Timothy C. Coburn and William D. Warde, Oklahoma State University

1. Introduction

A common situation in survey sampling is for several organizations to collect information on a regular basis from the same segment of a population. In addition, some of the same units may actually be selected for use in two or more surveys, and the information to be obtained from them may be almost identical. When much of the required data for all the surveys could be collected simultaneously from the same set of sampling units, or from subunits of those units, this practice is statistically and cost inefficient.

The procedure of simultaneously collecting data on the same unit for several surveys is sometimes referred to as integrated survey sampling. When a single population is composed of two or more overlapping subpopulations, independent surveys of the subpopulations can be integrated and the sample designs can be modified to either (1) reduce or eliminate multiple coverage in the overlap domain, or (2) to improve the estimates of the parameters of the individual subpopulations by advantageously combining information available from all the surveys. These features resemble some the features of the multiple frames techniques. However, while the multiple frames approach addresses the question of how to best sample a single population covered by two or more distinct, but overlapping, lists of units (frames), the integrated survey approach deals with the problems of sampling two or more distinct, but overlapping, populations or subpopulations, each covered by a single frame or list of units.

This investigation addresses the general problems of integrated survey sampling and estimation in the overlapping subpopulations context. For the special case of a single population covered by exactly two overlapping subpopulations, a basic integrated sample survey design is proposed which yields a more precise estimator of the means of the two individual subpopulations (combining all the available survey data) than estimators obtained with conventional survey designs. Alternatively, for fixed levels of precision, procedures are described for reducing the sample sizes of the two surveys in order to minimize coverage of the overlap domain, resulting in a more cost efficient system of surveys.

2. An Example of Overlapping Subpopulations

An example of overlapping subpopulations is found in the federal welfare system. The federal welfare system is most generally defined as the collection of federally funded family nutritional/ income support programs, the agencies and their staffs which administer and govern those programs, and the population of all family units receiving at least one program benefit. Although there are a number of these programs in existence serving specific interests throughout the country, there are three major programs which collectively support the majority of "welfare recipients" nation-wide. It is these three programs which are of specific interest: Aid to Families with Dependent Children
(AFDC), the basic welfare grant program administered by the Health Care Financing Administration (FFCA) of the U.S. Department of Health, Education, and Welfare (DHEW); the Food Stamp Program (FSP), administered by the Food and Nutrition Service (FNS) of the U.S. Dapartment of Agriculture (USDA); and the Medicaid program (Med), administered by the Social Security Administration (SSA) of DHEW.

Every state directs these three programs within its geographic boundaries under federal statutes and with the support of public funds. In most cases the programs are managed independently of one another, either by different state agencies or by different staffs within the same agency, and each program supports its own participating constituency. In this regard the population of welfare recipients in each state actually consists of three uniquely defined and uniquely governed subpopulations. Under the collective regulations currently in force, it is possible, and highly likely, that a family unit eligible to participate in one program may also be eligible to participate in one or both of the other programs. Consequently, the subpopulations, though uniquely defined, inherently overlap. A schematic of this general overlapping subpopulations situation is provided in the following figure.

Definition of Overlapping Regions

1. FSP only
2. AFDC only
3. Med only
4. AFDC and FSP
5. AFDC and Med
6. FSP and Med
7. FSP, AFDC, and Med

Figure 1. Overlapping Subpopulations in the Federal Welfare System

Every six months each state is required to conduct a quality control survey of a sample of family units residing in the state and participating in each of the three major welfare programs. There are three independent surveys to conduct and three independent samples of fixed size from which to collect and analyze data (in most cases this requires the expertise of three separate, trained staffs). The purpose of these surveys is to vali-
date the management practices of the state agencies directing the programs by determining the number of participating family units obtaining benefits in error. Of particular interest is the proportion of family units certified to participate in a given program, but which, because of oversight or fraud by the caseworker or recipient, are totally ineligible. States are subject to fiscal sanctions if their "ineligibility rates" in any of the three programs exceed established tolerances. Consequently there is considerable interest in integrating these sample surveys to reduce overall costs and/or to improve the estimates of the individual subpopulation characteristics of interest.

3. A Basic Overlapping Sample Surveys Design

Suppose a population of size Ω is composed of two overlapping subpopulations of sizes N and M , respectively; and suppose two independent sample surveys are conducted over the population, with each survey aimed at a particular subpopulation. The staffs of two distinct agencies or organizations conduct the surveys. Let the survey of subpopulation 1 (having size N) be designated as the primary survey (primary subpopulation, primary sample, etc.). Iet the overlap domain be of size N_{2} $\left(=M_{2}\right)$, so that $N=N_{1}+N_{2}$ and $M=M_{1}+M_{2}$.

Although the subpopulations are known to overlap, it cannot be known prior to sampling which population elements fall in the overlap domain. Assume the sampling units for both surveys are the same size (i.e., same definition of sampling unit), and that both surveys obtain identical measurements on the units for the characteristc of interest.

Simple random samples of fixed size n and m, respectively, are selected for the two surveys. The units selected in each sample fall into two categories, or strata-those which belong to the overlap domain and those which do not (called "mixed" and "non-mixed" units, respectively). Assume no duplicate units are selected in the two samples owing to sampling the overlap domain twice.

The surveys are conducted by the two organizations. Within the context of each survey it is first determined for each sample unit whether or not it falls in the overlap domain. If a sample unit is determined to be a "mixed" unit, it is first surveyed with respect to membership in the subpopulation from which it was selected. Within the scope of this investigation, or subsequent to it, additional information is obtained on the characteristics of interest to the other survey. After the two surveys are completed, each of the two original samples is post-stratified into the two cate-gories-"mixed" and "non-mixed" units. In this manner four subsamples of random size are formed: n_{1} "non-mixed" units (with respect to the primary subpopulation) and n_{2} "mixed" units in the primary sample; and m_{1} "non-mixed" units (with respect to the second subpopulation) and m_{2} "mixed" units in the second sample. Note that $n^{2}=n_{1}+n_{2}$ and $m=m_{1}+m_{2}\left(n_{i}, m_{i}, i=1,2\right.$ all non-zero $)$. The two subsamples of "mixed" units are two independent samples from the overlap domain. Improved estimates for the characteristics of interest in each subpopulation can be computed by advantageousiy combining the information available in the four subsamples.
4. Estimating the Mean of Either Subpopulation Assume the total size of the overlap domain of
the two subpopulations is known. Let $W_{1}=N_{1} / \mathrm{N}$ and $W_{2}=N_{2} / N_{1} N_{1}+N_{2}=N$, be the usual weights appropriatẽ to stratified sampling. Let y be a characteristic of interest in the primary survey, and let y_{1} i be the value of y on the ith unit in stratum h 售 the primary_sample ($h=1, \overline{2}$). Then an unbiased estimate of \bar{Y}_{1}, the true mean of the primary subpopulation, obtained via proportional stratification of a single sample of size n, is given by

$$
\begin{aligned}
& \bar{y}_{1}^{s t}=\sum_{h=1}^{2} W_{h} \ddot{v}_{h}, \text { where } \bar{y}_{1 h}=\frac{1}{n_{h}} \sum_{i=1}^{n} y_{1 h i} \\
& \operatorname{Var}\left(\bar{y}_{1}^{s t}\right)=\frac{(1-f)}{n} \sum_{h=1}^{2} W_{h} S_{h}^{2}, \\
& S_{h}^{2}=\frac{1}{N_{h}-1} \sum_{i=1}^{N}\left(y_{1 h i}-\bar{Y}_{1 h}\right)^{2} \text { is the within- }
\end{aligned}
$$ stratum variance, $f=n / \mathrm{N}$ is the finite population correction factor (fpc), and $\bar{Y}_{1 h}$ is the true mean of stratum h in the primary subpopulation.

If the sample of size n is post-stratified into n_{1} and n_{2} units, respectively, rather than proportionally stratified in advance, then the variance of the above estimator must be adjusted to reflect the randomness of $n_{h}(h=1,2)$. Hence,

$$
\operatorname{Var}\left(\bar{y}_{1}^{p s} \mid n_{h}\right) \doteq \sum_{h=1}^{2} \frac{w_{h}^{2} S_{h}^{2}}{n_{h}}-\frac{1}{N} \sum_{h=1}^{2} W_{h} s_{h}^{2}
$$

The average value of $\operatorname{Var}\left(\overline{\mathrm{y}}_{1}^{\mathrm{ps}}\right)$ over all possible non-zero n_{h} must be obtained. Ignoring the case

$$
\begin{aligned}
& n_{h}=0, \\
& \operatorname{Var}\left(\bar{y}_{1}^{p s}\right)= E_{n_{h}}\left[\operatorname{Var}\left(\bar{y}_{1}^{p s} \mid n_{h}\right)\right] \doteq \frac{(1-f)}{n} \sum_{h=1}^{2} W_{h} S_{h}^{2}+ \\
& \frac{1}{n^{2}} \sum_{h=1}^{2}\left(1-W_{h}\right) S_{h}^{2},
\end{aligned}
$$

where $f=\frac{n}{N}$, given that $E\left(\frac{1}{n_{h}}\right) \doteq \frac{1}{n W_{h}}+\frac{1-W_{h}}{n^{2} W_{h}^{2}}$.
Ignoring the fpc in the above equation,

$$
\begin{aligned}
\operatorname{Var}\left(\bar{y}_{1}^{p s}\right)= & \mathrm{E}_{\mathrm{n}_{h}}\left[\operatorname{Var}\left(\overline{\mathrm{y}}_{1}^{\mathrm{ps}} \mid n_{\mathrm{h}}\right)\right] \doteq \frac{1}{\mathrm{n}} \sum_{\mathrm{h}=1}^{2} W_{\mathrm{h}} \mathrm{~S}_{\mathrm{h}}^{2}+ \\
& \frac{1}{\mathrm{n}^{2}} \sum_{\mathrm{h}=1}^{2}\left(1-\mathrm{H}_{\mathrm{h}}\right) \mathrm{S}_{\mathrm{h}}^{2}
\end{aligned}
$$

Now suppose additional information via a sample from the second subpopulation is available on stratum 2 (overlap domain). Let $y_{1 h i}$ and $y_{2 h i}$ be values of the characteristic y obtanined on thie ith units in strata h from subpopulations 1 and 2, respectively. A two-sample estimate of the mean, \bar{Y}_{1}, of the primary subpopulation for the characteristic y is given by

$$
\bar{y}_{1}^{* *}=W_{1} \bar{y}_{11}+W_{2}\left[\beta \bar{y}_{12}+(1-\beta) \bar{y}_{22}\right]
$$

where $\bar{y}_{1 h}=\frac{1}{n_{h}} \sum_{i=1}^{n} y_{1 h i}$ and $\bar{y}_{2 h}=\frac{1}{m_{h}} \sum_{i=1}^{m} y_{2 h i}$ are unbiased estimates of the means of the hth strata in subpopulations 1 and 2, respectively (a similar expression can be given for $\bar{y}_{2}^{* *}$, a two-sample estimate of the mean, \bar{Y}_{2}, of the second subpopulation). $\bar{y}_{1}^{* *}$ is unbiased for \bar{Y}_{1}, and its approximate variance is found similarly to $\operatorname{Var}\left(\bar{y}_{1}^{p s}\right)$. Ignoring the foc's,
$\operatorname{Var}\left(\bar{y}_{1}^{*} * \beta\right)=w_{1}^{2} \frac{S_{1}^{2}}{n_{1}}+w_{2}^{2} \beta^{2} \frac{S_{2}^{2}}{n_{2}}+w_{2}^{2}(1-\beta)^{2} \frac{S_{2}^{2}}{m_{2}}$.
Now $\operatorname{Var}\left(\bar{y}_{1}^{*} \mid \beta\right)$ is minimum when $\beta=\frac{n_{2}}{n_{2}+m_{2}}$. Making this substitution in the above equation,

$$
\operatorname{Var}\left(\bar{y} \frac{n_{1} *}{} \left\lvert\, B=\frac{n_{2}}{n_{2}+m_{2}}\right.\right)=w_{1}^{S_{1}^{2}} \frac{n_{1}^{2}}{n_{2}} S_{2}^{2}\left(\frac{1}{n_{2}+m_{2}}\right)
$$

The average value of $\operatorname{Var}\left(\vec{y}_{1}^{*} \left\lvert\, \beta=\frac{n_{2}}{n_{2}+m_{2}}\right.\right)$ over all possible non-zero values of n_{1}, n_{2}, and m_{2} must
now be obtained.

$$
\begin{aligned}
& \frac{W_{2} S_{2}^{2}}{n(1+\Delta)}+\frac{W_{2} S_{1}^{2}}{n^{2}}+\frac{\left(N_{1}+\Delta V_{1}\right) S_{2}^{2}}{n^{2}(1+\Delta)^{3}}, \\
& \text { where } \Delta=\frac{m V_{2}}{n W_{2}}, E\left(\frac{1}{n_{2}+m_{2}}\right) \pm \frac{1}{W_{2}+V_{2} m}+\frac{n W_{1} W_{2}+m V_{1} V_{2}}{\left(N_{2} n+V_{2} m\right)^{3}},
\end{aligned}
$$

and $V_{1}=M_{1} / M, V_{2}=M_{2} / M$. Analogous algebraic expressions may be obtained for the variances of multi-sample estimators of other subpopulation parameters.
5. Comparison with Conventional Istimators

To the order of approximation used in computing the variance, it can be shown that $y_{1}^{* *}$ is uniformly more precise than \bar{y}_{1}, the estimate of the mean of the primary subpopulation obtained with conventional single sample post-stratification. In addition, if

$$
\frac{S_{1}^{2}}{S_{2}^{2}}+\frac{W_{1}}{W_{2}}<n^{2} W_{2}\left[E\left(\frac{1}{n_{2}}\right)-E\left(\frac{1}{n_{2}+m_{2}}\right)\right]
$$

then $\bar{y}_{1}^{* *}$ is more precise than \bar{y}_{1}, the estimate of \bar{Y}_{1} obtained with proportional stratification. An apoproximate condition is given by

$$
s_{1}^{2} / s_{2}^{2}<n
$$

The relative precision of $\overline{y_{1}}{ }^{p s}$ to $\overline{y_{1}^{* *}}$ was computed for each of a number of combinations of values of the parameters n, m, W_{2}, and V_{2} in the expression for the variance of $\overline{y_{1}^{* *}}$, and for three different combinations of the within-stratum variances, S_{1}^{2} and S_{2}^{2}. Some of the results are shown in Tables I-III.

6. Two Sample Size Reduction Schemes Based on the Two Sample Estimator
 Given two overlapping subpopulations, the size

 of the sample for the survey of the primary subpopulation may be reduced without altering the sample size for the second survey by solving for $n^{\prime \prime}$ in the equation$$
\operatorname{Var}\left(\bar{y}_{1}^{* *} \mid n^{\prime \prime}, m, W_{2}, V_{2}\right)=C
$$

In this equation C is the desired precision of the estimate $\vec{y}_{1}^{* *}, n^{\prime \prime}$ is the reduced primary sample size, and $\frac{1}{m}$ is the size of the sample for the second survey. Table IV displays the sizes of $n^{\prime \prime}$ to which n may be reduced for several combinations of values of the parameters n, m, W_{2}, and V_{2}, when C is taken to be the precision associated with conventional single-sample post-stratification (of a primary sample size n).

It is also possible to reduce both original sample sizes by simultaneously solving the two equations

$$
\operatorname{Var}\left(\bar{y}_{1}^{* *} \mid n^{\prime}, m^{\prime}, W_{2}, V_{2}\right)=c
$$

and

$$
\operatorname{Var}\left(\bar{y}_{2}^{* *} \mid n^{\prime}, m^{\prime}, W_{2}, V_{2}\right)=D
$$

In these equations, $\overline{y_{1}^{* *}}$ is the two-sample estimate of the mean of the first subpopulation, $\vec{y}_{2}^{* *}$ is the two-sample estimate of the mean of the second subpopulation, n^{\prime} and m^{\prime} are the sizes to which n and m may be reduced, respectively, C is the desired precision for $\bar{y}_{1}^{* *}$, and D is the desired precision for $\mathrm{y}_{2}^{* *}$. Table ${ }^{1} \mathrm{~V}$ shows some pairs of reduced sample sizes obtained when C and D are taken to be the precision associated with estimating the means of the two subpopulations using conventional singlesample post-stratification (of samples of sizes n and m, respectively).

The second procedure described above yields a uniformly smaller combined total sample size for the surveys of two overlapping subpopulations than does the first procedure. Both procedures allow fewer sample units to be physically surveyed than would ordinarily be required, using conventional single-sample survey designs, to maintain a desired level of precision for estimates of the subpopulation parameters of interest. Accomplishment of this goal depends on the sharing of information among survey organizations as specified in the survey design previously described. Specific sample survey situations will dictate a choice between the two procedures.

7. Summary of Findings

In the context of two overlapping surveys, an estimate of the mean of either subpopulation, $\bar{y}^{* *}$, can be obtained by combining information in samples of size n and m, respectively, selected from the two subpopulations. $y_{1}^{* *}$, the estimate of the mean of the subpopulations of primary interest, is always more precise than $y_{1}^{p s}$, the estimate of the mean obtained by post-stratifying the single sample_of size n. The difference in the precision of $\bar{y}_{1}^{* *}$ and the precision of y_{1}^{p} is greatest for any combination of stratum variances when m is large relative to the size of n, and W_{2} and V_{2} are both large and about the same size. Even larger gains in precision are to be obtained using $\bar{y}_{1}^{* *}$ if $S_{2}^{2}>S_{1}^{2}$ Therefore, if (1) the two subpopulations are about the same size and are substantially overlapped, (2) the size of the sample from the second subpopulation exceeds the size of the primary sample, and (3) the overlap domain is the most variable stratum, then $\mathrm{y}_{1}^{* *}$ should be used to estimate the primary subpopulation mean. Otherwise $\mathrm{y}_{1} \frac{1}{1}$ is about as precise as $y_{1}^{* *}$, and the conventional singlesample estimator is recommended if the additional administrative costs of operating in the overlapping surveys mode are substantial (analogous re-
sults can be obtained regardless which subpopulation is chosen as the primary subpopulation). It can be demonstrated that these recommendations apply for small values of n and m as well as for large values, though the results noted above are likely to be more pronounced when n and m are both relatively large (for example, 100 or larger). In addition, for almost all choices of n, m, W_{2}, V_{2}, S_{1}^{2}, and $\mathrm{S}_{2}^{2}, \bar{y}_{1}^{* *}$ is also more precise than $\overline{\mathrm{y}}_{1}^{2 t}$, the estimate of the mean obtained by proportional allocation of the single sample of size n among the strata of the primary subpopulation.

If the precision of the two-sample estimator, $\bar{y}_{1}^{* *}$, is pre-specified, then the combined total sample size for the surveys of the two overlapping subpopulations can be reduced using either of two different procedures. The survey situation may allow only one of the sample sizes to be reduced, while the other remains fixed; or it may allow both sample sizes to be reduced simultaneously. The percent reduction in combined total sample size is greatest when both sample sizes are reduced simultaneously.
*This research was supported in part by the U.S. Department of Agriculture, Food and Nutrition Service, Grant No. 40-3198-9-888.

TABLE I
Relative Precision of $\overline{\mathrm{y}}_{1}^{\mathrm{ps}}$ to $\overline{\mathrm{y}}_{\mathrm{i}}^{*}$, Large Sample Sizes, $\mathrm{s}_{2}^{2}=\mathrm{s}_{1}^{2}$

$\mathrm{n}=3 \mathrm{~m}$					$n=2 m$				$\mathrm{n}=\mathrm{m}$				$n=\frac{1}{2} m$				$\mathrm{n}=\frac{1}{3} \mathrm{~m}$			
	.	. 4	. 6	. 8	. 2	. 4	.6	. 8	. 2	4	. 6	. 8	. 2	\cdots	6	. 8	. 2	-	. 6	. 8
2	1.18	1.21	1.22	1.12	1.15	1.19	1.21	1.22	1.11	1.15	1.18	1.19	1.07	1.11	1.14	1.15	1.05	1.09	1.11	1.13
. 4	1.31	1.43	1.48	1.52	1.25	1.36	1.43	1.47	1.15	1.25	1.32	1.36	1.09	1.15	1.21	1.25	1.06	1.11	1.15	1.19
. 6	1.42	1.66	1.81	1.92	1.31	1.52	1.66	1.77	1.18	1.31	1.43	1.52	1.09	1.18	1.25	1.31	1.06	1.12	1.18	1.23
.8	1.51	1.91	2.23	2.43	1.36	1.66	1.92	2.14	1.19	1.36	1.52	1.66	1.10	1.19	1.28	1.36	1.06	1.13	1.19	1.25

TABLE II
Relative Precision of $\bar{y}_{1}^{p s}$ to $\bar{y}_{1}^{* *}$, Large Sample Sizes, $s_{2}^{2}=2 S_{1}^{2}$

$n=3 m$					$n=2 m$				$n=m$				$n=\frac{1}{2} m$				$\mathrm{n}=\frac{1}{3} \mathrm{~m}$			
	.	4	6	. 8	. 2	. 4	6		. 2	, 4	6	. 8	. 2	4	6	. 8	. 2	4	. 6	. 2
. 2	1.33	1.40	1.43	1.44	1.28	1.36	1.40	1.42	1.20	1.29	1.33	1.36	1.12	1.20	1.25	1.29	1.09	1.15	1.20	1.23
4	1.52	1.75	1.87	1.96	1.40	1.61	1.75	1.84	1.23	1.40	1.52	1.61	1.13	1.23	1.32	1.40	1.09	1.17	1.23	1.30
. 6	1.60	1.99	2.28	2.49	1.43	1.75	2.00	2.20	1.23	1.43	1.60	1.75	1.12	1.23	1.33	1.43	1.08	1.17	1.23	1.30
-8	1.61	2.13	2.59	2.99	1.42	1.80	2.14	2.45	1.22	1.42	1.61	1.80	1.11	1.22	21.32	1.42	1.07	1.14	+1.22	1.28

TABLE III
Relative Precision of $\bar{y}_{1}^{p s}$ to $\bar{y}_{1}^{* *}$, Large Sample Sizes, $S_{2}^{2}=\frac{1_{2}}{S_{1}}{ }^{2}$

$n=3 \mathrm{~m}$					$\mathrm{n}=2 \mathrm{~m}$				$\mathrm{n}=\mathrm{m}$				$\mathrm{n}=\frac{1}{2} \mathrm{~m}$				$\mathrm{n}=\frac{1}{3} \mathrm{~m}$			
	. 2	. 4	. 6		. 2	. 4	. 6	. 8	. 2	. 4	. 6	. 8	. 2	. 4	. 6	. 8	. 2	. 4	. 6	8
. 2	1.09	1.10	1.11	1.11	1.08	1.10	1.10	1.11	1.06	1.08	1.09	1.10	1.04	1.06	1.07	1.08	1.03	1.05	1.06	1.07
. 4	1.17	1.22	1.25	1.26	1.14	1.20	1.23	1.25	1.09	1.14	1.18	1.20	1.05	1.09	1.12	1.14	1.04	1.07	1.09	1.11
. 6	1.26	1.38	1.45	1.50	1.20	1.32	1.40	1.45	1.12	1.21	1.27	1.32	1.06	1.12	1.17	1.21	1.04	1.08	1.12	1.15
- 6	1.37	1.63	1.81	1.95	1.20	1.49	1.66	1.79	1.15	1.28	1.40	1.50	1.08	1.15	1.22	1.28	1.05	1.10	1.15	

Reduced Primary Sample Sizes for the Surveys of Two Overlapping Subpopulations

			$s_{2}^{2}=s_{1}^{2}$				$S_{2}^{2}=2 S_{1}^{2}$				$S_{2}^{2}=\frac{1}{2} s_{1}^{2}$			
n	m	$\mathrm{W}_{2} \mathrm{~V}_{2}$. 2	. 4	. 6	. 8	. 2	. 4	. 6	. 8	. 2	. 4	. 6	. 8
200	200	. 2	178	171	168	166	162	150	145	142	188	184	182	181
		. 4	170	154	146	140	155	130	117	110	182	173	167	164
		. 6	165	142	127	117	155	121	100	87	176	161	151	144
		. 8	162	131	108	91	157	119	89	68	170	146	129	117
	400	. 2	171	166	164	163	150	142	139	137	184	181	180	179
		. 4	154	140	134	131	130	110	102	98	173	164	160	158
		. 6	142	117	105	99	122	87	74	67	161	$14 / 4$	136	131
		. 8	131	91	73	64	119	68	48	40	146	117	102	94
	600	. 2	168	164	162	161	145	139	137	136	182	180	179	178
		. 4	146	134	130	127	117	102	96	94	167	160	157	155
		. 6	127	105	97	92	100	74	65	61	151	136	130	126
		. 8	108	73	61	56	89	43	38	34	129	102	91	85
	800	. 2	166	163	161	161	142	137	136	135	181	179	178	178
		. 4	140	131	127	125	110	98	94	92	164	158	155	154
		. 6	117	99	93	90	87	67	61	58	144	131	126	123
		. 8	91	64	56	52	69	40	34	31	117	94	85	81
	1000	. 2	165	162	161	160	140	136	135	134	180	179	178	178
		. 4	137	129	126	124	105	95	92	90	162	156	154	153
		. 6	110	95	90	88	79	64	59	57	140	128	124	122
		. 8	80	59	53	50	56	36	32	30	108	89	82	79
	1200	. 2	164	161	161	160	139	136	134	134	180	178	178	178
		. 4	134	127	125	123	102	94	91	89	160	155	153	152
		. 6	105	93	89	87	74	61	57	56	136	126	122	121
		. 8	73	56	51	49	48	34	30	29	102	85	80	77
	1400	. 2	163	161	160	160	138	135	134	134	179	178	178	178
		. 4	132	126	124	123	100	92	90	89	159	154	153	152
		. 6	102	91	88	86	70	60	56	55	133	125	121	1.20
		. 8	68	54	50	48	43	32	30	28	97	83	78	76
	1600	. 2	163	161	160	160	137	135	134	133	179	178	178	178
		. 4	131	125	123	122	98	92	89	88	158	154	152	152
		. 6	99	90	87	85	67	58	56	54	131	123	121	119
		. 8	64	52	49	47	40	31	29	28	94	81	77	75
	1800	. 2	162	161	160	160	137	134	134	133	179	178	178	177
		. 4	130	125	123	122	96	91	89	88	157	153	152	152
		. 6	97	89	86	85	65	57	55	54	130	122	120	119
		. 8	61	51	48	47	38	30	28	28	91	80	76	74
400	200	. 2	371	357	348	343	351	325	311	302	384	376	372	369
		- 4	365	340	322	309	349	310	282	261	379	364	354	346
		. 6	362	331	305	284	352	309	273	243	374	353	336	322
		. 8	361	325	291	262	356	314	274	238	368	339	314	292
	400	. 2	357	343	336	333	325	302	291	286	376	369	365	363
		. 4	340	309	292	281	310	261	235	220	364	346	335	329
		. 6	331	284	253	233	309	243	200	174	353	322	302	289
		. 8	325	262	214	181	314	238	177	135	339	292	257	232
	600	. 2	348	336	331	329	311	291	284	279	372	365	362	361
		. 4	322	292	277	269	282	235	215	204	354	335	326	321
		. 6	305	253	226	210	273	200	165	147	336	302	284	272
		. 8	292	214	168	143	274	177	121	94	314	257	223	202
	800	. 2	343	333	329.	326	302	286	279	276	369	363	361	359
		. 4	309	281	269	262	261	220	204	196	346	329	321	316
		. 6	284	233	210	198	243	174	147	134	322	289	272	263
		. 8	262	181	143	125	238	135	94	78	292	232	202	185
	1000	. 2	339	330	327	325	296	282	277	274	367	362	259	358
		. 4	299	274	263	258	246	211	198	191	340	324	317	313
		. 6	267	220	200	190	219	158	136	126	311	279	265	256
		. 8	236	158	129	115	205	110	81	70	273	215	189	175
	1200	. 2	336	329	326	324	291	279	275	273	365	361	359	358
		. 4	292	269	290	255	235	204	193	188	335	321	314	311
		. 6	253	210	194	185	200	147	130	122	302	272	259	252
		. 8	214	143	120	109	177	94	73	65	257	202	180	168
	14.00	. 2	334	327	325	323	288	277	274	272	364	360	358	357
		. 4	286	265	257	253	227	200	190	185	332	318	312	309

TABIE V
Reduced Sample Sizes for the Surveys of Two Overlapping Subpopulations

			$S_{1}^{2}=S_{2}^{2}=S_{3}^{2}$				$2 S_{1}^{2}=S_{2}^{2}=2 S_{3}^{2}$				$\frac{1}{2} S_{1}^{2}=S_{2}^{2}=\frac{1}{2} S_{3}^{2}$			
n	m	$i_{i} V_{2}$. 2	- 4	. 6	. 8	. 2	. 4	. 6	. 8	. 2	. 4	. 6	. 8
200	200	. 2	180180	173173	169170	167169	166166	154163	148166	144169	189189	185183	183178	182173
			173173	160160	152152	146147	163154	143143	128145	118150	183185	175175	170165	163154
		. 6	170169	152152	140140	132132	166148	145128	125125	106134	178183	165170	157157	153141
		. 8	169167	147146	132132	121121	169144	150118	134106	112112	173182	154168	141153	134134
	400	. 2	172374	167371	165369	163368	152360	144362	140366	138370	185385	182381	180376	180371
		. 4	157362	143354	136351	133349	137340	114343	105350	100357	174378	165369	161361	159351
		. 6	147355	122344	110342	103341	133326	96330	79344	70354	163375	147362	139352	134339
		. 8	139350	101340	79344	68348	135315	84321	54348	43362	150372	122359	107351	99341
	600	. 2	169572	164570	163569	162568	146558	140562	138566	136570	183584	180580	180576	179571
		. 4	148558	136553	131551	128550	121537	104545	98553	95558	168575	161567	158559	156551
		. 6	130550	108545	99545	95545	108523	77539	67551	63559	153570	138559	131551	128540
		. 8	114545	77547	63552	58555	102510	53 544	40561	35569	132568	105559	93553	68545.
	800	- 2	167771	163769	162769	161768	143757	138762	136766	135770	182783	180779	179776	179771
		- 4	142756	132752	128751	126750	112737	99746	95754	92759	165773	159766	156759	155750
		. 6	119748	101746	94746	91747	92726	69744	62754	59761	146767	133758	127750	125740
		. 8	96745	66752	57756	53758	76720	42754	35766	32772	119766	96760	87754	83747
	1000	. 2	165971	163969	162968	161968	141957	137962	136967	135970	181983	179979	179975	178971
		- 4	138955	130952	127951	125951	107938	96947	93.954	91960	162972	157965	155958	154950
		. 6	112947	97947	91947	89 948	82930	65947	60956	57962	141966	129958	125950	123941
		. 8	83948	60955	54.958	51960	60931	37959	32968	30973	110965	90960	83955	80948
400	200	. 2	374172	362157	355147	350139	360152	340137	326133	315135	385185	378174	375163	372150
			371167	354143	344122	340101	36214	343114	33096	32184	381182	369165	362147	359122
		. 6	369165	351136	342110	34479	366140	350105	34479	34854	376180	361161	352139	351107
		. 8	366163	349133	341103	34868	370138	357100	35470	36243	371180	351159	339134	34199
	400	. 2	360360	346347	339340	335337	333333	309327	296331	289337	378378	370366	367356	364345
		. 4	347346	320320	304304	293294	327309	286286	256289	236300	3.66370	350350	341330	335306
		. 6	340339	304304	280280	263264	331296	289256	250250	212268	356367	330341	315315	306281
		. 8	337335	294293	264263	241241	337289	300236	268212	223223	345364	306335	281306	268268
	600	. 2	351553	338543	333539	330536	316524	295525	286532	281539	373574	366563	363554	362543
		. 4	328533	299511	204502	275496	297490	249488	224496	211509	356562	338542	329524	324503
		. 6	315522	260492	241480	223475	297468	231451	185474	159497	340557	309530	292506	282478
		. 8	306515	24.1479	195472	163475	3044.54	231420	156460	109506	320553	270524	238500	219474
	800	.2	345749	334741	330738	327736	306720	288724	281732	277739	370771	364761	361753	360743
		. 4	314725	286708	273701	266698	273681	229686	209700	20071.3	348757	331735	323721	318702
		. 6	293711	$21+689$	219684	205683	265653	191662	156689	139709	326749	294724	278703	268678
		. 8	277702	199682	156689	133697	269631	1.67644	106700	83727	29874.5	242719	212702	195682
	1000	. 2	341947	331940	328937	326936	299916	284924	278932	275939	367969	362960	360952	359942
		. 4	304920	277906	266901	260899	256877	216808	201903	193915	342953	326935	319920	315901
		. 6	275904	227889	206887	195887	237847	168872	142898	130915	31594	283921	268902	260879
		. 8	250894	170889	136900	120907	235821	125873	86917	72936	279939	222918	195904	181888
600	200	. 2	572169	5581148	559130	545114	558146	537121	523103	510102	584183	575168	570153	568132
		. 4	570164	553136	545108	54777	562140	545104	53977	54453	580180	567161	559138	559105
		. 6	569163	551131	545.99	55263	566138	55398	55167	56140	576180	559158	551131	56393
		. 8	568162	550128	54, 96	55568	570136	55895	55963	56935	571179	551156	540128	54588
	400	. 2	553351	533328	522315	515306	524316	490297	468297	454304	574.373	562356	557340	553320
		. 4	543338	511299	492268	479241	525295	483249	451231	420231	563366	542338	530309	524270

