Timothy C. Coburn and William D. Warde, Oklahoma State University

1. Introduction

A common situation in survey sampling is for several organizations to collect information on a regular basis from the same segment of a population. In addition, some of the same units may actually be selected for use in two or more surveys, and the information to be obtained from them may be almost identical. When much of the required data for all the surveys could be collected simultaneously from the same set of sampling units, or from subunits of those units, this practice is statistically and cost inefficient. The procedure of simultaneously collecting data

on the same unit for several surveys is sometimes referred to as integrated survey sampling. When a single population is composed of two or more overlapping subpopulations, independent surveys of the subpopulations can be integrated and the sample designs can be modified to either (1) reduce or eliminate multiple coverage in the overlap domain, or (2) to improve the estimates of the parameters of the individual subpopulations by advantageously combining information available from all the surveys. These features resemble some the features of the multiple frames techniques. However, while the multiple frames approach addresses the question of how to best sample a single population covered by two or more distinct, but overlapping, lists of units (frames), the integrated survey approach deals with the problems of sampling two or more distinct, but overlapping, populations or subpopulations, each covered by a single frame or list of units.

This investigation addresses the general problems of integrated survey sampling and estimation in the overlapping subpopulations context. For the special case of a single population covered by exactly two overlapping subpopulations, a basic integrated sample survey design is proposed which yields a more precise estimator of the means of the two individual subpopulations (combining all the available survey data) than estimators obtained with conventional survey designs. Alternatively, for fixed levels of precision, procedures are described for reducing the sample sizes of the two surveys in order to minimize coverage of the overlap domain, resulting in a more cost efficient system of surveys.

2. An Example of Overlapping Subpopulations

An example of overlapping subpopulations is found in the federal welfare system. The federal welfare system is most generally defined as the collection of federally funded family nutritional/ income support programs, the agencies and their staffs which administer and govern those programs, and the population of all family units receiving at least one program benefit. Although there are a number of these programs in existence serving specific interests throughout the country, there are three major programs which collectively support the majority of "welfare recipients" nation-wide. It is these three programs which are of specific interest: Aid to Families with Dependent Children (AFDC), the basic welfare grant program administered by the Health Care Financing Administration (HFCA) of the U.S. Department of Health, Education, and Welfare (DHEW); the Food Stamp Program (FSP), administered by the Food and Nutrition Service (FNS) of the U.S. Department of Agriculture (USDA); and the Medicaid program (Med), administered by the Social Security Administration (SSA) of DHEW.

Every state directs these three programs within its geographic boundaries under federal statutes and with the support of public funds. In most cases the programs are managed independently of one another, either by different state agencies or by different staffs within the same agency, and each program supports its own participating constituency. In this regard the population of welfare recipients in each state actually consists of three uniquely defined and uniquely governed subpopulations. Under the collective regulations currently in force, it is possible, and highly likely, that a family unit eligible to participate in one program may also be eligible to participate in one or both of the other programs. Consequently, the subpopulations, though uniquely defined, inherently overlap. A schematic of this general overlapping subpopulations situation is provided in the following figure.

Definition of Overlapping Regions

- 1. FSP only
- 2. AFDC only
- 3. Med only
- 4. AFDC and FSP
- 5. AFDC and Med
- 6. FSP and Med
- 7. FSP, AFDC, and Med

Figure 1. Overlapping Subpopulations in the Federal Welfare System

Every six months each state is required to conduct a quality control survey of a sample of family units residing in the state and participating in each of the three major welfare programs. There are three independent surveys to conduct and three independent samples of fixed size from which to collect and analyze data (in most cases this requires the expertise of three separate, trained staffs). The purpose of these surveys is to validate the management practices of the state agencies directing the programs by determining the number of participating family units obtaining benefits in error. Of particular interest is the proportion of family units certified to participate in a given program, but which, because of oversight or fraud by the caseworker or recipient, are totally ineligible. States are subject to fiscal sanctions if their "ineligibility rates" in any of the three programs exceed established tolerances. Consequently there is considerable interest in integrating these sample surveys to reduce overall costs and/or to improve the estimates of the individual subpopulation characteristics of interest.

3. A Basic Overlapping Sample Surveys Design

Suppose a population of size Ω is composed of two overlapping subpopulations of sizes N and M, respectively; and suppose two independent sample surveys are conducted over the population, with each survey aimed at a particular subpopulation. The staffs of two distinct agencies or organizations conduct the surveys. Let the survey of subpopulation1 (having size N) be designated as the primary survey (primary subpopulation, primary sample, etc.). Let the overlap domain be of size N₂ (=M₂), so that N = N₁ + N₂ and M = M₁ + M₂. Although the subpopulations are known to over-

Although the subpopulations are known to overlap, it cannot be known prior to sampling which population elements fall in the overlap domain. Assume the sampling units for both surveys are the same size (i.e., same definition of sampling unit), and that both surveys obtain identical measurements on the units for the characteristc of interest.

Simple random samples of fixed size n and m, respectively, are selected for the two surveys. The units selected in each sample fall into two categories, or strata—those which belong to the overlap domain and those which do not (called "mixed" and "non-mixed" units, respectively). Assume no duplicate units are selected in the two samples owing to sampling the overlap domain twice.

The surveys are conducted by the two organizations. Within the context of each survey it is first determined for each sample unit whether or not it falls in the overlap domain. If a sample unit is determined to be a "mixed" unit, it is first surveyed with respect to membership in the subpopulation from which it was selected. Within the scope of this investigation, or subsequent to it, additional information is obtained on the characteristics of interest to the other survey. After the two surveys are completed, each of the two original samples is post-stratified into the two categories-"mixed" and "non-mixed" units. In this manner four subsamples of random size are formed: n_1 "non-mixed" units (with respect to the primary subpopulation) and n_2 "mixed" units in the primary sample; and m_1 "non-mixed" units (with respect to the second subpopulation) and m_2 "mixed" units in the second sample. Note that $n^2 = n_1 + n_2$ and $m = m_1 + m_2$ (n, m, i = 1,2 all non-zero). The two subsamples of "mixed" units are two independent samples from the overlap domain. Improved estimates for the characteristics of interest in each subpopulation can be computed by advantageously combining the information available in the four subsamples.

4. Estimating the Mean of Either Subpopulation Assume the total size of the overlap domain of the two subpopulations is known. Let $W_1 = N_1/N$ and $W_2 = N_2/N$, $N_1 + N_2 = N$, be the usual weights appropriate to stratified sampling. Let y be a characteristic of interest in the primary survey, and let y_{1hi} be the value of y on the ith unit in stratum h of the primary sample (h = 1,2). Then an unbiased estimate of Y_1 , the true mean of the primary subpopulation, obtained via proportional stratification of a single sample of size n, is given by

$$\overline{y}_{1}^{st} = \sum_{h=1}^{2} W_{h} \overline{y}_{1h}, \text{ where } \overline{y}_{1h} = \frac{1}{n_{h}} \sum_{i=1}^{n_{h}} y_{1hi} \cdot Var(\overline{y}_{1}^{st}) = \frac{(1-f)}{n} \sum_{h=1}^{2} W_{h} S_{h}^{2},$$
where $S_{h}^{2} = \frac{1}{N_{h}} \sum_{i=1}^{N_{h}} (y_{1hi} - \overline{y}_{1h})^{2}$ is the within-

stratum variance, f = n/N is the finite population correction factor (fpc), and \overline{Y}_{1h} is the true mean of stratum h in the primary subpopulation. If the sample of size n is post-stratified into

If the sample of size n is post-stratified into n_1 and n, units, respectively, rather than proportionally stratified in advance, then the variance of the above estimator must be adjusted to reflect the randomness of n_h (h = 1,2). Hence,

$$\operatorname{Var}(\overline{y_1}^{\mathrm{ps}}|n_h) \stackrel{\bullet}{=} \frac{\sum_{h=1}^2 \frac{\mathbb{W}_h^2 S_h^2}{n_h} - \frac{1}{N} \sum_{h=1}^2 \mathbb{W}_h S_h^2}{N_h^2 h} \cdot$$

The average value of $Var(\overline{y}_1^{ps})$ over all possible non-zero n_h must be obtained. Ignoring the case $n_h = 0$,

$$Var(\overline{y}_{1}^{ps}) = E_{n_{h}} [Var(\overline{y}_{1}^{ps}|n_{h})] \stackrel{*}{=} \frac{(1-f)}{n} \sum_{h=1}^{\infty} W_{h} S_{h}^{2} + \frac{1}{n^{2}} \sum_{h=1}^{2} (1-W_{h}) S_{h}^{2},$$

where $f = \frac{n}{N}$, given that $E(\frac{1}{n_{h}}) \stackrel{*}{=} \frac{1}{nW_{h}} + \frac{1-W_{h}}{n^{2}W_{h}^{2}}.$

Ignoring the fpc in the above equation,

$$\operatorname{Var}(\overline{y}_{1}^{\operatorname{ps}}) = \operatorname{E}_{n_{h}} [\operatorname{Var}(\overline{y}_{1}^{\operatorname{ps}} \mid n_{h})] \stackrel{*}{=} \frac{1}{n} \sum_{h=1}^{2} \operatorname{W}_{h} S_{h}^{2} + \frac{1}{n^{2}} \sum_{h=1}^{2} (1 - \operatorname{W}_{h}) S_{h}^{2}.$$

Now suppose additional information via a sample from the second subpopulation is available on stratum 2 (overlap domain). Let y_{1hi} and y_{2hi} be values of the characteristic y obtained on the ith units in strata h from subpopulations 1 and 2, respectively. A two-sample estimate of the mean, Y_1 , of the primary subpopulation for the characteristic y is given by

$$\overline{\mathbf{y}_{1}^{**}} = W_{1}\overline{\mathbf{y}_{11}} + W_{2}[\beta\overline{\mathbf{y}_{12}} + (1 - \beta)\overline{\mathbf{y}_{22}}],$$

where $\overline{\mathbf{y}_{1h}} = \frac{1}{n_{h}} \sum_{i=1}^{n_{h}} \mathbf{y}_{1hi}$ and $\overline{\mathbf{y}_{2h}} = \frac{1}{m_{h}} \sum_{i=1}^{m_{h}} \mathbf{y}_{2hi}$ are

unbiased estimates of the means of the <u>hth</u> strata in subpopulations 1 and 2, respectively (a similar expression can be given for y_2^{**} , a two-sample estimate of the mean, \overline{Y}_2 , of the second subpopulation). y_1^{**} is unbiased for \overline{Y}_1 , and its approximate variance is found similarly to $Var(y_1^{DS})$. Ignoring the fpc's,

$$\operatorname{Var}(\overline{y_1^{**}}|\beta) = W_1^2 \frac{S_1^2}{n_1} + W_2^2 \beta^2 \frac{S_2^2}{n_2} + W_2^2 (1-\beta)^2 \frac{S_2^2}{m_2}.$$

Now $Var(\overline{y_1^{**}}|\beta)$ is minimum when $\beta = \frac{n_2}{n_2 + m_2}$. Making this substitution in the above equation,

$$\operatorname{Var}(\overline{y_1^{**}}|\beta = \frac{n_2}{n_2^{+m_2}}) = W_1^2 \frac{S_1^2}{n_1} + W_2^2 S_2^2(\frac{1}{n_2^{+m_2}})$$

The average value of $\operatorname{Var}(\overline{y_1^{**}}|\beta = \frac{n_2}{n_2 + m_2})$ over all

possible non-zero values of n1, n2, and m2 must now be obtained.

$$Var(\overline{y_{1}^{**}}) = E_{n_{2}, m_{2}} [Var(\overline{y_{1}^{**}} | \beta = \frac{n_{2}}{n_{2} + m_{2}})] \stackrel{\bullet}{=} \frac{W_{1}S_{1}^{-}}{n} + \frac{W_{2}S_{2}^{2}}{n(1 + \Delta)} + \frac{W_{2}S_{1}^{2}}{n^{2}} + \frac{(W_{1} + \Delta V_{1})S_{2}^{2}}{n^{2}(1 + \Delta)^{3}},$$

where
$$\Delta = \frac{mV_2}{nW_2}$$
, $E(\frac{1}{n_2 + m_2}) \stackrel{\circ}{=} \frac{1}{W_2 n + V_2 m} + \frac{nW_1 W_2 + mV_1 V_2}{(W_2 n + V_2 m)^3}$,

and V_1 = M_1/M , V_2 = M_2/M . Analogous algebraic expressions may be obtained for the variances of multi-sample estimators of other subpopulation parameters.

5. <u>Comparison with Conventional Estimators</u> To the order of approximation used in computing the variance, it can be shown that y_1^{**} is uniform-ly more precise than y_1^{os} , the estimate of the mean of the primary subpopulation obtained with conventional single sample post-stratification. In addition, if

$$\frac{S_{1}^{2}}{S_{2}^{2}} + \frac{W_{1}}{W_{2}} < n^{2} W_{2} [E(\frac{1}{n_{2}}) - E(\frac{1}{n_{2}+m_{2}})],$$

then $\overline{y_1^{**}}$ is more precise than $\overline{y_1}^{st}$, the estimate of $\overline{Y_1}$ obtained with proportional stratification. An apoproximate condition is given by

$$s_1^2/s_2^2 < n$$
 .

The relative precision of \overline{y}_1^{ps} to $\overline{y_1^{**}}$ was computed for each of a number of combinations of values of the parameters n, m, W_2 , and V_2 in the expression for the variance of $\overline{y_1^{**}}$, and for three different combinations of the within-stratum variances, S_1^2 and S_2^2 . Some of the results are shown in Tables I-III.

6. Two Sample Size Reduction Schemes Based on the Two-Sample Estimator

Given two overlapping subpopulations, the size of the sample for the survey of the primary subpopulation may be reduced without altering the sample size for the second survey by solving for n" in the equation

$$Var(\overline{y_1^{**}} | n^{"}, m, W_2, V_2) = C.$$

In this equation C is the desired precision of the estimate $y^{\star\star}$, n" is the reduced primary sample size, and \bar{m} is the size of the sample for the second survey. Table IV displays the sizes of n" to which n may be reduced for several combinations of values of the parameters n, m, W_2 , and V_2 , when C is taken to be the precision associated with conventional single-sample post-stratification (of a primary sample size n).

It is also possible to reduce both original sample sizes by simultaneously solving the two equations

and

$$\operatorname{Var}(\overline{y_2^{**}}|n',m',W_2,V_2) = D$$
.

 $\operatorname{Var}(\overline{y_1^{**}}|n',m',W_2,V_2) = C$

In these equations, $\overline{y_1^{**}}$ is the two-sample estimate of the mean of the first subpopulation, $\overline{y_2^{**}}$ is the two-sample estimate of the mean of the second subpopulation, n' and m' are the sizes to which n and m may be reduced, respectively, C is the desired precision for y_{2}^{**} , and D is the desired precision for y_{2}^{**} . Table¹V shows some pairs of reduced sample sizes obtained when C and D are taken to be the precision associated with estimating the means of the two subpopulations using conventional singlesample post-stratification (of samples of sizes n and m, respectively).

The second procedure described above yields a uniformly smaller combined total sample size for the surveys of two overlapping subpopulations than does the first procedure. Both procedures allow fewer sample units to be physically surveyed than would ordinarily be required, using conventional single-sample survey designs, to maintain a desired level of precision for estimates of the subpopulation parameters of interest. Accomplishment of this goal depends on the sharing of information among survey organizations as specified in the survey design previously described. Specific sample survey situations will dictate a choice between the two procedures.

7. <u>Summary of Findings</u> In the context of two overlapping surveys, <u>an</u> estimate of the mean of either subpopulation, y^{**} , can be obtained by combining information in samples of size n and m, respectively, selected from the of size h and m, respectively, selected from the two subpopulations. y_1^{**} , the estimate of the mean of the subpopulation of primary interest, is always more precise than y_1^{ps} , the estimate of the mean ob-tained by post-stratifying the single sample of size n. The difference in the precision of y_1^{**} and the precision of y_1^{ps} is greatest for any combina-tion of stratum variances when m is large relative to the size of n and W and V are both large and to the size of n, and W₂ and V₂ are both large and about the same size. Even larger gains in precision are to be obtained using $\overline{y_1^{**}}$ if $S_2^2 > S_1^2$.

Therefore, if (1) the two subpopulations are about the same size and are substantially overlapped, (2) the size of the sample from the second subpopulation exceeds the size of the primary sample, and (3) the overlap domain is the most variable stratum, then y_1^{**} should be used to estimate the pri-mary subpopulation mean. Otherwise y_1^{OS} is about as precise as y_1^{**} , and the conventional single-sample estimator is recommended if the additional administrative costs of operating in the overlap-ping surveys mode are substantial (analogous results can be obtained regardless which subpopulation is chosen as the primary subpopulation). It can be demonstrated that these recommendations apply for small values of n and m as well as for large values, though the results noted above are likely to be more pronounced when n and m are both relatively large (for example, 100 or larger). In addition, for almost all choices of n, m, W₂, V₂, S_1^2 , and S_2^2 , $\overline{y_1^{**}}$ is also more precise than $\overline{y_1^{*t}}$, the estimate of the mean obtained by proportional allocation of the single sample of size n among the strata of the primary subpopulation. ______ If the precision of the two-sample estimator, y**, is pre-specified, then the combined total sample size for the surveys of the two overlapping subpopulations can be reduced using either of two different procedures. The survey situation may allow only one of the sample sizes to be reduced, while the other remains fixed; or it may allow both sample sizes to be reduced simultaneously. The percent reduction in combined total sample size is greatest when both sample sizes are reduced simultaneously.

*This research was supported in part by the U.S. Department of Agriculture, Food and Nutrition Service, Grant No. 40-3198-9-888.

2

2

TABLE	Ι
-------	---

Relative Precision of \overline{y}_1^{ps}	to $\overline{y_1^{**}}$, L	arge Sample Sizes,	$S_2^2 = S_2^2$
---	------------------------------	--------------------	-----------------

	n = 3m n = 2m						n = m				$n = \frac{1}{2}m$				$n = \frac{1}{3}m$					
Ā	2.2	•4	•6	. 8	•2	•4	•6	. 8	.2	•4	•6	•8	•2	•4	•6	8.	•2	•4	-6	•8
.2	1.18	1.21	1.22	1.12	1.15	1.19	1.21	1.22	1.11	1.15	1.18	1.19	1.07	1.11	1.14	1.15	1.05	1.09	1.11	1.13
•4	1.31	1.43	1.48	1.52	1.25	1.36	1.43	1.47	1.15	1.25	1.32	1.36	1.09	1.15	1.21	1.25	1.06	1.11	1.15	1.19
•6	1.42	1.66	1.81	1.92	1.31	1.52	1.66	1.77	1.18	1.31	1.43	1.52	1.09	1.18	1.25	1.31	1.06	1.12	1.18	1.23
8•	1.51	1.91	2.23	2.48	1.36	1.66	1.92	2.14	1.19	1.36	1.52	1.66	1.10	1.19	1.28	1.36	1.06	1.13	1.19	1.25

TABLE II

Relative Precision of \overline{y}_1^{ps} to \overline{y}_1^{x*} , Large Sample Sizes, $S_2^2 = 2S_1^2$

	n = 3m n = 2m						<u>et</u>		n =	= m		$n = \frac{1}{2}m$				$n = \frac{1}{3}m$				
ųΫл	2 •2	•4	.6	8.	.2	•4	•6	.8	•2	•4	•6	.8	•2	•4	•6	.8	.2	•4	•6	3.
.2	1.33	1.40	1.43	1.44	1.28	1.36	1.40	1.42	1.20	1.29	1.33	1.36	1.12	1.20	1.25	1.29	1.09	1.15	1.20	1.23
•4	1.52	1.75	1.87	1.96	1.40	1.61	1.75	1.84	1.23	1.40	1.52	1.61	1.13	1.23	1.32	1.40	1.09	1.17	1.23	1.30
•6	1.60	1.99	2.28	2.49	1.43	1.75	2.00	2.20	1.23	1.43	1.60	1.75	1.12	1.23	1.33	1.43	1.08	1.17	1.23	1.30
•8	1.61	2.13	2.59	2.99	1.42	1.80	2.14	2.45	1.22	1.42	1.61	1.80	1.11	1.22	1.32	1.42	1.07	1.14	1,22	1.28

TABLE III

									~	7	~
			- m	S						÷	
τ		Droatcion	of m	² + o	** To	mag	Sompla	Sires	S	 ÷C,	
1	JETAPIAE	LIECTOTOU	UL Y1	- UU y	1°, 10	1120	Daubte	UTTCD.	20	 ົ້	1
			• •	•		<u> </u>	-	•		<i>c</i> .	- 2

n = 3m						n =	= 2m		n = m				$n = \frac{1}{2}m$				$n = \frac{1}{3}m$			
W.W.	· ²	•4	•6	.8	.2	•4	•6	.8	•2	•4	•6	.8	.2	•4	•6	•8	•2	•4	.6	.8
.2	1.09	1.10	1.11	1.11	1.08	1.10	1.10	1.11	1.06	1.08	1.09	1.10	1.04	1.06	1.07	1.08	1.03	1.05	1.06	1.07
•4	1.17	1.22	1.25	1.26	1.14	1.20	1.23	1.25	1.09	1.14	1.18	1.20	1.05	1.09	1.12	1.14	1.04	1.07	1.09	1.11
•6	1.26	1.38	1.45	1.50	1.20	1.32	1.40	1.45	1.12	1.21	1.27	1.32	1.06	1.12	1.17	1.21	1.04	1.08	1.12	1.15
.8	1.37	1.63	1.81	1.95	1.28	1.49	1.66	1.79	1.15	1.28	1.40	1.50	1.08	1.15	1.22	1.28	1.05	1.10	1.15	1.20

TABLE IV

Reduced	Primary	Sample	Sizes	for	the	Surveys	of	Two	Overlapping	Subpopulations	
---------	---------	--------	-------	-----	-----	---------	----	-----	-------------	----------------	--

				s_2^2	= s ₁ ²			s ₂ ² =	25 ²			s ₂ ² =	$\frac{1}{2}s_{1}^{2}$	
n	m	W2V2	.2	•4	•6	. 8	•2	•4	•6	8.	.2	•4	•6	•8
200	200	.2 .4 .6	178 170 165 162	171 154 142 131	168 146 127 108	166 140 117 91	162 155 155 157	150 130 121 119	145 117 100	142 110 87 68	188 182 176 170	184 173 161 146	182 167 151 129	181 164 144 117
	400	.2 .4 .6	171 154 142 131	166 140 117 91	164 134 105 73	163 131 99 64	150 130 122 119	142 110 87 68	139 102 74	137 98 67	184 173 161	181 164 144 117	180 160 136 102	179 158 131 9/
	600	.2 .4 .6	168 146 127	164 134 105 73	162 130 97	161 127 92 56	145 117 100	139 102 74	137 96 65	136 94 61 34	182 167 151	180 160 136	179 157 130 01	178 155 126
	\$00	.2 .4 .6	166 140 117	163 131 99	161 127 93	161 125 90	142 110 87 60	137 98 67	136 94 61	135 92 58	181 164 144	179 158 131	178 155 126	178 154 123
	1000	•2 •4 •6	165 137 110	162 129 95	161 126 90	160 124 88	140 105 79	136 95 64	135 92 59	134 90 57	180 162 140	94 179 156 128	178 154 124	178 153 122
	1200	•2 •4 •6	164 134 105	93	161 125 89	160 123 87	139 102 74	136 94 61	134 91 57	134 89 56	180 160 136	09 178 155 126	178 153 122	178 152 121
	1400	•8 •2 •4	73 163 132 102	50 161 126 91	51 160 124 88	49 160 123 86	48 138 100 70	34 135 92 60	30 134 90 56	29 134 89 55	102 179 159 133	85 178 154 125	80 178 153 121	178 152 120
	1600	•8 •2 •4 •6	68 163 131 99	54 161 125 90	50 160 123 87	48 160 122 85	43 137 98 67	32 135 92 58	30 134 89 56	28 133 88 54	97 179 158 131	83 178 154 123	78 178 152 121	76 178 152 119
	1800	•8 •2 •4 •6	64 162 130 97	52 161 125 89	49 160 123 86	47 160 122 85	40 137 96 65	31 134 91 57	29 134 89 55	28 133 88 54	94 179 157 130	81 178 153 122	77 178 152 120	75 177 152 119
400	200	.8 .2 .4	61 371 365 362	51 357 340 331	48 348 322 305	47 343 309 284	38 351 349 352	30 325 310 309	28 311 282 273	28 302 261 243	91 384 379 374	80 376 364 353	76 372 354 336	74 369 346 322
	400	•8 •2 •4	361 357 340 331	325 343 309 284	291 336 292 253	262 333 281 233	356 325 310 309	314 302 261 243	274 291 235 200	238 286 220 174	368 376 364 353	339 369 346 322	314 365 335 302	292 363 329 289
	600	•8 •2 •4 •6	325 348 322 305	262 336 292 253	214 331 277 226	181 329 269 210	314 311 282 273	238 291 235 200	177 284 215 165	135 279 204 147	339 372 354 336	292 365 335 302	257 362 326 284	232 361 321 272
	800	•8 •2 •4 •6	292 343 309 284	214 333 281 233	168 329 269 210	143 326 262 198	274 302 261 243	177 286 220 174	121 279 204 147	94 276 196 134	314 369 346 322	257 363 329 289	223 361 321 272	202 359 316 263
	1000	.8 .2 .4 .6	262 339 299 267	181 330 274 220	143 327 263 200	125 325 258 190	238 296 246 219	135 282 211 158	94 277 198 136	78 274 191 126	292 367 340 311	232 362 324 279	202 259 317 265	185 358 313 256
	1200	.8 .2 .4	236 336 292 253	158 329 269 210	129 326 290	115 324 255 185	205 291 235 200	110 279 204	81 275 193	70 273 188 122	273 365 335	215 361 321 272	189 359 314 259	175 358 311 252
	1400	.8 .2 .4	214 334 286	143 327 265	120 325 257	109 323 253	177 288 227	94 277 200	73 274 190	65 272 185	257 364 332	202 360 318	180 358 312	168 357 309

TABLE V

Reduced Sample Sizes for the Surveys of Two Overlapping Subpopulations

				$S_1^2 = S_1^2$	$s_2^2 = s_3^2$			$2S_1^2 = S_1^2$	$\frac{2}{2} = 25\frac{2}{3}$		$\frac{1}{2}S_1^2 = S_2^2 = \frac{1}{2}S_3^2$				
n	m	12 2 2	•2	•4	•6	•\$	•2	•4	•6	•8	•2	•4	•6	•8	
200	200	•2 •4	180 180 173 173	173 173 160 160	169 170 152 152	167 169 146 147	166 166 163 154	154 163 143 143	148 166 128 145	144 169 118 150	189 189 183 185	185 183 175 175 165 170	183 178 170 165 157 157	182 173 168 154 153 141	
	1.00	•• •8	169 167	152 152 152 152 146 147 146 147 146 147 146 147 146 147 147 146 147 147 147 146 147 147 147 147 147 147 147 147	140 140 132 132 145 240	121 121	169 144	150 118	134 106	112 112 120 270	173 182	154 168 162 381	141 153	134 134	
	400	•4	1/2 5/4 157 362	107 571 143 354 122 314	136 351	133 349 102 341	137 340	114 343	105 350 79 314	100 357	174 378	165 369	161 361 139 352	159 351	
	600	.8 .2	139 350 169 572	101 340 164 570	79 344 163 569	68 348 162 568	135 315 146 558	84 321 140 562	54 348 138 566	43 362 136 570	150 372 183 584	122 359 180 580	107 351 180 576	99 341 179 571	
		•4	148 558 130 550	136 553 108 545	131 551 99 545	128 550 95 545	121 537 108 523	104 545 77 539	98 553 67 551	95 558 63 559	168 575 153 570	161 567 138 559	158 559 131 551	156 551 128 540	
	\$00	•8 •2	114 545 167 771 112 756	163 769 132 752	63 552 162 769 128 751	58 555 161 768 126 750	102 510 143 757 112 737	53 544 138 762 99 746	136 766 95 754	35 509 135 770 92 759	132 568 182 783 165 773	105 559 180 779 159 766	92 222 179 776 156 759	179 771 155 750	
		.6 .8	119 748 96 745	101 746 66 752	94 746 57 756	91 747 53 758	92 726 76 720	69 744 42 754	62 754 35 766	59 761 32 772	146 767 119 766	133 758 96 760	127 750 87 754	125 740 83 747	
	1000	•2 •4	165 971 138 955	163 969 130 952	162 968 127 951	161 968 125 951	141 957 107 938	137 962 96 947	136 967 93 954	135 970 91 960	181 983 162 972	179 979 157 965	179 975 155 958	178 971 154 950	
1.00	200	•6 •8	112 947 83 948 37/ 172	97 947 60 955 362 157	91 947 54 958 355 147	89 948 51 960 350 139	82 930 60 931 360 152	65 947 37 959 340 137	60 956 32 968 326 133	57 962 30 973 315 135	141 966	129 958 90 960 378 174	83 955 375 163	80 941 372 150	
400	200	•4	371 167	354 143 351 136	344 122 342 110	340 101 344 79	362 144 366 140	343 114 350 105	330 96 344 79	321 84 348 54	381 182 376 180	369 165 361 161	362 147 352 139	359 122 351 107	
	400	•8 •2	366 163 360 360	349 133 346 347	341 103 339 340	348 68 335 337	370 138 333 333	357 100 309 327	354 70 296 331	362 43 289 337	371 180 378 378	351 159 370 366	339 134 367 356	341 99 364 345	
		•4 •6	347 346 340 339	320 320 304 304 204 203	304 304 280 280 264 263	293 294 263 264 271 271	327 309 331 296	286 286 289 256 300 236	256 289 250 250 268 212	236 300 212 268 223 223	366 370 356 367 315 361	350 350 330 341 306 335	341 330 315 315 281 306	335 306 306 281 268 268	
	600	•0 •2 •4	351 553 328 533	294 295 338 543 299 511	333 539 284 502	330 536 275 496	316 524	295 525 249 483	286 532 224 496	281 539 211 509	373 574 356 562	366 563 338 542	363 554 329 524	362 543 324 503	
	100	.6 .8	315 522 306 515	260 492 241 479	241 480 195 472	223 475 163 478	297 468 304 454	231 451 231 420	185 474 156 460	159 497 109 506	340 557 320 553	309 530 270 524	292 506 238 500	282 478 219 474	
	800	•2	345 749 314 725	334 741 286 708 201 689	330 738 273 701 219 68/	327 736 266 698 205 683	273 681	288 724 229 686 191 662	281 732 209 700 156 689	277 739 200 713 139 709	348 757	364 761 331 738 294 724	301 753 323 721 278 703	318 702 268 678	
	1000	•8 •2	277 702	199 682 331 940	156 689 328 937	133 697 326 936	269 631 299 918	167 644 284 924	106 700 278 932	83 727 275 939	298 745	242 719 362 960	212 702 360 952	195 682 359 942	
		•4	304 920 275 904	277 906 227 889	266 901 206 887	260 899 195 887	256 877 237 847	216 888 168 872	201 903 142 898	193 915 130 915	342 953 315 944	326 935 283 921	319 920 268 902	315 901 260 879	
600	200	•8	250 894 572 169	170 889 558 148	136 900 559 130	120 907 545 114	235 821	125 873 537 121	86 917 523 103	72 936 510 102	279 939 584 183	222 918 575 168	195 904 570 153	181 888 568 132	
		•4 •6	570 164 569 163	551 131 550 128	545 108 545 99 545 96	552 63	566 138	553 98 558 95	559 67	561 40 569 35	576 180	557 ± 01 559 158 551 156	551 131 560 128	563 93 545 88	
	400	•2 •4	553 351 543 338	533 328 511 299	522 315 492 268	515 306 479 241	524 316	490 297 483 249	468 297 451 231	454 304 420 231	574 373 563 366	562 356 542 338	557 340 530 309	553 320 524 270	