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I. Introduction P r o b { n ( k )  = I n t [ n P ( k ) ] }  = 1 - F r a c [ n P ( k ) ]  

Since many of the large scale national household 
surveys conducted or sponsored by government 
agencies utilize multistage sample designs with 
probability proportional to size (PPS) selec- 
tions at the initial stages, there is a need for 
variance component estimation methodology to 
separate PPS sampling error components from 
interviewer and respondent error components. 
While there have been extensions of the total 
survey error model developed initially by Hansen, 
Hurwitz, and Bershad (1961) for equal prob- 
ability samples, the developments by Koch (1973) 
and Koop (1975) have both used the Horvitz- 
Thompson (HT) (1952) expression for the unequal 
probability without replacement sampling vari- 
ance. The difficulty with the (HT) sampling 
variance expression as well as the alternative 
Yates-Grundy (1953) form is their inability to 
distinguish sample design parameters (sample 
sizes at the various selection stages) from 
associated, population variance component para- 
meters. Therefore, while such approaches dis- 
play the contributions of various survey error 
sources to the total variance, no explicit 
functional relationship between the sample size 
and the sampling variance contribution has been 
provided. Such a fuctional relationship in 
terms of sample size parameters is required if 
survey error models are to serve the intended 
purpose of total survey design optimization. In 
1975, G.B. Gray presented a new variance and 
covariance component representation for the 
sampling variance of the HT total estimator that 
overcomes this difficulty. 

and  

Prob{n(k) = Int[nP(k)] + 1} = Frac[nP(k)] 

where Int(x) denotes the integer part of x and 
Frac(x) is the fractional part of x. Stated 
simply, PMR samples are PPS samples such that 

In(k) - nP(k)l < 1 

for all frame units u(k). If nP(k) < 1 for all 
u(k), then a PMR selection routine is a PPS 
without replacement scheme. While PPS with 
replacement selections satisfy En(k) = nP(k), 
the range of n(k) can extend from zero to n for 
any universe unit. 

2.  Sampling Variance Components for PPS 
Selections 

To extend Gray's (1975) variance-covariance 
component expression for the (HT) universe 
total, assume for the moment that one could 
observe free of error a variate value Y(k) 
associated with each frame unit u(k). Now, let 

y ( k )  = Y ( k ) / P ( k )  = s ( + )  Y ( k ) / s ( k )  

depict unit k single draw ratio estimates for 
the universe total 

N 
Y(+) = ~ Y(k) . 

k=l 

The following results begin with an extension of 
Gray's (1975) variance-covariance representation 
to a wider class of proportional to size (PPS) 
selection methods including with replacement, 
minimum replacement, and without replacement 
schemes. Probability minimum replacement (PMR) 
selection as defined by James Chromy (1979) 
refers to methods like PPS systematic where 
frame units u(k) with size measures s(k) exceed- 
ing (I/n)-th of the aggregate universe size 
measure 

N 
s ( + )  = ~: s ( k )  

k = l  

have a chance for multiple selections. With 
n(k) denoting the random selection frequency 
defined for each of the N universe units u(k) 
when n selections are made, and with E{n(k)} or 
En(k) denoting the expected number of hits on 
unit k in n selections, the condition for strict 
PPS selections is 

E n ( k )  = n s ( k ) / s ( + )  = n P ( k )  

For a PPS sample with n selections, one can 
define single draw random indicator variables by 
randomly assigning sample unit labels i = I, 
2, .... ,n to the n selections; that is, define 

kk(i) = 

1 if frame unit u(k) belongs to the 
sample and is randomly assigned 
sample label i, 

0 otherwise. 

It is easy to see that 

E{Ak(i) } = En(k)/n = P(k) 

for all i = 1,2, .... ,n where the expectation is 
over all possible samples and all possible 
random label assignments given the sample. 
Similarly, we define double draw probabilities 

E{n(k) [n(k)-1]/n(n-l) } 
if k = k' & i ~ i' 

E{kk(i)kk, (i') }=P(kk' )= 
E{n(k)n(k' )/n(n- I) } 
if k ~ k' & i ~ i'. 

for all universe units u(k). The PPS 'Minimum 
Replacement' feature of Chromy's PMR scheme is 
characterized as follows: 

Using the single draw indicators kk(i) , unbiased 
single draw estimators for Y(+) are defined by 
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N 

y(i) = ~ kk(i) y(k) . 
k=l 

One can view such statistics as random group 
estimators for groups of size one. With the 
single draw indicators defined by equally likely 
permutations of n sample labels, over repeated 
samples and repeated labelling 

E { y ( i ) }  = Y(+) 

for all i = l(1)n. Furthermore, all the n 
single draw estimators have a common variance 

N 
V a r { y ( i ) }  = ~ P ( k ) [ y ( k ) - Y ( + ) ] 2  = 02 

k=l 

and a common covariance o2p = Cov{y(i)y(i')} 
defined by 

N N 
o2p = ~ ~ P ( k k ' ) [ y ( k ) - Y ( + ) ] [ y ( k ' ) - Y ( + ) ]  . 

k= l  k ' = l  

The common variance a 2 is the familiar PPS with 
replacement variance component. The common 
covariance component leads to the common corre- 
lation 

C o r { y ( i ) y ( i ' ) }  = C o v { y ( i ) y ( i ' ) } / o  2 = p . 

While the covariance component o2p is not strict- 
ly independent of the sample size parameter n 
since the P(kk') joint draw probabilities depend 
to some extent on n, it is the authors conten- 
tion that for moderately large universes P(kk') 
is reasonable independent of n. For the without 
replacement case where P(kk) = 0 and P(kk') = 
K(kk')/ n(n-l) is the joint inclusion probabi- 
lity over n(n-l), Hartley and Rao (1962) have 
derived a Taylor series approximation for K(kk') 
in PPS systematic sampling from a randomly 
permuted frame listing. Assuming that n is much 
smaller than N and that P(k) = s(k)/s(+) is of 
order O(N-I), Hartley and Rao show that after 
including all terms in the expansion of order 
0(N "4) and larger, K(kk')/n(n-l) is strictly 
independent of n. This result suggest that it 
is not unreasonable to treat the covariance 
component a2p as a population parameter for 
moderately large universes. 

Since the single draw variates y(i) are identi- 
cally distributed with common covariance o2p, 
the best linear combination of these y(i) for 
estimating Y(+) is their simple average; that is 

n N 
= ~ y(i)/n = ~ n(k)Y(k)/En(k) . 

i=I k=l 

The simple average y above is equivalent to 
Chromy's PMR estimator for a PPS minimum replace- 
ment selection and reduces to the without re- 
placement Horvitz-Thompson estimator when 
En(k) < 1 for all k. For with replacement PPS 
selections, y is the familiar unbiased estimator 
for Y(+). The representation of y as an average 

of single draw variates y(i) leads to the vari- 
ance partitioning 

Var{y}  = O2/n  + ( n - 1 ) o 2 p / n  = 0 2 [ l + ( n - 1 ) p ] / n  . 

To show that this variance-covariance component 
representation is equivalent to the Yates-Grundy 
(1953) type variance expression developed by 
Chromy, one can use the identities 

N N 

P(k) = 1 and ~ P(kk')= P(k') 
k= 1 k= 1 

to develop alternative expressions for o 2 and 
o2p; namely, 

N N 
a 2 = Z Z P ( k ) P ( k ' )  [ y ( k ) - y ( k ' ) ] 2 / 2  

k=l  k ' = l  

and 

N N 
a2p  = ~ ~ [ P ( k ) P ( k ' ) - P ( k k ' ) ] [ y ( k ) - y ( k ' ) ] 2 / 2  . 

k= l  k ' = l  

In this form, it is easy to show that 

N 

Var{y} = [ [ [En(k)En(k')-E{n(k)n(k')}] 
k=l k'~k 

[Y(k)/En(k)-Y(k')/En(k')]2/2 . 

In this form, it is clear that for with replace- 
ment selections where P(kk')=P(k)P(k') when 
k ~ k', the covariance component a2p = 0. For 
minimum replacement and without replacement 
samples, the [l+(n-l)p] quantity in brackets is 
the effect of PMR selection. This quantity is 
the precise analogue of the simple random sampl- 
ing fpc when it is properly stated in terms of 
the with replacement SRS variance component g 2 
and the without replacement induced common 
c o v a r i a n c e  02p = - 0 2 / ( N - I ) .  

The new sequential PMR selection scheme develop- 
ed by Chromy provides for unbiased variance 
estimability while retaining the implicit stra- 
tification advantages of the PPS systematic 
scheme where a controlled ordering of the frame 
units quarantees one selection per equal sized 
zone or sampling interval marked off seqUenti- 
ally down the ordered listing. In this case, 
the quantity [l+(n-l)p] will also reflect the 
effect of implicit stratification due to con- 
trolled ordering. 

Use of the single draw variates to develop the 
variance-covariance component partitioning for 
the variance of PPS sample statistics suggests a 
link to classical U-statistics estimation methods 
as elaborated by Hoeffding (1948). Considering 
the alternative expressions for a 2 and a2p, one 
can define the following symetric frame kernels 
of degree two 
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o 2 ( k k ' )  = P ( k ) P ( k ' ) [ y ( k ) - y ( k ' ) ] 2 / 2  

o2p(kk ') = [P(k)P(k')-P(kk')l[y(k)-y(k')]2/2 

where the degree of the kernel reflects the 
number of frame units required for its defini- 
tion and the symetry is with respect to permuta- 
tions of the frame unit labels k and k' . In 
terms of these frame kernels, the corresponding 
variance and covariance components are genera- 
lized totals of the form 

N N 

o 2 = ~: Y o 2 ( k k ' )  . 
k=l  k ' = l  

In terms of the single draw indicators, the 
appropriate degree 2 sample kernel for estimat- 
ing o K is 

N N 

@2(ii') = ~ ~ kk(i ) kki(i' ) o2(kk ')/P(kk') 
k=l k'=l 

The sample kernel @2~(ii') is defined analogous- 
ly. As long as the P(kk') double draw probabi- 
lities are positive for all frame unit pairs 
with k ~ k' or equivalently if E{n(k)n(k')} > 0 
when k ~ k', the sample kernels are unbiased for 
every pair of sampling units with i ~i'. The 
U-statistics estimators are generalized sample, 
means averaging the sample kernels over all (~) 
distinct pairs of sampling units; namely, 

n 

~2 = [ ~ @2(ii,)/(2 ) 
i=l i ' > i  

n 
n 

= ~ ~ [P(i)P(i')/P(ii')][y(i)-y(i')]2/2( 2 ) 
i=l i' >i 

n 

= [ ~ w(ii')[y(i)-y(i')]2/2( 2 ) 
i=l i' >i 

and 

n 
n 

@2~ = ~ Z [w(ii,)_l][y(i)_y(i,)]2/2(2 ) 
i=l i '  >i  

n 

= @2 _ y [ y ( i ) _ ~ ] 2 / ( n _ l )  

i = l  

= @2 _ s 2 

where s 2 is the familiar PPS with replacement 
variance component estimator. In the next 
section, PPS sample U-statistics of degree m are 
defined, and a Yates-Grundy type unbiased vari- 
ance estimator for such statistics is obtained. 
These results provide compact expressions for 
the variances of degree 2 statistics like @2 and 
~2~. 

3. General PPS Sample U-Statistics 

The natural extension of a universe total like 
Y(+) to a parameter of degree m is 

N N 
F(+) = ~ .... [ F(k I .... k m) = ~ F(k) 

k l = l  k =1 k 
m ~ 

where the summation above extends over all 
possible subsets of m universe units including 
those subsets with multiple representation of 
the same unit. While attention has been re- 
stricted to symetric functions F that are uni- 
formly zero for subsets k including the same 
unit more than once, carrying along the super- 
fluous zero terms in the F(~) defining summation 
simplifies the estimation theory for with re- 
placement and PMR selections where multiple 
selections of the same unit are permissable. 
Multiplying the single draw indicators together, 
an indicator for the m element subset k of frame 
units belonging to the sample and being assigned 
the m distinct sample labels ~ = (il,i2,...,i m) 
is 

m 

kk(i ) = [l (i£) . ~ ~=1 Ak~ 

The expected value of kk(i) will be denoted by 
P(k) where ~ 

c m(k~) 

P(k) = E { H l] [n(k£)-j+ll}/m!(:) 
~=1 j = l  

when the subset k contains c distinct frame 
units with unit u~k~) included m(k O) times in 
the subset k. Notice that the m~dimensional 
subset frequencies m(k~) sum to m. For PPS with 
replacement selection~ where the single draw 
variates are independent so long as i£ ~ i£,, 

m m m 

P(k) = E n kk (i £1 = n E{kk (i£)} = n e(k£). 
~=1 £=1 £=1 

For PPS without replacement selections where 
only distinct frame subsets can be included in 
the sample, 

P ( k )  = n ( k ) / m !  (~) 
with ~(k) denoting the multiple inclusion prob- 
ability for the distinct frame subset (k). For 
PMR selections, no subsets k with frequencies 
m(k£) exceeding {Int[nP(k£~]+l} can occur. 

With these definitions of multiple (m) draw 
subsample indicators kk(~) and their correspond- 
ing expectations p(k),N 

N m N m 

f(~) = Z kk(~)F(k)/P(~) = ~ kk(~)f(~) 
k ~ k ~ 

is by construction an unbiased symetric kernel 
of degree m for estimating F(~) so long as the 
selection procedure quarantees that P(k) > 0 for 
all distinct subsets of frame units k where 
F(k) > O. Therefore, the corresponding degree m 
U-statistic 
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^ (n) 

F(+) = ~. f(~)l(n) 
i 

is unbiased if 

m 

E{ n n(k£)}  > 0 
£=1 

f o r  a l l  (hi) s u b s e t s  of  m d i s t i n c t  frame u n i t s .  
Changing ~ e  o r d e r  of  summations in  ~ ( + )  and 
f ( ~ ) ,  the  f o l l o w i n g  a l t e r n a t i v e  e x p r e s s i o n  f o r  a 
deg ree  m U - s t a t i s t i c  i s  o b t a i n e d  

N m (:) 
F(+) = Y_.. { 5_ h k ( i ) / ( : )  } F ( k ) / P ( k )  

k i ~ 

N m 

= ~ P(k) F(k)/P(k) 
k 

where the indicator based U-statistics in curley 
brackets are the unbiased estimators for P(k) 
obtained by removing the expectation operator 
from the original expression for P(k) in terms 
of the n(ko) full sample selection frequencies 
and m(kg) %ubset frequencies. Recalling that 
F(k) = 0-by definition for frame unit subsets 
with repeated elements, F(~) can be recast in 
terms of a sum over distinct subsets k; namely 

^ (N) m m 

F(+) = ~ { ~ n(k~)} F(k)/E{ ~ n(k~)} . 
k ~=1 ~=1 

Noticing that 

N" 

hk ( i )  = l 
k ~ 

for all sampling unit subsets (i), it is clear 
that the P(kJ quantities also sum to one over 
all of the ~" subsets k. These summation iden- 
tities lead directly to the variance expression 

N m N m ^ 

Var{F(+)}= ~[ ~1 E{P(k)P(k')}[f(k)-F(+)] 
k k' 

[ f ( k ' ) - F ( + ) ]  

and the Yates-Grundy type alternative 

N m ^ 

Var{F(+)} = ~ Z [P(k)P(k')-E{P(k)P(k')}] 
k k~k' 

[ f ( k ) - f ( k ' ) ] 2 / 2  . 

For without replacement (wor) selections where 
no subsets k with duplicate units can occur, the 
latter expression reduces to 
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Var{F(+) }wo r : ~ ~ [.(k).(k')-.(kUk')] 
k k'~k 

[F(k)IK(k)-F (k')/K(k' ) ]2 /2  

where K(k) represents the joint sample inclusion 
probability for subsets of m distinct frame 
units labeled k and K(kUk') is the correspond- 
ing joint inclusion probability for the union of 
the frame unit subsets labeled k and k'. 

N 

The general variance expression for our degree m 
PPS sample U-statistic suggests an estimator for 
Var{~(~)} that is itself a U-statistic of degree 
2m; namely 

^ ^ 

var{F(~)} = ~ ~ P(k)P(k')[w(kk')-l] 
k ~  ~'~k 

[ f ( k ) - f ( k ' ) ] 2 / 2  

where 
^ 

w(kk') = P(k)P(k')/E{P(k)P(k') } 

and the k subsets belonging to the sample (s) 
can contain as many as n(k) contributions from 
the frame unit u(k), so long as n(k) < m. For 
the without replacement case the general expres- 
sion reduces to 

^ 

var{F(+)} = ~ ~ [w(kk')-l][F(k)/K(k) 
k~ k'~k 

-F (k '  ) / ~ ( k '  ) ] 2/2 

with 

w(kk ' )  = ~(k)~(k '  ) /~ (kU k ' ) .  

For the with replacement case, Folsom and 
Lessler (1980) have developed an unbiased vari- 
ance-covariance^ component partitioning of 
var{F(~)} that avoids the calculation of joint 
draw probabilities for subsets k including more 

N 

than m distinct units. 

In the following section, single draw indicators 
are utilized in a manner analogous to that 
exploited by Wilk and Kempthorne (1955) to 
derive a random effects model for a single draw 
variate yt(hi) incorporating nonadditive inter- 
viewer h ~nd sampling unit i effects. 

4. Total Variance Models with Interacting 
Interviewer and Respondent Effects 

Extending the previous results for defining 
single draw sampling unit variables y(i), to 
corresponding variates observed by a randomly 
assigned interviewer h on a given repeat inter- 
view trial t, we first consider a universe of A 
interviewers from which (a) are selected for 
assignment to n = ar PPS selected sampling 
units. Interviewer selection indicators T:(h) 
are defined to assume the value 1 when candidate 
j is selected from among the A eligible inter- 
viewers and is assigned sample interviewer label 



(h); otherwise T.(h) = 0. Single draw sampling 
indicators are ~efined to indicate PPS sample 
selection and subsequent random assignment of 
replicate labels denoting the m = n/a 2 = r/a 
sampling units allocated to the (hh') inter- 
viewer pair of a completely balanced cross-over 
design. In the proposed cross-over reinterview 
scheme, interviewer h visits the members of 
assignment (hh') on the first interview trial 
(t=l) and interviewer h' visits them on the 
second trial (t=2). All a 2 combinations includ- 
ing the (hh) repeat measurements are included in 
this perfectly balanced design. The sampling 

• • . t i unit selection and asslgnment indlcators kk(hh ) 
take the value 1 when sampling frame unin u(k) 
belongs to the sample and is assigned replicate 
label i of interviewer assignment pair (hh'); 
otherwise Ak(hh'i) = 0. These random selection 
and assigrm~&nt indicators have the following 
properties 

E{Tj(h)} = (I/A); E{Tj(h)Tj,(h')} = I/A(A-I) 

and 

E{kk(hh ' i )}  =- P(k) ;  E{kk(hh ' i )X k , ( h ' ' h ' ' ' i ' ) }  

= P(kk'  ) 

since the interviewer selection and assignment 
process is independent of the sampling unit 
selection process. 

With these definitions, single draw variates 
which assume no residual or carry-over inter- 
viewer effects from trial to trial are defined 
as follows" 

A A N 
Yl(hh'i) = ~ ~ Y Tj(h)Tj,(h')~k(hh'i) 

j= l  j ' = l  k=l 

[ y ( j k ) + g l ( J k )  ] 

and 

A A N 
Y2(hh'i) = Z Z ~ T (h)Tj (h') kk(hh'i) 

j=l j'=l k=l J ' 

[y(j ' k)+g2(j ' k) ] 

where the y(jk) variates represent the expected 
value over a conceptual series of independent 
repeat interviews of frame unit u(k) by candi- 
date interviewer j; that is 

E{Y t(jk)/p(k)} = Y(jk)/e(k) = y(jk) . 

Implicit in this result is the assumption that 

Et{[Yt(Jk)-Y(jk)]/P(k)} = Et{et(Jk)/P(k)} 

= E{g t(jk)} = 0 

independent of the sample and interviewer selec- 
tion/assignment process. These gt(Jk) errors 
are called 'intrinsic response errors' by Koch, 
Freeman, and Freeman (1975) since they are not 
under the direct control of the survey opera- 
tion. The conceptual series of repeat inter- 
views of unit u(k) by candidate interviewer j is 
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assumed to be an uncorrelated process over 
trials so that 

Var{g t(jk)} = E{g~(jk)} = o2(jk). 

The Tj(h) and kk(hh'i ) variables, on the other 
hand, give rise to 'external response errors' 
relating to interviewer main effects and inter- 
viewer by respondent interactions. These ex- 
ternal effects are randomized sample realiza- 
tions of frame unit effects ~(j) and a~(jk) 
defined in terms of the frame unit identity 

y(jk) = Y(-+) + [Y(j+)-Y(-+)] + [y('k)-Y('+)] 

+ [y(jk)-Y(j+)-y(-k)+Y(-+) ] 

= U + ~(j) + ~(k) + ~(jk) 

where 

A 
y(-k) = ~ y(jk)/A = Y(-k)/P(k) 

j=l 

N N 
Y(-+) = ~ P(k)y(-k) = ~ Y(-k) 

k= 1 k= 1 

and 

N N 
Y(j+) = ~ P(k)y(jk) = ~ Y(jk) . 

k= 1 k= 1 

Exploiting this identity, the single draw vari- 
ates defined for our cross-over repeat measure- 
ment design have the following random effects 
representation 

Yl(hh'i) = U + ~(h) + ~(i) + a~(hi) + gl(hi) 

and 

Y2 (hh'i) = U + ~(h') + ~(i) + ~(h'i) + g2(h'i) 

with the random indicators T and )~ providing the 
link between candidate interviewer/frame unit 
combinations (jk) and survey interviewer/sampl- 
ing unit pairs (hi). 

In this development, the statistical properties 
of our cross-over design are fully determined by 
the physical probability selection/randomization 
process and the assumption of independence 
between the intrinsic response errors and the 
external sampling and interviewer errors. The 
repeat interviews and cross-over interviewer 
assignments are required to separate the intrin- 
sic response error variances and covariances 
from the external sampling error and interactive 
interviewer error components. We have assumed 
that the intrinsic response errors are independ- 
ent when h ~ h' or t ~ t'. The explicit defini- 
tions of these error variances and covariances, 
derived as a consequence of the probability 
selection/randomization process, are as follows: 



0-2 = 
g 

A N 
Y P(k)o2(jk)/A ; 

j = l  k=l 

o gg' 

A N N 
~ ~ P(kk')oeg, (jkk')/A ; 

j=l k=l k'=l 

A N 
~l P ( k ) a ~ 2 ( j k ) / A  ; 

j = l  k=l 

A N N 
= Z ~ ~ P(kk ' )a~( jk) (~( jk ' ) /A ; 

j=l k=l k '=l 

o(~¢) (~, ¢ , )  = - o ( a ~ , ) / ( A - 1 )  ; 

N 
o~ = ~ P (k )~  2(k)  ; 

k=l  

N N 

[ P(kk')~(k)~ (f) ; 
o ,~e = k=l k'=l 

A 
o 2 = :1 a2(j)/A ; 

j=l 

oaa , - - o 2 1 ( A - 1 )  . 

With these component definitions, Folsom and 
Lessler (1980) derived the total variance parti- 
tioning of the single draw variate mean 

a a m 

y.(---) - ~ ~ X [Yl(hh'i)+Y2(hh'i)]/2m. 
h=l h'=l i=l 

The variance of y.('") for the proposed com- 
pletely balanced cross-over repeat interview 
design is 

Var{y (-'-)} = a2[l-(a-l)/(A-l)]/a • 

+ o ~ [ l + ( n - 1 ) p ~ , ] / n  

+ o~a~) [ l + ( r - 1 ) P ( ~ ,  ) ] / n  

+ °2[ l+(r -1)& P g g ' ] / 2 n  

(a-l) (A/A-1 2 [l-p ]/2an - 1o(~) ( ~ , )  

- ( a - 1 ) o ~ a ~ l p ( a ~ , ) / a ( A - 1 )  

Unb iased  U - s t a t i s t i c s  e s t i m a t o r s  f o r  a l l  of  t h e  
v a r i a n c e  and c o v a r i a n c e  components  i n  
Var[y.(''')] are presented in Folsom and Lessler 
(1980). The component estimators are formed 
from linear combinations of sample mean squares 
derived as U-statistics from the following 
sample kernels" 

E{w(hh'i;hh'i') [Yl(hh'i)-Yl(hh'i')] 

[Y2(hh' i)-y 2(hh'i' ) ]/2} 

= O~ - o ~ a ~ ) / ( A - 1 )  

E{ [ Y l ( h h '  i ) - y  l ( h h ' i ' )  ] [Y2(hh '  i)-y 2(hh'i' ) ]/2} 

- , - 02 - o~ - o~ (a~)/(A-l) + o(a~,)/(A-l) 

E{m(hh' i;hh''i')[Yl(hh' i ) - y  1 (hh'i') ]212} 
J. 

g g g  

E{ [Yl(hh'i)-Yl(hh'' i' ) ]2/2} 

+(72 - O g gg' 

E{[Yl(hhi)-Y2(hhi)]2/2 = 82(hhi)/2} - 02 g 

E{8(hhi)8(hhi')/2} = o gg' 

E{w(hhijhhi')6(hhi)8(hhi')/2} - ogg, 

E { [ Y l ( h - - ) - Y l ( h ' • • ) ] 2 / 2 }  = o ~ + a ~ [ l + ( r - 1 ) p ~ , J / r  

+ o~)[l+(r-l)p(~,)]/r 

+ o2[l+(r-l) ]/r 

+ o(a~,)/(A-l) . 

The m ( h h ' i ; h h ' ' i ' )  v a r i a n c e  w e i g h t s  a r e  formed 
as m ( k k ' )  = P ( k ) P ( k ' ) / P ( k k ' )  from t h e  s i n g l e  and 
d o u b l e  draw p r o b a b i l i t i e s  l i n k e d  to  sample  u n i t s  
( h h ' i )  and h h ' ' i ' ) .  In  p r a c t i c e ,  one cou ld  
i n t e r t a i n  e i t h e r  a f i x e d  i n t e r v i e w e r  e f f e c t s  
mode l ,  i n  which  case  a = A, or  a random i n t e r -  
v i e w e r  e f f e c t s  model  w i t h  A = ~. 

These results can be extended directly to a 
variance-covariance matrix partitioning and 
associated component estimators for the total 
survey error of a vector valued single draw 
variate ~ = (yl,...yp). Corresponding models 
for specific nonlinear statistics formed from 
such vector means can be obtained immediately 
using Taylor series linearized versions of the 
single draw variates. Extensions to multistage 
PPS samples and nested split-plot type survey 
agent (supervisors, coders, interviewers) rando- 
mization schemes are currently being pursued. 
Future research plans include specification of 
Jackknife pseudo-replication versions of our 
U-statistic variance estimators and development 
of a finite population central limit theorem for 
PPS sample U-statistics in the probability 
minimum replacement setting. 
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