A CLASS OF RATIO COMPOSITE ESTIMATORS
Stephen M. Woodruff, Bureau of Labor Statistics

Certain ratio composite estimators are
investigated and a general form for writing their
variance is derived. The form of the variance permits
relatively easy computation of optimal values for the
parameters in the sampling scheme, The computations
are carried through in detail for a special case of
composite estimation using data from sampling on two
occasions. In this special case, criteria for the use of
composite estimation verses sampling on the latest
occasion is derived. Some applications and extensions
of these results are also discussed and an Empirical
study using a computer simulation is presented.
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1. INTRODUCTION

Current survey estimates can often be considerably
improved upon by the use of survey results from the
preceeding time periods. The extra care devoted to
survey design when data for more than one occasion is
to be used will often be rewarded with pleasing
reductions in mean square error. This article is a
summary of some findings on the use of composite
estimation on ratio estimators with ratio adjustments.
A special case of sampling on 2 occasions is examined
in detail and an extension of the "2 occasion" results
are investigated for sampling on more than 2
occasions. An empirical study of these estimators is
described in the last section.

The composite estimator that is studied herein is
mentioned briefly in several references, notably
Hansen, Hurwitz and Madow, Wolter, Cochran,
Woodruff and Eckler, but, nowhere could I find any
detailed exposition devoted explicitly to it. In
particular, the optimization of the sampling design
with respect to sample overlap as well as weighting is
analyzed using a linearization procedure that yields
surprisingly compact results.

2, THE ESTIMATOR AND SAMPLING SCHEME
It is desired to study the properties of composite
estimators of the form:

Rp = oy G /S W R
+ (1- ah)rh for h=3,4,5..
where Ry, = a, (1'2’,1/1']:2)1'1
+ (l-ctz)r2

(2.1)

0< %<y for i=2,34uc0icrureny

.=y /% . and r. = y./X.
15”7 i
y. . is the sample mean for the Y characteristic

y. .
at tifle i based on the overlaped sample between time
iand time j (li-j|=1X) x}j is analogously defined.

?i (x.) is the sample mean for the Y(X)character-
istic'at time i based on the entire sample at time |i.
Initially (at time i = 1)a simple random sample
(SRS) of size n is selected and from these n units a
SRS of size lln (0 <>\l < 1)is selected for carryover
to time i = 2,
At time i = 2 a sample of size n is constituted from
the Aln units previously selected plus a new SRS of
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size (1 - ) ) selected from the remaining units in the
case of without replacement sampling. From these n
units at time i = 2, a subsample of size >Zn is selected
for carryover to time i = 3. At time i = 3 a sample of
size n is constructed from these A,n units plus a new
sample of size (1 - 2, ) from the rgmaining units just
as was done at the %receeding step. This process is
continued until time h. It is assumed throughout that
the population variance of X and Y is constant over
time.

The quantity that I wish to estimate is R, = Vh/)Th

where Y, is the population mean for the Y character-
istic at time h and X the population mean for the X
characteristic at timehh.

3. THE VARIANCE OF THE ESTIMATOR
Rh is a function of ;i’ Y Ei’. and g{i for i and j
ranging between 1 and h. Expdl’ldmg > in a Taylor
Series about the corresponding populatio}}r means and
ignoring terms of order 2 and higher it is found,the
varjance of this linearized quantity, which is denoted
by ﬁh’ is of the form given in Theorem 1.

Theorem | ; . Var (ﬁ'h)z trace (I F)
where I = E@ZzZ )

and Z = (2, Z,, .. Z) where Z;=(Y /X, Xo,/%,)-(x,/X;)

y: (x.)is the Y value (X value)at time i of a single unit
séledted at random from the population (the selection
probability is distributed uniformly over the entire
population). The random vector, Z , is thus distributed
as the outcome of the random selection of one unit
from which X| Xg e Xp Y| Yo e ¥}, AL observed.

F is an h x h matrix of constants that are
themselves functions of the sampling design. That is,
F is a function of A, A, ... wve Oy Oy weee n and
N the size of the uni%erzse. Ah"l 273 *n ~
~ Proof of Theorem 1l.1: The linearization, Rh, of
Rh reduces to constant terms plus terms of the form:

X, .

ki
are sample means from a SRS at time i of some size,
not necessarily n. L, is a constant depending on the
sampling design; k = 1,2,....m where m is usually
greater than h. This is done in section 4 for and by
mathematical induction is easily intended to ﬁh for
h>2, — -
The variances of the terms L, (Yh/Xh X yki/Yi) -

L Y /X X/ Y -G /X)) wherey, . &

(xk./X.)) and the covariances between them are then
expressed in terms of the variances and covariances of
the components of Z to give:

h h
z z
i=l j=1

Var (ﬁ/h) =
]:
= trace ( ¢ F)

fij Cov (Z; zj)

Q.E.D.

F=F la2 Qy vee Ay ees n, N) is a matrix valued

function of %\ese esign paraimeters. To select these
design parameters so the Var h) is minimized it is
necessary to solve the system:



trace (£ Fa.)=0

trace(ZFAi)= 0 (3.2)

i= 1,200
Bfij
where Fa = (fjf )= (—)

Ja

In the case of sampling on 2 occasions from an
infinite universe these equations admit a simple
solution. This case is discussed below.

4. SAMPLING ON TWO OCCASIONS

To simplify notation in this case let 062 =0o¢ and

= A

To estimate is the

(Y /X ) where Y
population mean for é\e harﬁ:gens’uc at nr%e 2 and
1

similarily for X, (ie. Y 2N 1=Zl Yi) .

_— p— —1 —
~ Y5/X uy, + my,

let Rz = Qa 2/ 2 . 1 1

Va2 I >
yl/)rl x) +m Xy
— -
uy,+my,
+ (o) 22
u )’(‘2"+ m Ez’

where: _

1) y,'is the sample mean for the An = m units at
time 2, which were retained from the Ist
occasion for the Y characteristic and
similarily for X

ii) ¥, is the sample mean at time 1 for the Y
cr!naracterlsnc based on the m retained units
apd SLmilarly for x-.

iii) is the sample mean for the Y
cl%aractenstxc at time 1 based on the (1-A)n=u
units not in the retained portion of the sample
at time 1 and similarly for X, .

iv) y., is the sample mean baséd on the (1-})n=u
uflits sampled anew at time, 2 for
characteristic Y and similarly for x

v) o is a real number between 0 and 1.

~

Hence: R2 = q (rz/rl) r; + (1—<:;)r2

where r, = (u yg +m ;i)/(u;éu m?z)‘ , r{ = yy/x§
If N is sufficiently large we can assume

independence between the ngnmatched samples at
time 2 and time 1 (i.e. X & x| are independent ).

Expanding R., in a Taylor Series about expected
values and ignoring the terms of order 2 and higher
you get:

R, = (Yz/x2> + (y2 7,) (/X,) (@ + (-0) (m/n)
- Xz) (Yz/xz) (@ + (1) (m/n))
- (1Y) @ @) (T/X,Y))
+EET) @wn) TyX,X)
+F] - Yy /) T /X))
G - X)) e/ (¥ /%,x )
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+ - Ty o) Xy
- (x"— %) (o)) (T/%D)

The varlance of this expression can be computed to
get trace (ZF)

F=T|1 a-2-1
2 (4.1)
A-5-1 1+ (1/7)
where T = (1/n) (02N
In this case the system (2.2) reduces to
trace (IF,)=0
trace ( z Fo,) 0 (4.2)

The solution of this system that minimizes Var (ﬁh) is:
opt A = (1/2)(1-2 opt a)/(1-opt a) and
opt a= (1/2) - (V2) (Var(;-2,)/Var(z,) + Var (z)?

It is noted, at this point, that this function relating
the optimal value for X to the optimal value for o is
it's own inverse function. Thus there is a duality, of
sorts, between the optimal weight for combining 2
estimators into one and the optimal overlap for
"merging" of the 2 samples. This value of A is called
the optimal overlap. The ratio of this minimum
variance to the variance of the usual linearized
estimate of R, based on a SRS without replacement
of size n at time 2is:

(V min/V SRS) = 1 +{%/(1- 201 +(Var(z,)Var(z.))
- (2 Cov(z Z2)/Var(22)) 1+ o/0) - N)

If Z, and Z, are positively correlated then the
compos&e estimdtor provides an improvement and this
ratio can be written as:

1 - (l_lH)z Var (Zl) + Var (Z,)
2 2 Var (Zz)

Var (Z, - Z,y)

Nf—

where H =

Var (Zl) + Var (22)

The random variables Z, and Z, upon which this
sampling design depends éan be felated, via their
variance/covariance structure, to the 2 estimates
which form the compos1te estimator. The variance of
Z2 is simply the variance of the linearization of r

L (Y /X (X /Y )xG /xl) + K, where K is"a
constant 2l'hus z s ~alot hke the adjusted
estimator (r2 1/r1 2) r1 .

b b

Note that this variance ratio is a function of
1/2
§ = (Var(z,)/Var(z,)

p=p (Z 1 Zz), the correlation between Z; and Z,

- B'%”( 5,9)] [83 +1]

where H(§, )= (1462 = 208)/(1+82)

and

V min
Hence
Vsrs



Table 1 gives Va.lUES of this ratio for various values
of p and values of §“ near unity. The nature of Z
and Z., , as descrjbed on the previous page, woulél
make gne expect & to lie near one.

5. APPLICATIONS

This type of estimator was originally studied for
the special case of data on 2 occasions discussed in
section 3. This estimator is intended for possible use
in strata which are quite large relative to the sample
size so that the results derived in section 3 (assuming
an infinite universe) would remain applicable.

In the case of using data from 3 or more occasions,
numerical methods may be necessary in order to solve
the equations (3.2) for optimal sampling parameters.
An alternate method that might be reasonably
adequate would be to iterate the results derived in
section 3 for data on 2 occasions. Set A, = 1.0 in
order to estimate E(Z Z), where Z = (Z,,Z 1), from a
sample selected in year zero and retaineg in year one.

would be estimated from this historical data then
or a, use

1/2
4, = (1/2)—(1/2)(Var(Zl-Zz)/Nar(Zl)+Var(Z2)))
and for ), usei , = (1/2X(1-2 az)/(l-az))
and so on for the third, fourth, fifth and succeeding
occasions. This is:

var (zy,_,- 2,y

a =
h-1
Var (zh-Z) + Var (Zh_l)

1-1
2 2

and A_; = (I/2((-20, _;)/(-0p _,))

6. EMPIRICAL ANALYSIS

In order to test the theory presented here, 22
distinct populations (data sets) with 5 years (years 0 to
4) of information on 3000 units were constructed and
samples of size 100 were selected. The zeroth year's
sample was retained in year one (i.e, A, = 1.0) in order
to estimate E(Z*Z) where Z = (ZI,Z ). c]'hese estimates
are what is referred to in section 52 as historical data,
from which A,, the overlap between year one and year
two, is estimated. For year two a composite estimate
was made using the procedure detailed in section 4 for
sampling on 2 occasions; A, being estimated from the
overlap sample between tinte one and two, Composite
estimates for year three and year four were obtained
using the leapfrog approach outlined in section 5.
These estimates were then compared to the true
population values using a relative mean square error
measure described below. - The usual ratio estimator,
r,, was also computed at each time h=1,2,3,4 and its
relative mean square error was computed. This
experiment was then replicated 29 times on each of
the 22 different populations. For each of the 22
different populations and for each of years 2, 3, and 4
the relative mean square error was estimated using
the 29 replications for both the usual ratio estimator
and the composite estimator. The ratio of these
measures was then computed and tabulated below. In
addition, the number of times that the composite
estimator was closer to the true value than the usual
estimator in 29 replications is tabulated for each of
the populations and years.

The first 11 data sets were constructed using
Model One for eleven different values of P. Model
One is as follows:

for h=4,5,
xij = o .+ Bx.-1+ Yy fxij + (1~ Yx)ij
(NOTE: estimate o, from overlap between time h & = +8 -1 o4 (1- .
h-1) h = Yy = Oy By it ¥y Tyt Wl
A conserYative estimate of ?he imprqv§ment over i=1,2,3,4,5 (year)
SRS at occasion h of this composite estimation scheme j=1, 2, = 3000 (establishment)
would be 1- ((1/2) - (I/2H)? (169+1) -
2 1/2 fy” = N(0,1) if i=1
where ¢ = (Varz(zh—l)/var(zinbl/z fxlj = N(O,l)
and H = ((148° - 2p8/(146“) 4
withp = p (Zh—l’zh)‘
1 VARIANCE RATIOS
g 2
CORRELATION
P .8 9 Lo 1.1 1.2
.1 .9988 .9988 .9987 .9986 .9986
.2 .9951 L9947 L9944 L9942 .9939
.3 .9882 9874 .9867 .9860 .9855
A4 9775 9759 9746 29734 .9723
.5 .9620 L9594 L9571 L9551 L9533
.6 .9402 .9361 .9325 .9293 .9265
.7 .9095 .9032 .8977 .8930 .8888
.8 .8652 .8555 8472 .8402 .8342
.9 7949 7792 7662 7557 L7472
1.0 .6180 .5597 .5 .5098 .5185
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f = f + N(0,P) ifis1
£ij = f£)i-1,j + NO,P)
e X. .
ij i-1,j
i, = NGO £y = NOLS) 58 &,

]

generated for each establishment, j=1,2,-—- 3000
and o, B_ Y B, and vy _ are constants
ay=46, B;=§,$§=.§,ax=6, B, =8, Y, = 25
were used. The N(a,b) were generated using the
Normal random number generator at the National
Institutes of Health Computer Center. Four random
numbers were generated for each pair (i, j) , j=1, ...
3000 and i=1,2,...,5 and all of these 60,000 random
numbers are assumed to be independent.

The second 11 data sets were constructed using

Model Two for eleven different values of q. Model
Two is as follows:
Xij = 8+ij+f .
yij = 40+3°1 +fyj *fyij
i=1,2,u.,5
j = 1,2,...,3000
f_. = N(0,0.8)
Xj _ ¥
fyj = (49/8) ij + N(0, 50)
f .. = N(0, 40
vij N(0, 40/q) .
f.. =4t +fi-1)/i * N(O, 40/q)
yl] y M i > 1

i-1,j
f = A 1y +JG-D/i " N, 8/q)
As in Model One, four random numbers were
generated for each pair (i, j) and all of these 60,000
random numbers are assumed to be independent.

TABLE 2.
MODEL I

| 0 Year 2
.1 .999 475
17

.2 .999 490
18

N .997 542
17

.6 .993 .560
18

1.0 981 .658
i6

2.0 931 .790
18

3.0 .862 944
15

4.0 .788 1.063
16

5.0 716 1.163
12

6.0 .651 1.062
13

7.0 .593 1.050
15
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The relative mean square error for each year and each
of the 22 populations is measured by:

m
(1/m) g ((COMP)J. - ACTUAL)?/ACTUAL?
j=1

m
&  (Wm)I ((RATIO) - ACTUALF/ACTUAL?
j=1
where m is the number of times this experiment was
replicated (m=29)% (COMP). is dhe value of the
composite estimator on e j replication ar%g
(RATIO). is the value of the ratio estimator on the j
replicatibn. "ACTUAL", is the true population value
of the parameter being estimated. The number that is
tabulated in table two and three is the relative mean
square error for the composite estimator divided by
the relative mean square error for the ratio estimator.
For each of the 22 populations, the number of times
that the composite estimator was superior to the usual
ratio estimator is tabulated as the integer directly
under the ratio of mean square errors.

7. Conclusions

In Model I it is curious to note that the leapfrog
approach outlined in section five worked very well in
general the first year it is applied (year 3) but
deteriorates after that (year 4). This is probably
because the weights differ more from their optimum
values when they are estimated as for a two year
composite estimator, when instead, the estimator uses
four years of data. This suggests that this type of
estimator could be profitably used with three years of
data. That is, Ry could be:

Ry =o0p O 10 1 b 2T h 201 The2
+ (=0 ) D b 11,0 T Aoy

Year 3 Year &4
.327 .700
21 20
.285 .802
23 23
.328 788
22 24
.309 .821
20 21
402 .856
22 23
666 .854
17 20
848 .865
16 18
941 964
14 24
.908 .996
16 16
.976 .991
10 20
.8388 .761
14 16



TABLE 3.

MODEL I
Q P Year 2
.1 .713 .997
17
W2 714 .988
15
4 715 .962
16
.8 719 .970
16
1.5 .732 974
15
4.0 .802 .968
17
7.0 .878 .992
18
10 .923 .892
16
20 975 .723
18
40 .993 .625
18
70 .997 534
20

and and should be estimated as
Hinbekidh e, 12

outlin ve.

In Model II one can expect some gain from the use
of composite estimation the first year it is used (i.e.
with sampling on two occasions). In general, using the
leapfrog approach of section five, gives results that
are similar to those of Model I but the trends are not
so clear cut. It should be noted that Model II agrees
with the variance assumptions as stated in section two
while Model 1, as a test for robustness, deviates from
these assumptions.

These estimation techniques need to be further
tested on "real" data and compared to other types of
composite estimators that use difference adjustments
rather than ratio adjustments. Conditions under which
one type of adjustment gives smaller mean square
error than the other needs further investigation.

I would like to thank Stuart Scott for his review of
this paper and Alfreda Reeves for her labors in the
typing of this paper.

204

1.

Year 3 Year 4
1.055 1.069
10 10
1.057 1.039
10 13
1.09 .930
11 14
1.012 .890
13 11
974 .782
14 13
1.169 .683
15 21
971 .999
19 14
.919 .996
15 21
.666 814
19 24
344 .799
22 18
.288 .856
20 24
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