methods. Inferences without restrictive 
assumptions about the nature of clustering are 
preferable in principle to conservative 
approximations based on models, unless the model 
is backed by a very strong rationale. The 
difficulty of covariance matrix specification, 
and magnitude of associated computational 
burden, are easily overestimated in an era of 
rapidly expanding computing capabilities 
visa vis storage and array manipulation. 

With regard to specification, every textbook 
of sampling theory contains formulae for vari- 
ances of estimators from standard complex survey 
designs. These are easily extended to cover the 
categorized data setting, essentially multi- 
variate, elaborated in Section II. For instance, 
Cochran (1977) discusses the cluster-size 

weighted mean per element YR from a two-stage 

sample. A sample of n from N primary units is 
drawn by srs at the first stage; when cluster £ 

is drawn, m 2 elements are subsampled by srs. 

and ~[ are the true mean per element and 

average cluster size, while Y2 and S 2 are the 

mean and variance of cluster 2. The first and 

second stage sampling fractions are denoted by 
fl= n/N and f22 = m£/M2" The asymptotic 

variance of YR is 

VCY=R ) = (l_~f) ~M 2(72-~)21(N-I) 
nl~2 £ 2 ( I I 1 .  1) 

(1-f22) 
- -  2 2 + (fl/(nM)2) Z m~ M~S2~" 

2 

In the c a t e g o r i c a l  framework, l e t - ~ 2  be the 

vector of j relative proportions corresponding to 
cluster 2, and ~ be that for the population (for 
simplicity, we consider a single population and 
drop the subscript i for now). The analogue of 

n n 

observed distribution into categories of the 
subsample from the kth sampled primary unit. 
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Then (III.1) is easily extended to 

V- ( l - f 1 )  ZM 2 = . - ~ )  / ( N - )  
"P nl~ 2 £ ( ~  (~£-~1 ' 1 

(1 - f2~ ) M30 ( I I I . 2 )  
+ (fl/(riM'-) 2)~ z (D_ -7t,,~') 

£ m£ (M£- 1 ) "it£ "m" m 

where D~ i s  the  d i a g o n a l  m a t r i x  wi th  ~£ on the  

diagonal. V may be estimated (consistently) -p 

(I-fi) 
M~(-Pk'~) (Pk-~) / (n- 1 ) byV. = ~_ 

".P nl~2 k ~ (111.3) 

'(l-f2k ) M ~ 
+ ( f l / ( n M )  2) 

k m k(M k- 1) (Dpk-P~k~k p '  ) 

where Pk = n k / l ' n k "  I f  M i s  unknown, i t  may 
d .  

be r e p l a c e d  by M = ~ Mk/n. 
k 
^ d .  

C a l e u l a t i o n  of  V- does no t  e n t a i l  g r e a t  -p 
s t o r a g e  or  c o m p u t a t i o n a l  demands, p a r t i c u l a r l y  
if the data are sorted by cluster or if an 
indicator function approach such as that taken 
in GENCAT (Landis, Stanish, and Koch (1976)) or 
MISCAT (Stanish, Koch, and Landis (1978)), for 
example, is applied. Various conditions on 
cluster size and sampling fractions lead to 
simplifications, further easing the compu- 
tational problem. When clusters are large and 
of equal size, 

- ~(pk-~) (pk-~) ' 
(IIi. 4) 

(l-f2k) 
+ (fl/n2)~ 

k mk (Dpk-P'kPk) 

i s  c o n s i s t e n t ;  when the  sampl ing f r a c t i o n  w i t h i n  
c l u s t e r s  i s  he ld  c o n s t a n t ,  

^* ( I- f i) ~_M~ (pk-p) (pk-~) / (n-l) V ~ -- ! 

"P n~2 . . . .  
" k (III. 5) 

+ (fl(f~l-l)((nM)2) ~ M~ (Dpk-pkp~)/(Mk-l). 
k 

When both sampling fractions are small, 
^, 
V~ = ( I/n (n- I )M2) ~M~ (pk-~) (pk-~) ' 

+ ( l /nNl~)Tt_M2(D- ' )  (III 6) 
k k -P-k p'kp-k /mk 

and, when a l l  t h e s e  c o n d i t i o n s  app ly ,  

V~ (I/n (n- 1) )l(pk-~) (pk-~) ' 
"P- = k (III. 7) 

+ (I/mnN)~(D -p,.p'). 
k "-~k " ~ ' ~  

Analogous expressions for more complex 
designs may be developed in a similar straight- 
foward fashion. Sampling models for the nature 
of clustering, such as Altham (1976), lead to 
simpler formulas as in Rao and Scott (1979). 
However, if one assumes that covariance esti- 
mation will generally become accepted as 
necessary in survey analysis, and that continued 

expansion of computing capabilities will occur, 
use of the design-based formulae such as 
(III. 3) - (III. 7) does not seem at all out of 
the question. Here, distinctions must be made 
between very large scale federal surveys with 
highly complex sampling strategies, on the one 
hand, and the many surveys performed by state 
and local governments, contract research groups 
and universities which incorporate elements of 
cluster sampling into the design without a 
highly elaborate architecture. For such 
relatively simple surveys, direct formula-based 
estimation may be at least as attractive as BRR, 
say, inasmuch as necessary software should not 
be hard to develop for tests and intervals of 
common interest. For the most complex designs, 
however, the various arguments that have been 
made in favor of some type of split-sample 
covariance estimation have greater validity. 

IV. Estimation Efficiency 
The efficiencies of two survey designs may be 

considered in the context of an intended linear 
model analysis. Let X be a specified linear 

model for F., Vp and V~p be the covariance 

matrices under two "competing survey designs, 

* v; ~ ~ ~ " 'H ! ,~ s = H'), S = ), = (X' ) , 
- - 

[8  = (X ~ . . Then the  d e s i g n  e f f e c t  of  

p l a n  2 (¢~") r e l a t i v e  to  p l a n  I (*) p e r t a i n i n g  to  

a specified parametric function c'~ may be 

w r i t t e n  as 

deff (c'~) = ((~a~kv/[a~)+l) (IV. I) 

where the kv are eigenvalues of U. = (V:"-V~).~ _ 

and c = [a A for c o r r e s p o n d i n g  e i g e n v e c t o r s  K ~ . 
~ V ~V ~ V 

Various summary measures of design effect may 

be useful in particular situations within the 
linear model context, viz: 

i) (I.+)~I ) = maximum effect on parameter; 

ii) (I + A v) = effect on vth parameter, e.g. on 

a main effect of a log-linear model; 

iii) 1 + (tr U/rank X) = arithmetic mean effect 

on parameters ; 

iv) [det V~ /det V8] I/rank x = geometric mean 

effect'on parameters ; 

v) u-l(tr XUX') = arithmetic mean effect on 

prediCted F = for F; 

Rao and Scott (1979) have discussed this issue 
in connection with simple goodness-of-fit tests 
and tests of independence within two-way 
contingency tables. THey use measures based on 
cell probability design effects, or on design 
effects applicable to F. Measures suggested 

above may, theoretically, be quite different 
than measures based upon p or F in the absence 

of an underlying model; differences arise due to 
the interrelationship between the sample design, 
population clustering structure, nature of 
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and X. In certain circumstances, such relation- 

might be exploited in sample design. 
General theories about global efficiency of 

certain designs may be extended from standard 
univariate results to the linear model context. 

J. 

When V corresponds to proportionate stratified -p 
JuJ. 

random sampling and V i =(D~-~i~i'~/n (for V -p 

corresponding to mrs), Imrey, Francis, and Sobel 

(1979) have shown that U is positive definite, 
~ 

so that proportionate stratification is 
efficient for estimation of any linear model by 
any criterion based on first-order efficiency. 
Their model applies to any comparison in which 

(Vp -Vp) (strong condition) or (VF" - VF) (weak 

condition) is positive definite. Hence, in a 
cluster random sampling design with N clusters 
each of size M and one population, let 

-I 
R= (I/NM (M-I))2YY (y£z-~)(y£z-~)' [DK-~' ] (IV. 2) 

where Y~z is an indicator vector corresponding 

to the zth element of the £th cluster. The 
"intracluster correlation matrix" R is an 

~ 

analogue of the intracluster correlation 

coefficient p, and 
* • ( l - f )  

V - -- [I + (M-I)R]V (IV. 3) 
"P- " M " " "P- 

w i t h  f the sampling fraction. Generalizing the 
well-known results based on p, we may say that 
cluster random sampling is generally inefficient 
when R is positive-definite and efficient if R 

is negative definite. Similar results apply to 
other sampling structures based upon models of 
clustering, e.g., Altham' s (1976) model of 
two-stage sampling and its extension to 
three-stage sampling, both discussed from a 
similar point ef view by Rao and Scott (1979). 

In these situations, the strong condition on 
cell estimators holds. As an example of a 
circumstance where it would not, but where the 
weaker condition relating to F might apply, 

consider a panel study of voter preferences at 
various times in a long Presidential campaign, 
and let F be the vector of marginal candidate 

preference proportions. It is quite conceivable 
that design effects on counts corresponding to 
particular patterns of response over time might 

be lower than one, with yet (V F -V F) negative 

definite, where V F corresponds to mrs, in which 

case any model parameters corresponding to F 
would be estimated with a loss in efficiency by 
the * design. 

V.  Behavior of  SRS-Based Tests 
Rao and Scott (1979) examine the asympotic 

distributions of conventional chi-square 
goodness-of-fit statistics for a single 
categorization, and for independence in two-way 
contingency tables. They suggest corrections 

for these statistics which account, in some 
circumstances, for design effects. The basic 
result is readily extended to the general linear 

model context. V is the true covariance matrix ~p 
of p, V theft based on mrs. Without 

_ ~p 

specifically accounting for it notationally, we 

include the multipopulation case. Thus, _ Vp and 

V~p may be block diagonal. Let -~V~ = (HV H')~(the~~ ~ 

a§ymptotic covariance matrix of F(p) under mrs), 

V~ = (X'VFX)-I~ ~~~A (the asymptotic, covariance 

matrix of ~ under mrs), with IF = (}~_[H') (the 

true asymptotic covarance matrix of F(p) under 

the actual survey design). V indicates a 

consistent estimate of the corresponding V, 

ordinarily determined by V = V(p) after writing 

V = V(K). The following hold whether the ~ are 

unrestricted consistent estimates (e.g., 
unrestricted maximum likelihood estimates in 
which case minimum modified (Neyman) chi-square 
estimates, e.g., Weld statistics are involved) 
or consistent under hypothesis (e.g., restricted 
m.l.e.'s under the model, in which case Pearson 
chi-square statistics and minimum chi-square 
estimation are involved). 

Lack-of-Fit Statistics" Under the model 
= X~, the lack-of-fit statistic 

Q = (F-X~)'~FI(F-X~) , where ~ = ~X'~FIF , is 

asymptotically distributed as ~.kiZ~, w~ere the 

Z i are independent N(0,1), and ~I > A2 >"'> ~ 
- * v -- -- -- U-V 

are the eigenvalues of __ __VFI(MxVFMx) , with 

M x = [~-~X'VF]. 

T e s t s  o_.f_f L i n e a r  .Hypothes is  = Under t he  model 

F(rO = X~, and H "C~ = 0, t he  s t a t i s t i c  
. . . .  O ~ , ~  , ' -  

- (C~)'[eVI3C']~~. (C~),  i s  a s y m p t o t i c a l l y  d i s -  Qc 
~ . ~  

t r i b u t e d  as Z¥iZ~ ,~. where t h e  Z.z a r e  i n d e p e n d e n t  

N(0 ,1 )  and ~ >¥-> a r e  t he  e i g e n -  
i -  2 - "  ">--~rank C 

• ' - CV,~C' and values of VC~(McVFMc) where VC~ 

~c=[CV~E'VF ] 
" Koch, "Freeman, and Tolley (1975) have 

considered a similar situation, solution of 
mrs-based likelihood equations from log-linear 
models, using data from complex sample surveys, 
and obtained a related result. 

Since the asymptotic distributions of 

standard test statistics depend on V and V 
, "£ -p 

only through ~F and VF, adjustments to these 

statistics may be made based upon knowledge of 
the design effects pertaining to E. Following 

Rao and Scott, note that when V F = kVF, then 

A1 = ~2 = "" "= A' and Q/)% and QC/A have exact 
.o 
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chi-square distributions. This occurs when 

V = AV and may occur otherwise. When such a +p -p 
r ~ l a t i o 6 s h i p  is  not known, Rao and Sco t t  suggest  
u s e  of a func t ion  of the design e f f i c i e n c i e s  

ob ta inab le  from the diagonals  of Vp and V p or V F 

and VF as d i v i s o r .  For i n s t a n c e ,  e s t ima tes  of 

A1 and ¥1' used as d i v i s o r s  for  Q and QC produce 

conservative tests. Similarly, estimates of 
arithmetic mean eigenvalues from tr ~, tr M C 

essentially standardize the mixture o{ 
chi-squares. 

Extension of the above to characterize 
behavior of tests derived using any erroneous 
sampling model (not just srs) is obvious. 

Vl. Summary 
Analysis of categorical data from complex 

survey designs has been considered from the 
veiwpoint of general linear model fitting and 
associated chi-square statistics. Many standard 
results on survey analysis generalize quite 
readily to this setting. In particular, in 
Section III covariance matrix expressions for 
complex surveys involving categorical data are 
easily generated from existing results for 
univariate continuous variables. In Section IV, 
elaborating on Imrey, Francis, and Sobel (1979), 
it was shown that basic efficiency theorems may 
also be generalized. Section V, elaborating on 
Ran and Scott (1979), clarifies the distri- 
butions of linear model test statistics obtained 
utilizing the wrong sampling model. These 
results should aid in comparing behavior of 
procedures which assume srs, now used commonly 
by social scientists and those advocated 
recently (e.g., by Koch, Freeman, and Freeman 
(1975)) which utilize estimated covariances 
based upon complex survey design structure. 
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