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ABSTRACT 
In a recent paper Maritz and Jarrett (1978) 

proposed a small-sample estimate of the variance 
of sample medians from continuous population. In 
this paper their methods are adapted to median 
estimation in s~atified sampling without replace- 
ment from finite populations. A weighted sample 
median for estimating the median of heavy-tailed 
or skewed populations is proposed. Its asymptotic 
normal distribution is derived, and optimal al- 
location is discussed. A systematic statistic 
based on the ordered observations in the complete 
sample, for the estimation of the variance of the 
weighted median is proposed. This variance es- 
timate is shown to be a consistent estimate of the 
weighted median asymptotic variance. Initial 
simulation results suggest a trimmed version of 
this estimate to be an efficient and computation- 
ally feasible alternative. Some results are also 
obtained for stratified sampling of clusters. The 
weighted median, based on the pooled clusters in 
each atratum, is shown to be a consistent and 
asymptotically normal estimate of the population 
median. A "Bookstrap" estimate of the variance of 
this estimate is proposed. 

i. INTRODUCTION 
Traditionally the theory of sampling concerned 

itself mostly with estimation of means and totals. 
Sampling designs of increasing complexity have 
been developed, along with appropriate weighted 
sample means and their variance estimates. More 
recently, a different type of investigation as- 
sociated with complex sampling designs, has been 
undertaken. Statistical methodology, originally 
developed for categorical or continuous data from 
simple random samples has been investigated and 
modified for use in complex surveys. The applica- 
tion of X2-tests to categorical data from 
stratified or cluster samples was recently 
considered by J.N.K. Rao and A.J. Scott (1979). 
Log-linear model techniques were applied by 
T.J. Tomberlin (1979) to classified data from 
complex designs. 

In this preliminary report we present results 
pertaining to a similar investigation concerning 
median estimation. Sample medians have long been 
recognized as simple robust alternatives to sample 
means, for estimating location of heavy-tailed or 
markedly skewed populations from simple random 
samples. A large class of robust estimates of 
location, including the sample median, was inves- 
tigated in the Princeton simulation study 
(D.F. Andres et. al. (1972)). Although the sample 
median did not emerge as "best" estimate in many 
nonstandard populations simulated in the study, 
its robustness in small samples for medium and 
large deviations from normality was clearly 
demonstrated. Its simplicity relative to other 
robust estimates, indicated its choice for inves- 
tigation.in designs other than simple random 
sampling. The extension of the median to strati- 
fied sampling leads naturally to weighted medians, 
similar in nature to Least Absolute Deviation 
estimates used in regression analysis (see e.g. 
S. Gross & W.L. Steiger (1979)). Their computa- 
tion requires sorting the observations in 

ascending order and assigning each a weight ac- 
cording to the statum from which it originated. 
The weighted median is the ordered observation 
that splits the ordered sequence of weights into 
two subsequences of equal total weight. An exact 
definition of the weighted median is given in 
section 2, along with its asymptotic normal dis- 
tribution. Exact conditions and proofs of state- 
ments regarding asymptotic distributions are 
omitted. Most asymptotic results presented in 
this paper follow from Hajek's (1961) theorems. 
When clustering is present, some further argu- 
ments, common in nonparametric theory, are 
required. The asymptotic variance obtained for 
simple stratified sampling is then used to discuss 
optimal allocation for estimating the total popu- 
lation median. The general rule that emerges 
states that strata for which the median is known 
to be close to the overall population median 
should be more heavily sampled. As we explain 
in section 2, the rule in fact requires larger 
sampling fractions for the more internally 
variable strata. 

A small sample estimate of the variance of the 
weighted median is presented in section 3. Its 
derivation is analogous to that of Maritz & 
Jarrett's (1978) for median estimation in con- 
tinuous populations. Except for small samples 
from a small number of strata the estimate 
requires automated computation. A FORTRAN prog- 
ram for the IBM-370 system is now available for 
computing the estimate. In its current form the 
estimate is a systematic statistic, i.e., a 
linear combination of the complete ordered sample. 
Computationsof the coefficients done so far sug- 
gest that a much simplified trimmed systematic 
statistic will perform equally well. Further 
experimentation is necessary before any precise 
recommendations can be made. 

In section 4 results obtained in sections 2 and 
3 for stratified sampling are extended to strati- 
fied sampling of clusters. Cluster sizes are 
allowed to vary within and between strata, and 
sampling fractions are not assumed constant, but 
no subsampling is carried out within clusters. 
A weighted sample median, with observations 
weighted according to the strata from which they 
originated, is shown to be a consistent, 
asymptotically normal estimate of the population 
median. Variance estimation is complicated by the 
clustering present in the design. Efron's (1979) 
"Bootstrap" estimation method is extended to 
cluster sampling without replacement from finite 
populations, and used to construct an estimate of 
the variance of the weightedmedian. The method 
calls for the construction of a "Bootstrap" 
population from a given sample, followed by direct 
computation of the variance of the estimate from 
the "Bootstrap" population. The theoretical 
justification of this procedure is not complete 
but the numerical results obtained in a simulated 
population and a real population indicate that it 
yields satisfactory results in practice. Conclud- 
ing remarks are presented in section 5. 
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2. THE WEIGHTED MEDIAN IN STRATIFIED POPULATIONS 
Consider the typical situation that customarily 

leads to stratified sampling. A population of 
size N is naturally divided into K strata of 
sizes N l, N , ..., N[. Assuming strata sizes are 
approximately known from previous surveys, it is 
desired to estimate the location of the complete 
population. If the population is known to be 
highly skewed or heavy-tailed, the population 
median rather than the population mean is sought. 
Independent samples of sizes n 1, n?, ..., n K are 
taken without replacement from-the-K strata. Each 
of the strata cumulative distribution functions 

(CDF's from here on) F , F~he .... ' FK may be 
consistently estimatedlby corresponding sample 
CDF among F _, F . Here F denotes 
the empiricn~ Fn2" .... ('n'~ess cumulative than n$ equal") 
for the j-th stratum. The population CDF 

K F 
F = [i:l Pi i with Pi = Ni/N 

for i = i, ..., K, is then consistently estimated 
by the empirical CDF 

K 
F = ~ >i= I p F n i ni " 

The 50-th percentile of F is therefore a con- 
n 

sistent estimate of the population median, denoted 
by ~, if the latter is unique. To compute the 
estimate X . all K samples must be pooled and 

ea 
ordered an~ each assigned a weight 

w = Pi / n for i = i, .. K (i) 
i i "' 

The weights of the ascending sequence are then 
accumulated until .5 is first crossed. The first 
observation encountered after the crossing is Xme d 
In small samples it is customary to take a convex 
combination, or simple average of that observatior~ 
X.%., and the one preceding it in the combined 

s~m~le X(~_I ). Thus Xme d is defined as 

Xme d = .5(X(£) + X(£_l)). (2) 

As the sample sizes increase to the total strata 
sizes N., X , becomes the actual population 

1 mea . . 

median. The estimate X . is also conslstent In 
m ea 

the usual sense in probability when N, N., and 
each n. ÷ ~ as long as the population cumulative 
F N (th~ N appended to indicate dependence on size) 
converge to a continuous CDF F that is strictly 
increasing at its median ~. Under certain condi- 
tions it is also asymptotically normal with mean 
and variance given by 

a 2 = 1 / (Nf2(x)) (Pi / fi ) (i- fi ) 

F i(~) (i - F i(~)) (3) 

where f(~) denotes the population density at its 
median ~, Pi = Ni/N and fi are the sampling 
fractions n./N.. This expression for the 

1 i 
asymptotic varlance contains the usual finite 
population corrections l-fo and the asymptotic 
density at the median whic~ will be recognized 
from the uni-stratum case. In order to assess the 
dependence of this variance on the strata struc- 
ture and sampling fractions, it is of some interest 
to determine optimal allocation for a fixed total 
sample size 

n = [K f 
i=l Ni i" 

Optimal sampling fractions are given by 

n./n = Ni(Fi(~)(l-Fi(~)))½ / 
1 

~K=I N i (F i(x) (I-F i(x)))½. (4) 

Under optimal allocation, strata whose individual 
medians are situated away from the population 
median will have smaller allocation than those 
situated close to the population median i. This 
can be seen in (4) by noting that the farther the 
stratum median is from ~, the smaller 
F.(~)(I-F~(~)) and the smaller the optimal alloc~ 
t~on f or it becomes. We note here that 
asymptotic normality may be violated if the range 
of any stratum does not cover ~. Thus, at least 
theoretically, all the fractions in (4) are 
positive, i.e., all strata must be sampled. Note 
also that the last expression reflects in fact 
the internal variability of the i-th stratum with 
respect to median estimation. 

It is of course possible to derive the 
asymptotic variance for porportional sampling 
from formula (4), and then compare it to the 
corresponding variance for optimal and simple 
random sampling. We leave these simple deriva- 
tions out for lack of space. Note that in pro- 
portional sampling, the weighted median becomes 
the usual sample median, as is the case in mean 
estimation. 

3. VARIANCE ESTIMATION 
In order to explain the rationale behind the 

small sample estimate of the variance of the 
weighted median X , offered in this section, we 
begin by developim~aa formula for the population 
variance of X .. A sample estimate of this 
variance willm~en be obtained by simply replac- 
ing all strata cumulatives by their corresponding 
sample CDF's. From our initial definition of 
X~ed as the 50-th percentile of F it is seen 

at n' 

P(Xme d > x(%)) = P([K=I witi(~) < .5) (5) 

where i < £ < N and x(z~ denotes the £-th ordered 
population value. Th~ 9ariable t~(£) denotes the 
number of values in the i-th stra£um sample that 
precede or equal x . The random variable t. (~) 
for fixed % is a H~pZlrgeometric variable with 1 
parameters N., N.F.(x.~,) and n.. The variables 

1 1 1 ,v,,) 1 
t. (£) for i=l ..... ~ are independent. Thus the 
p~obability in (5), now denoted by p, is given by 

K /NiFi(x(~)) \  ( N i ( 1 - ~ i ( x ( ~ ) ) ) \  - / )/ )/ p£ = L~T Hi= I t i ni-t i 

ni (6) 

for ~=i, ..., N and pn=l. The set T of K-tupples 
(tl, ..., t K) is composed of those K-tupples that 
satisfy the conditions 

i=l w.t.1 m < .5, Max(0, ni+Ni(Fi(x(~))-l)) _< t i 

_< Min(n i, NiF i(x(~)) 

Finally, P(Xme d = x 
the r-th moment of £~)) = p% I-P£ and for any r, 

med is given by 

E(Xmred ) = ~N r £=i (P~-I-P£) x(£) (7) 

By replacing all population CDF's by their sample 
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estimates the estimate of the variance becomes 

V~r(Xmed ) = ~n ~:i (~-i-~) x~) 

- ( f~ : l (1 )%_l -~  £) X(%)) 2 (8) 

where X- - denotes the ~-th ordered observation 
in the ~o£~bined sample obtained by pooling 
together all the K strata samples. The estimates 
~£ are given by formula (6) with each Fi(x(% l) 
replaced by the corresponding CDF F . evaldated 

. nl 
at X.,o,.. Computation of this variance estimate 
requ~s tables of Hypergeometric coefficients 
and a complete ordering of the stratified sample. 
Except in small samples with three or four strata, 
hand computation becomes prohibitively time- 
consuming, but automated computation is rather 
straightforward. Even in automated computation, 
much computing time can be saved by starting the 
computation of the p£ array at ~ = n/2 and stop- 
ping as soon as the p£ being computed becomes 
smaller than some small threshold value. Typical- 
ly in our computations approximately half the 
array actually required computation. The result- 
ing trimmed systematic estimate performed as well 
as the original untrimmed one. Under the condi- 
tions that assure asymptotic normality for Xme d 
the estimate given in (8) is a consistent 
estimate of the asymptotic variance ~2 given in 
(3) in the sense that N(Var(X I)-o 2 ) ÷ 0 in 

• mea 
probability as ni, N i and N increase indefinitely. 

4. STRATIFIED CLUSTER SAMPLING 
In order to appreciate the complications 

introduced by clustering we first consider the 
case of simple random sampling of clusters. We 
assume the population is comprised of a known 
number M of clusters, each completely described 
by its CDF F. and size N. for j=l, ..., M. A 
sample of m ~lusters is ~aken without replacement, 
and completely inspected. The sample CDF's G. 
and their sizes N(G.) are then available. Th~ 
natural estimate ofJthe population CDF F is seen 
to be 

m m 
Fm = ~j=l N(Gj)Gj / ~j=l N(Gj) (9) 

Note that since no sub sampling is done, no special 
weighting is required. Hence the simple sample 
median is a consistent estimate of the 
population median if the latter is unique. Under 
conditions that impose restrictions on the 
variability in cluster sizes and cluster medians, 
the sample median may be shown to be asymptotic- 
ally normal with the population median ~ as mean, 
and variance given by 02 where 

c 

mo 2 = (1-m/M) (M-I) -I 
c 

M N 2 )2 -2 ~j=l j (Fj (~)-F(~) (Nf (~)) (i0) 

where f(~) > 0 is the asymptotic density at 
which is assumed to exist when M ÷ ~, and 

j=l N.j/M. 

Comparison of (i0) with the asymptotic variance 
(i-n/N)/4f 2(~) of the median in simple random 
sampling indicates the effectiveness of clustering 
when cluster median variation is small. Using the 
notation developed in section 2 for stratified 

sampling, in addition to that introduced in this 
section for clustering, we are now able to state 
the results pertaining to stratified cluster 
sampling with complete inspection of sample 
clusters. Two distinct cases will be considered. 

Case I: When the total number of elementary units 
M. 
i 

Ni : [j:l Nij 

in each stratum is known prior to sampling, a 
consistent estimate of the population cumulative 
is constructed by 

F (x) = ~K (x) (11) 
n i=l (Ni/N) Fmi 

where each stratum empirical cumulative F o is 
m 

constructed as in (9). The 50-th percentile of 
the empirical cumulative given by (ii) is then 
the weighted median described in section 2 
obtained by pooling all clusters within a stratum 
and then pooling together all strata elementary 
units assigning each a weight w. according to its 
stratum of origin. The weightsmw, are random and 
computed by i 

w i = N i / (Nni) (12) 

m i 
where n i = [j=l N(Gij) 

denotes the total sample size in elementary units 
in the i-th stratum sample. Since the strata 
coefficients in (ii) 

Pi = N./N1 (13) 

are not random, asymptotic normality of F (x) and 
therefore of Xme d is obtained directly frnm the 
single stratum case. Under conditions that im- 
pose restrictions on the variability in cluster 
sizes and indirectly on cluster medians in 
individual strata, the weighted median Xed is 
asymptotically normal with mean ~ and variance 
given by 

-2K 2 ( (Z_f ) /m i) ~2 
sc = j=l Pi i 

M. 
1 2 

(~) _ Fi(~))2 ~j=l Nij (Fij 
/ 

(Mi-Z) (Ni f(~))2 (14) 

where f. = m./M., the strata sampling fractions 
-- i i 
N. denotes t~e average cluster size in the i-th 
I 

stratum, and f(~) > 0 is the density of the 
asymptotic distribution F which is assumed to 
exist at ~. 

Case II: In practical situations, the number of 
clusters M. in the i-th stratum may be approxi- 
mately knoln prior to sampling but the total 
stratum size N. may not, and will therefore have 
to be estimate~ from the cluster sample by 

N. = M.n./m.. 
I I i i 

The resulting estimate for the population 
cumulative will then be 

m. 
K 1 N(Gij) (x) / Fm(X) = fi=l(Mi/mi) ~j=l Gij 

i=l (Mi/m i) n i • 

The weighted median Xme d derived as the 50-th 

(15) 

(16) 
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percentile of F is obtained as in case I with 
weights given b~ 

i ~K (Mini/mi) ) = Mi/(m i oi=l (17) 

Employing again Hajek's (1961) results and 
standard arguments necessary to deal with the 
random denominator in (16), the weighted median 
Xme.d may be shown to be asymptotically normal 
lth mean x and variance given by 

02 K 2 
see = ~i=l Pi((l-fi)/mi) 

M. 
i 

~j=l (Nij(Fij(x)-'5) - Ni(Fi (~)-'5))2/ 

((Mi_l) (~i f(~))2). (18) 

All the quantities in (18) are defined exactly as 
in the corresponding formula (14) for the 
asymptotic variance of case I. 

Note that when K = I, no weighting is done and 
the asymptotic variances given by (14) and (18) 
coincide since then F. (~) = .5. In general it is 
expected that o 2 will be smaller than o 2 
because addit sc sce ional estimation of strata sizes 
is involved in the latter case. 

Under mild restrictions placed on the variabi- 
lity of cluster sizes in the K strata the empiri- 
cal cumulatives given in (Ii) and (16) will con- 
verge to the asymptotic cumulative F in 
probability as m, and M. ÷ ~. Thus if F has a 
unique median ~,ithe weighted median based on the 
weights (12) or the estimated weights given by 
(17), will converge in probability to ~. 

Estimation of the variance of the weighted 
median in either one of the weighting schemes is 
complicated by the fact that no simple explicit 
formula for its population variance is available. 
Thus the Maritz-Jarrett method of replacing 
population cumulatives by empirical cumulatives 
is not directly applicable. Close inspection of 
the variance estimate derived using their method 
in the unclustered case in section 3 indicates 
a way of bypassing this difficulty. In fact the 
estimate given in (8) is the population variance 
of the weighted median when the population is the 
"Bootstrap" population constructed from the simple 
stratified sample as follows. Assuming that for 
each i,k. = N./n. is an integer, a "Bootstrap" 

i i 
stratum zs obtained by including k° replications 

i 
of each of the n. sample observations in it. The 
vv , ,  1 Bootstrap estimation procedure for cluster 
stratified sampling may be described as follows: 
(i) Reconstruct stratum i by assuming that it is 

made up of M. = k. replications of the 
actual m. clu I/mi sters o~served in that stratum. 

i 
(2) Take all possible stratified samples from the 

reconstructed population obtained by applying 
step (i) to all strata, and compute the cor- 
responding weighted median for each of these 
samples. Note that any computer routine that 
calculates the weighted median for stratified 

populations can be used to compute the 
"Bootstrapped" medians in this step. Further- 
more, the number of weighted medians that 
need to be computed is not as large as it may 
seem, due to the replication of clusters 
within strata. 

(3) Compute the mean and variance VSr (X .)~ of 
the medians. The difference between ~e 

former and Xme d will yield an estimate of 
the bias, whereas the latter will serve as 
an estimate of the variance of X 

med" 

This procedure is reminiscent of the BRR method, 
but differs from it in that it employs all pos- 
sible reconstructed samples. We conjecture that 
under appropriate conditions M(Var (Xmed)-°2sce)+O 
in probability as m. and M°-~o. 

i i 

5. CONCLUDING REMARKS 
In this paper median estimates in stratified 

(or) clustered designs were considered and 
estimates of their variances proposed. Examples 
of real and simulated data will be presented at 
the meeting, to display the computational 
procedures involved, and their efficacy in 
estimation of location of skewed populations as 
compared to the sample mean. 
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