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This paper presents some preliminary results on 
quota sampling. Let P denote the proportion of 
individuals that belong to a specific subset of a 
finite population for which a quota has been pre- 
scribed. New results include the exact expression 
for the variance of the UMV estimator of P and 
upper and lower bounds on the variance. 

In the special case that only one subset of the 
population (and its complement) is under exami- 
nation, there is an obvious relationship between 
quota sampling and sequential estimation of the 
proportion defective, P, in a finite population. 
The sequential estimation problem has been in- 
vestigated by Knight (AMS, 1965, 1494-1503) and 
Olkin and David (Tech. Rept. 5, 1956, University 
of Chicago) using geometric methods. For the 
quota-type stopping rule, bothpapers give the 
unique unbiased minimum variance estimator for P 
and Knight gives an unbiased estimator for its 
variance. 

Introduction 

Quota sampling has been used extensively in 
opinion and market research surveys. Generally, 
the applications of quota sampling have involved 
the nonrandom selection of units at the last 
stage in a multistage design. For this reason, 
complex theoretical problems have been encountered 
in the development of formulas for estimating the 
sampling variability of quota sample estimates. 
The mathematical problems and advantages and dis- 
advantages of quota sampling are discussed in 
Cochran [ 3] , Stephan and McCarthy [ 8] , and 
Sudman [9] • 

As discussed here, quota sampling will refer to a 
type of probability sampling which could be used 
for the purpose of the sequential estimation of 
the proportion of individuals, P, who belong to a 
specific subset, E, of a finite population. The 
paper examines the problems of obtaining an exact 
expression for the variance of the unique unbiased 
(and, therefore, MVU) estimator for P and upper 
and lower bounds on its variance when selections 
are made randomly one-at-a-time without replace- 
ment and sampling is continued until a quota of k 
members of E is satisfied. The stopping rule is 
the special case of one considered by Bershad and 
Perkins [I] at the Census Bureau. 

The sequential estimation of P has been investi- 
gated by Knight [4] and Olkin and David [6] using 
geometric methods. Both papers give the unique 
unbiased estimator for P. Knight gives an un- 
biased estimator for the variance of the esti- 
mator of P. Olkin and David have demonstrated 
the uniqueness of the unbiased estimator for P by 
a completeness argument. 

Preliminaries 

If the above-described sampling plan is carried 
out, the sample size, n, will be a random variable 
which is distributed according to the negative 
hypergeometric distribution 

In-l(N-n I/INpl 
p(n;k,N,P) = k- NP-k N for n=k,k+l,..., NQ+k 

0, otherwise 

where Q=I-P and 3<k<NP. (Wilks [ii] has called 
p(n;k,N,P) the probability mass function for a 
hypergeometric waiting-time distribution.) In 
the sequel, the operations involving p(n;k,N,P) 
make use of the combinatorial identities and re- 
suits on hypergeometric series which are summa- 
rized in this section. 

Theorem l: Let j be an integer. Then 

Z k-j NP-k = NP-j 
x=k 

proof: For Itl < I, it follows from a generali- 
zation of the binomial theorem, after making 
suitable transformations of the variables of sum- 
mation, that 

(l_t)-(k-j) = 7. t (i) 
x=k 

NQ+k 

( ii ) ( l-t)-(NP-k+l ) = E 
y--_ -- oo 

and 

( iii ) ( l-t )-(NP-j+I) 

I 
N-y | NQ-y+k 
NP-k ~ t 

oo /NP_j+ 1 t z 
= E iNp_ j 

z=O 

I 
Here the symbol~ n stands for the general binomial 

| 

coefficient defined by Riordan [7, pp. 4,5]. The 
remaining details can be found in Wilks [II, p. 
141]. 

Corollary i.!: If j is any integer and r is any 
nonnegat ive integer 

NQ+k 
X 

x=k 
k-jll NP-k = 

N-j-r 1 
Ne-j ~ " 

The series 

oo ~ ~ (~+k)(B+k),(](+k) 
F(~,$,y;6,¢;x) = I+ I (6+k)(¢+k) 

n=l " k=o 

is called a hypergeometric series. In the case 
that y = ~ = I, the series may be denoted by 
F(c~,B;6;x). The convergence of F(~,B;6;I) is 
examined in Whittaker and Watson [ I0], where it 
is shown, in particular, that if ~,B, and 6 are 
real numbers such that 

6 -~- 6 > 0, then 

F(~,B;6;I) = 
r(6)r(6-~-B) 
F(6-~)F(6-B) 

In the situations dealt with below, c~,B,y,6, and 
are all integers, with ~=i, 6 and s positive 

integers, and 6 and y positive or negative in- 
tegers. It should be noted that if either 6 or y 
are negative, the hypergeometric series has a 
finite number of terms. 
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Estimators 

By making direct use of the form of p(n;k,N,P) 
and the standard definition of a maximum likeli- 

^ 

hood estimator for P, Pml' satisfies 

^ 

k(N+l) -n < N < k (N+I) 
- ~  n -- Pml -- n " 

On the other hand, it can be seen, by the appli- 
cation of theorem I, that 

p = k-_! 

n-I 

is the unbiased estimator for P. If one also 
observes, again, using theorem I, that when 

k> 3, 

V 

! (k-I) (k-2) (NP-I) 
E ~(~_l)(n_2)j = P N-i ' 

it follows that 

k-I ,(..-l)(k-l)(k-2)~ = Np2 _ m ~-I 
E [~-l)<n-2) 

The last equation provides us with an unbiased 
estimator for p2 which can be used to show that 
an unbiased estimator of the variance of 
^ 

P is 

= N (n-2) - - " 

^ 

This is Knight's estimator of the variance of P. 
^ 

Variance and Bounds on the Variance of P 

Theorem 2: Under the sampling plan described 
^ 

above, the variance of P is given by 

Var(P) = PF(I,k-I, -NQ;k,NP;I) - p2 

proof: 

Observe that 

k-I F(k)F(n-l) 
= ~(k~_l)F(n) = F(I, -(n-k);k,l) , 

a hypergeometric series with n-k+l terms. Thus, 
after some simplification one obtains 

k-I n~k (-l)r (n-k) r 

n----~ = ~(k+r-l) ' 
r=0 r 

where the notation (H) is defined by 
t 

!H 
(H) = ,_ ~, 

t krl.--L / " 

for H, t nonnegative integers with H > t. There- 
for, 

[ [Ik_li2] NQ+k n-k -I N-n r (n-k) 
NpN ELIn___Tjj= z z n_lJ~k_lllNP_kl(-l) r 

n=k r=o (k+r-l) 
r 

NQ ( - 1 ) r  NQ+k /n-2 liN-n 1 
= 7, (k+r-l) 7, (n-k) ~k_211Np_N 

r=o r n=r+k r 

upon reversing the order of summation. 

But 

( i n - 2  n - 2  i 
( n - k ) r  k - 2  = ( k + r - 2 ) r  k + r - 2 ]  

so t h a t  

(k+r-l) Z=r+k r=o r n 

NQ 
= I (-i) r k-I 

k-TFrr-1 
r=O 

N-I ) 
NP+r-I ' 

by corollary I.I with j =-(r-l). This implies 
that 

NQ (NQ) 
j = P F. (-I) r k-i r 

k+r-I (NP+r'i) 
r = o  

= PR (l,k-l, - NQ;k,NP;I) 

In theorem 3, an upper bound on the variance of 
is obtained by an argument similar to one in 
Mikulski and Smith [5 ] • Lower bounds can be 
found with the aid of the approach taken by 
Chapman and Robbins in [ 2 ] for finding minimum 
variance bounds without requiring that regularity 
assumptions are satisfied. It should be noted 
that, if P remains constant as N + ~, the upper 

^ 

and lower bounds on Var(P) approach those 
obtained by Mikulski and Smith for the negative 
bionomial distribution. 

Theorem 3: Under the above sampling plan, 

Q(NP+2 ) (NP-k+I) 
N(N+I)k 

^ PQCNP-k+I ) 
< Var(P) < (NP_~l)~+ (k._2)(Ni.l) 

proof: 

(i) upper bound: 
F i ' 

_Ilk_ I 12 F(k_l) 2 ] ~(k-l) 2 (k-l) 2 ] 
ELin---~ I E!'~n-~)(n-2)j- E[(n-l)(n-2) - (n_i')zj 
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But 

[(k-l) 2 ~ P(k-l) (NP-I) 
m ['(n'l) (n'2) j = ~-k-2 ) (N-I) ' 

by theorem I; and, letting N'= N-2, n" 
= n-2, k" k-2, P'= (NP-2)/N-2), and 
Q'= l-p', 

E !(n,l) (n-2) - "~'/~! = 
k-I NQ+k i /n-31/N-n 
k-"--~ n~=k n---~~k-31~NP-k 

Thus 

: I_ 
J : J(P,h) h 2 ~!~ f(x,P) j 

Taking the expectation of J with respect to 
(: .i )(N. n" I that f x.P , denoted by E J,P , one  irst establishes 

NQ+k" I "-I N q~" k P (NP-I) (k-l) y~ 

P(NP-I)(k-I) [I (k-2)(N-l) ~: -i 
>-- (N-I)k-2 ) + (NP-I) 

E([ 

by Jensen's Inequality because of the convexity 
I 

of g(x) = T$~ for x > o. (Here, n is distributed 

in accordance with p(n'; k', N', P').) 

321P) = NP -k) x=oZ ...... 
k--IL I |NP_+t-k] 

N 
NP+t 

where the brackets refer to the bracketed term in 
J, from which it follows that if t=l, then 

E(JIP) = 
N(N+I) k 

Q(NP-k+I)(NP+2) 

Consequently, after some algebra, one finds that 

~ik_l! 2" P(k-I ) (NP-I) 
E iin---~ i < (NP-I) + -(k'2)(N'l) , 

which implies that 

which implies that 

A 
Var(P) > Q(NP-k+I)(NP+2) 

-- N(N+I ) k 

PQ (NP-k+.I). 
Var(P) <_ (NP-I) + (k-2)<N-l) 

( i i ) Iower bound : 

Following the notation of Chapman and 
Robbins [ 2 ], for B take the counting 
measure. It seems convenient to work with 
the following form of the probability mass 
function for n: 

( 

! k+x-li i N-k-xl 

f ( x , P )  =J  k - I  f o r  x - O,1 , . . . ,  NQ 

0 ,  o t h e r w i s e  

A new P m u s t  be  an i n t e g r a l  m u l t i p l e  o f  
1/N t o  b e l o n g  t o  t h e  p a r a m e t e r  s p a c e  and  
S ( P )  = { 0 , 1 , 2 , . . . ,  NQ} i n  t h e  n o t a t i o n  o f  
f 2 ~  . D e f i n i n g  h = t/N, f o r  t = l , 2  . . . .  , NQ, 

S(P+h) = {0,i,2,..., NQ-t} = $(P) 

and 

f(x,P+h) = 

l 
, k+x-I 
Ik-I 

N-k-x ~i 
NP+t-M 

N 
NP+t 

, for x in S(P+h). 
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