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Certa in  rat io composi te  es t imators  are 
invest igated and a general  form for writing their  
variance is derived. The form of the variance permits  
re la t ively  easy computat ion of opt imal  values for t he  
pa ramete rs  in the sampling scheme.  The computat ions 
are  carr ied through in detai l  for a special case of 
composi te  es t imat ion using data from sampling on two 
occasions. In this special case,  c r i te r ia  for the use of 
composi te  es t imat ion verses sampling on the la tes t  
occasion is derived. Some applications and extensions 
of these results are also discussed and an Empirical 
study using a computer  simulation is presented.  
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I. INTRODUCTION 
Current  survey estimates can often be considerably 

improved upon by the use of survey results from the 
preceeding t ime periods. The extra  care  devoted to 
survey design when data  for more than one occasion is 
to  be used will of ten be rewarded with pleasing 
reductions in mean square error.  This ar t ic le  is a 
summary of some findings on the use of composi te  
es t imat ion on ratio es t imators  with ratio adjustments.  
A special case of sampling on 2 occasions is examined 
in detail  and an extension of the "2 occasion" results  
are invest igated for sampling on more than 2 
occasions. An empirical  study of these es t imators  is 
described in the last section. 

The composite  es t imator  tha t  is studied herein is 
ment ioned briefly in several references ,  notably 
Hansen, Hurwitz and Madow, Wolter, Cochran, 
Woodruff and Eckler, but,  nowhere could I find any 
detai led exposition devoted explicit ly to it. In 
part icular ,  the opt imizat ion of the sampling design 
with respect  to sample overlap as well as weighting is 
analyzed using a l inearizat ion procedure tha t  yields 
surprisingly compact  results.  

2. THE ESTIMATOR AND SAMPLING SCHEME 
It is desired to study the propert ies of composi te  

es t imators  of the  form: 
^ 

= i r r  / r ) 
R h c* h ~h,h_i/~h_l,h Rh- I 

size (1 - ~)n se lec ted  from the remaining units in the 
case of without  r ep lacement  sampling. From these n 
units at  t ime i = 2, a subsample of size ~ n  is se lec ted  
for carryover  to t ime i = 3. At t ime i = 3 a sample of 
size n is const ructed  from these k~n units plus a new 
sample of s ize (I - k~)n from the r~maining units just 
as was done at  the iSreceeding step. This process is 
continued until  t ime h. It is assumed throughout  tha t  
the  population variance of X and Y is constant  over 
t ime.  

The quanti ty tha t  I wish to e s t ima te  is R h = Yh/Xh 

where Yh is the population mean for the Y cha rac t e r -  
istic at  ?ime h and ;<h the population mean for the X 
characterist ic at  t i m e h .  

3. THE VARIANCE OF THE ESTIMATOR 

I~ h is a function of x., y., x.{. and v / .  f o r  i and j 
ranging between I and ~. ~xpta~ding ~ J  in a Taylor 
Series about the corresponding population means and 
ignoring terms of order 2 and higher i t  is found~the 
variance of this linearized quantity, which is denoted 
by ~h '  is of the form given in Theorem 1. 

Theorem 1 " Var (~u) = trace ( r. F) 
where r = E(ZZ ) ! i  

and Z = (Zl ,  Z2, ... Zn) where Zi:(?h/XhX(Yi/~i)-(xi /~i))  

y; (x i) is the Y value (X value)  a t  t ime  i of a single unit  
st~ledted at random from the population (the select ion 
probability is distr ibuted uniformly over the ent i re  
population). The random vector ,  Z ,  is thus distr ibuted 
as the outcome of the random select ion of one unit 
from which x I x 2 ... x h yl  Y2 "'" Yh are  observed. 

F is an h x h matr ix  of constants  tha t  a re  
themselves  functions of the sampling d e s i g n .  That is, 
F is a function of 11 13 ... ~h-I "'" a2 cx3 .... (Xh n and 
N the size of the uniqet'se. 

Proof of Theorem I . I :  The l inearizat ion,  R%, of 
K h reduces to constant  t e rms  plus te rms  of the form: 

_ _  L _ _  _ _  - -  m - -  

L k(Yh/XhX(Yki/Yi)-(Xki/Xi)) where Yki & Xki 

+ (1- CXh)r h for h : 3,4,5... 

where R2 = e2 ~ , 1 / r l , 2 ) r l  

(2.1) 

+ (i- e2)r2 

0< ai<_l for i=2,3,~ ............ , 

-- --~ X t = , ri, j y~.3/qi ,j and r i Yi/x-i 

y.. is the sample mean for the Y characteristic 
at ti~e i based on the overlaped sample between time 
i and time j (li - j I = 1% x~ is analogously defined. 

YI ~: ) is the sample mean for the Y(X)character- 
istic at ~ime i based on the entire sample at time i. 

Initially (at t ime i = I ) a  simple random sample 
(SRS) of size n is selected and from these n units a 
SRS of size kin (0 <k I < l ) i s  se lected for carryover  
to t i m e i = 2 .  

At t ime i = 2 a sample of size n is const i tu ted from 
the kln units previously selected plus a new SRS of 

are sample means from a SRS at t ime i of some size, 
not necessarily n. L k is a constant depending on the 
sampling design; k = 1,29...,m where m is usually 
greater than h. This is done in section tt for ~2 and by 
mathematical induction is easily intended to ~h for 
h>2. 

The variances of the te rms  L k (Yh/Xh X(Yki/Yi ) - 

- - --(Xk'/X'))l 1 and. the covariances between them are then 
expressed in terms of the variances and covariances of 
the components  of Z to give: 

h h 
Var (Rh) : z r~ Cov (Z i Zj) 

i=I j : l  fij 

= t r a c e ( ~ F )  

Q.E.D. 

F = F Ic~ 2 a-~ ... o~ 11 ... )~-1 n, N) is a matr ix  valued 
function of these "design paramete rs .  To select  these 
design parameters  so the Var ('~h) is minimized it is 
necessary to solve the system: 
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t r a ce  ( Z Fc~. ) = 0 
trace (r. F~li ) 0 (3.2) 

i = 1,2, .... h 

, where F a = (  )= (' ~a ) 

In the case  of sampling on 2 occasions from an 
infini te  universe  these  equations admi t  a s imple  
solution. This case  is discussed below. 

tt. SAMPLING ON TWO OCCASIONS 

To simplify nota t ion in this case le t  od 2 =(X and 
AI:~. 

To estimate forR&; Y (Y2/Xg) where Y2 is the 
population mean char~ct'eristic at time 2 and 

similar i ly  for X 2 (i.e. Y2 =-IN i Zl Yi ) " 

^ 

let R 
2 = 

+ 

w.here: _ 
I )  

-y~/~" u Yl + m YI" 
a 

- - I !  

u Y2 + m Y2" 
(l-a) 

UX-~,+ m x2" 

Y2"is the sample mean for the ~,n = m units at  
t ime  2, which were  re ta ined  from the  Is t  
occasion for the  Y characterist ic and 
s imilar i ly  for x-9"" 

ii) T. 1" is the  sample mean at  t ime  1 for the Y 
cha rac t e r i s t i c  based on the m re ta ined  units  
aF~d similar ly for X-l-. 

iii) Y.I is the  sample  mean for the  Y 
cha rac t e r i s t i c  a t  t ime  1 based on the  (1-X)n=u 
units not in the re ta ined  por, ition of the sample 
a~; t i m e  1 and s imilar ly  for 7 . .  

iv) -- 1 1- Y2 is the sample  mean based on the ( ~)n=u 
units  sampled anew at  t i m e , ,  2 for 
cha rac t e r i s t i c  Y and similar ly for x 

v) a is a real  number  be tween  0 and 1.  2. 
^ 

Hence:  R 2 = a ( r ~ / r l ) r  1 + (l-a) r 2 
~ N i l  - - -~  # ~ 

where r 2 = ( u y ~ + m y ~ ) / ( u x  2+rex2)  ) r t = y{ /x~ 

If N is s u f f i c i e n t l y  large  we can assume 
independence  b e t w e e n j [ h e  n__gnmatched samples  a t  
t i m e  2 and t i m e  1 (i.e. x 2 & x I a re  independent  

^ 

Expanding R 2 in a Taylor Series about  expec ted  
values and ignoring the  t e rms  of order  2 and higher 
you get :  

N 

R 2 = 
u m 

(Y2/X2) + (y~-Y2) (]/X 2) (a + (l-a)(m/n)) 

(~- X-2) (Y2/X~) (e + (l-e)(m/n)) 
u _ _  N 

- (y{-xl) (~ (u/n))(Yz/X2Y I) 
w 

+ (xf-El) (a(u/n))(Y2/X2Xl ) 

+ (~{- Y1 ) (a(u/n))(YfX2Y I) 
m 

- (x~ - Xl) (e(u/n)) (Y2/X2XI) 

+ (y--~'- Y2) ((l-a)(u/n)) (I/X 2) 

cx3 
The variance of this expression can be computed to 
get  t r ace  ( ~ F). 

l (4.1) 
(l-~--i) 1 + (i/T)l 

where T = (I/n) (a 2(I-~/~ 

In this case the system (2.2)reduces to 
trace ( z F X) = 0 
trace ( 7. F~)= 0 (4.2) 

solution of this system that minimizes Var (~h) is: The 

opt X = (I/2)(I-2 opt a)/(l-opt a) and 

opt a = (]/2) - (1/2) (Var(Z 2- ZI)/(Var(Z 2) + Var (ZI))) ]/2 

It is noted, at this point, that this function relating 
the optimal value for }, to the optimal value for a is 
it's own inverse function. Thus there is a duality, of 
sorts, between the optimal weight for combining 2 
estimators into one and the optimal overlap for 
"merging" of the 2 samples. This value of X is called 
the optimal overlap. The ratio of this minimum 
variance to the variance of the usual linearized 
estimate of R 2 based on a SRS without replacement 
of sizen at time 2is: 

(V mJn/V SRS) = 1 +(a2/(l-2a))(l +(Var(Zl)/Var(Z2)) 

- (2 Cov(ZiZ2)/Var(Z2))(l + {~'a)- k)) 

If Z. and Z 2 are positively correlated then the 
composi{e estimator provides an improvement and this 
ratio can be written as: 

l - (-12--12H} I Var (Z l )+  Var(Z2) l v a r ( Z  2) 

Var (Z 1) + Var (Z 2) 

The random var iables  Z / and Z9 upon which this 
sampling design depends dan be re la ted ,  via their  
variance/covariance structure, to the 2 estimates 
which form the composite estimator. The variance of 
Z~ is simply the variance of the linearization of r 2 . 
Z i "-- (Y2/:E.))x(Xn/Yl)X~t/x l )  + K, where K is a 
constant. -['hus" z I looks alot like the adjusted 
es t ima to r  ( r~ , l / r£ ,2)  rl " 

Note tha t  this var iance  ra t io  is a funct ion of 
1/2 

= (vat  (z l ) /Var  (z 2)) and 

p = p (Z 1 Z2), the  cor re la t ion  be tween  Z 1 and Z 2. 

Hence Vmin 2 ~-~ + 
Vsrs: I - - H(~,p) 

where H (~,p)= ( 1+~2 - 2p~)/(1+6 2) 
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Table 1 gives values of this rat io for various values 
of 0 and values of ~ near  unity.  The na ture  of Z. 
and Z^ , as desc~bed  on the previous page,  woul~l 
make dne expect  ~ to lie near  one .  

5. APPLICATIONS 
This type of e s t ima to r  was originally studied for 

the  special  case  of da ta  on 2 occasions discussed in 
sect ion 3. This e s t ima to r  is intended for possible use 
in s t r a t a  which are quite large  re la t ive  to the sample 
size so tha t  the results  derived in sect ion 3 (assuming 
an infinite universe)would  remain applicable.  

In the case  of using da ta  from 3 or more  occasions,  
numerical  methods  may be necessary in order to solve 
the equations (3 .2 ) fo r  opt imal  sampling pa ramete r s .  
An a l t e rna t e  method tha t  might  be reasonably 
adequa te  would be to i t e r a t e  the results  derived in 
sect ion 3 for data  on 2 occasions.  Set  X 0 = 1.0 in 
order to  e s t ima te  E(Z'Z), where  Z = (Zn,ZI), from a 
sample se lec ted  in year  zero and retaine/~ in year one. 
~o would be e s t ima ted  from this his tor ical  da ta  then 

r ~2 use 
]/2 

~2 = (I/2)-(]'/2)(Var(Zl== Z2)/(Var(Zl)+Var(Z2))) 

and for ?2 use~ 2 = (I/2}((1-2 o2)/(I-~2)) 

and so on for the third, fourth,  f if th and succeeding 
occasions,  This is: 

eh-i 
I Var (Zh_2 - Zh_ I) 11 

= !-i 2 
2 2 Var (Zh_ 2) + Vat (Zh_ 1 ) 

and kh_ 1 = (]4'2)((1-2%_1)/(1-%_1)) 

for h = 4, 5, 

(NOTE: e s t i m a t e  ~ from overlap be tween  t ime  h & 
h-t) h 

A conserva t ive  e s t ima te  of the  improvement  over 
SRS a t  occasion h of this composi te  es t imat ion  scheme 

would be 1 - ((i/2) - (1 /2 )H)  2 ((~/~2)+i) 

where ~2 = Nar(Zh _l)/Var(zh~1~/2 2 
and H = ((1462- 2p6)/(1~$2i) ~" 

wi thp  = p (Zh_l,  Zh )" 

1 VARIANCE RATIOS 

6. EMPII~CAL ANALYSIS 
In order to test the theory presented here, 22 

distinct populations (data sets)with 5 years (years 0 to 
4) of information on 3000 units were constructed and 
samples of size 100 were selected. The zeroth year's 
sample was retained in year one (i.e• X n = 1.0) in order 
to estimate E(Z~Z)where Z = (ZI,Z�). These estimates 
are what is referred to in section T. as historical data, 
from which XI, the overlap between year one and year 
two, is estimated. For year two a composite estimate 
was made using the procedure detailed in section 4 for 
sampling on 2 occasions; x 2 being estimated from the 
overlap sample between time one and two. Composite 
estimates for year three and year four were obtained 
using the leapfrog approach outlined in section 5. 
These estimates were then compared to the true 
population values using a relative mean square error 
measure described below. The usual ratio estimator, 
rh, was also computed at each time h= 1,2,3,4 and its 
relative mean square error was computed. This 
experiment was then replicated 29 times on each of 
the 22 different populations. For each of the 22 
different populations and for each of years 2, 3, and 4 
the relative mean square error was estimated using 
the 29 replications for both the usual ratio estimator 
and the composite estimator. The ratio of these 
measures was then computed and tabulated below. In 
addition, the number of times that the composite 
estimator was closer to the true value than the usual 
estimator in 29 replications is tabulated for each of 
the populations and years. 

The first 11 data sets were constructed using 
Model One for eleven different values of P. Model 
One is as follows: 

xij = % + ~x "-i + Yx fxi j  + (1- Sx)fxj 

yO = ~y + By" ~ + ~y f~ j  + Cz- ~¢fyj  

i=1,2,39q,  5 (year) 
j=t, 2,---  3000 (establishment) 

f = N(0,1) 
fYx!! = 

11 

if i=l 

CORRELATION 

/ o  .8 .9 . 1.0 1.1 1.2 

• 1 . 9 9 8 8  . 9 9 8 8  
.2 .9951 .9947 
.3 .9882 .9874 
.# .9775 .9759 
.5 .9620 .9594 
.6 .9402 .9361 
.7 .9095 .9032 
• 8 .8652 .8555 
• 9 .7949 .7792 

1.0 .6180 .5597 

• 9987 •9986 
.99## .99#2 
.9867 .9860 
.97#6 •973# 
.9571 .9551 
.9325 .9293 
.8977 .8930 
• 8472 .8402 
.7662 .7557 

.5 .5098 

•9986 
•9939 
.9855 
.9723 
.9533 
•9265 
•8888 
•83#2 
.7472 
.5185 
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f = f + N(0,P) if i>  1 
fJi|v-- : fY i - l , j  + N(0,P) 

X- ;  ,] Xi-l,j 
fyj = N(0,5) fxj = N(0,1.5) fyj  & fxj 

genera ted  for each establishment,  j= 1,2,--- 3000 
and .or B x (x ¥ c o o  s 

= (x x = 6 y 8 x =.8, Yx = .25 

were used. The N(a,b) were generated using the 
Normal random number generator at the National  
Inst i tutes of Heal th Computer  Center,  Four random 
numbers were genera ted  for each pair (i, j) , j=l,  ... 
3000 and i=1,2,...,5 and all of these 60,000 random 
numbers are  assumed to be independent.  

The second I I data sets were constructed using 
Model Two for eleven different  values of q. Model 
Two is as follows: 

xij= 8 + f x j  +Ix . .  
t] 

Yij = 1 4 0 + 3 " i  +fyj  +fyij  

i = 1,2,...,5 
j = 1,2,...,3000 

f . =  N(0,0.8)  #9 

fyij = N(0, #O/q) 
i = l  

f .. = N(0, 8/q) 
x l J  

f .. : (1/~)" f + ~ "  N(0, #O/q) 
ytJ Yi- l ,j  i > 1 

f .. : ( I / Z ) "  f + ~ "  N(0, g/q) 
xtJ xi- l,j 

As in Model One, four random numbers were 
genera ted  for each pair (i, j) and all of these 60,000 
random numbers are  assumed to  be independent.  

TABLE 2. 

M ODEL I 

The relat ive mean square error for each year and each 
of the 22 populations is measured by: 

m 
(I/m) x ((COMP)j - ACTUAL)2/ACTUAL 2 

j=l 
m 

( l /m)  r ((RATIO)j - ACTUAL)2/ACTUAL 2 
j - I  

where m is the number of t imes this experiment  was 
repl icated (m=29); (COMP). is tlhhe value of the 
composite es t imator  on ~ e  j replication a.~[~ 
(RATIO). is the value of the rat io es t imator  on the j 
r ep l ica t~n .  "ACTUAL", is the t rue population value 
of the parameter  being es t imated .  The number that  is 
tabulated in table two and three  is the relat ive mean 
square error  for the composite es t imator  divided by 
the re la t ive  mean square e r r o r  for the ratio est imator .  
For each of the 22 populations, the number of t imes 
tha t  the composite es t imator  was superior to the usual 
rat io es t imator  is tabulated as the integer direct ly 
under the ratio of mean square errors. 

7. Conclusions 
In Model I i t  is curious to note that  the leapfrog 

approach  outlined in section five worked very well in 
general  the first year it is applied (year 3 ) b u t  
de ter iora tes  a f te r  that  (year 4). This is probably 
because the weights differ more from their optimum 
values when they are  es t imated  as for a two year 
composite es t imator ,  when instead, the es t imator  uses 
four years of data.  This suggests that  this type of 
es t imator  could be profitably used with three years of 
data .  That is9 R h could be: 
^ 

R h = a h (ah_10:h_l,h_2/rh_2,h- 1) rh-2  

+ (l-c~_ l)rh_ 1 ) (rh,h_ i/rh_ l,h) + (l-%)r h 

p Year 2 Year 3 Year # 

.1 .999 .475 .327 .700 
17 21 20 

.2 .999 .#90 .285 .802 
18 23 23 

.4 .997 .542 .328 .788 
17 22 24 

.6 .993 .560 .309 .821 
18 20 21 

1.0 .981 .658 • 1402 .856 
16 22 23 

2.0 .931 .790 .666 .8514 
18 17 20 

3 .0  .862 .9#14 .8#8 .865 
15 16 18 

# .0 .788 1. 063 .9#1 .96# 
16 14 2# 

5 .0  .716 1.163 .908 .996 
12 16 16 

6.0 .651 1.062 .976 .991 
13 10 20 

7.0 .593 1.050 .888 .761 
15 14 16 
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TABLE 3. 

M ODEL II 

Q Year 2 Year 3 Year 

.1 .713 .997 1.055 1.069 
17 10 10 

.2 .714 .988 1.057 1.039 
15 10 13 

• 4 .715 .962 1.09 .930 
16 II  l# 

• 8 .719 .970 1.012 .890 
16 13 11 

1.5 .732 .974 .974 .782 
15 14 13 

t~.0 .802 .968 1.169 .683 
17 15 21 

7.0 .878 .992 .971 .999 
18 19 14 

10 .923 .892 .919 .996 
16 15 21 

20 .975 .723 .666 .814 
18 19 24 

40 .993 .625 .344 .799 
18 22 18 

70 .997 .534 .288 .856 
20 20 24 

. 

0 

4 0  

. 

. 

. 

8. 

and 0~, ah_ . ,  X . .  and Xh..2 should be es t imated as 
outl iner/ in se~io~-i~Ive. 

In Model II one can expect  some gain from the use 
of composite est imation the f i r s t  year it is used (i.e. 
with sampling on two occasions). In general,  using the 
leapfrog approach of section five, gives results tha t  
are similar to those of Model I but the trends are not 
so clear  cut .  It should be noted that  Model II agrees 
with the variance assumptions as s ta ted in section two 
while Model I, as a tes t  for robustness, deviates from 
these assumptions. 

These est imation techniques need to be further  
tes ted  on "real" data and compared to other  types of 
composi te  es t imators  that  use difference adjustments 
ra ther  than ratio adjustments.  Conditions under which 
one type of adjustment  gives smaller mean square 
error  than the other  needs further investigation. 

I would like to thank Stuart  Scott  for his review of 
this paper and Alfreda Reeves for her labors in the 
typing of this paper. 
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