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I. INTRODUCTION En(i) = nS(i)/S(+) 

Sequential sample selection methods are dis- 
tinguished from conventional methods in the man- 
ner in which random numbers are used to determine 
the sample. Conventionally, a sample of size n 
is selected from a sampling frame of N sampling 
units by selecting n random numbers and mapping 
then into n of the labels in the sampling frame. 
Sequential methods require each sampling unit in 
the sampling frame to be considered in order and 
a probabilistic decision reached concerning its 
inclusion in the sample. Sequential methods can 
be implemented efficiently on computers and are 
particularly adaptable to selecting samples as a 
file is read or as a process takes place. A 
thorough discussion of several equal probability 
sequential selection procedures is given by Fan, 
Muller, and Rezucha (1962). Their method 1 for 
selecting a simple random sample of size n from N 
involves sequentially comparing conditional prob- 
abilities of selection for each unit labeled 
i = 1,2,...,N with a uniform random number 

n - u  

N+I i > r .  -- -- 1 

where u is the number selected from the first 
(i-l) units. Sampling unit i is included when 
the inequality is satisfied. This method can be 
programmed very easily, requires very little com- 
puter memory, and can be incorporated into other 
computer programs which read and process computer 
accessible files. 

The purpose of this paper is to extend the 
concept of sequential selection to more general 
unequal probability sampling schemes. 

2. DEFINITIONS 

The following notation will be used" 

N = number of sampling units in the 
sampling frame ; 

i = sampling unit label; 

S(i) = size measure associated with sampling 
unit i ; 

N 
s(+) = ~ s(i); 

i=l 

n = total sample size; and 

n(i) = number of sample hits at sampling 
unit i. 

A probability proportional to size (PPS) 
sample design will be defined as one for which 
the expected number of sample hits at unit i is 
proportional to the size measure, S(i). More 
precisely, the following conditions will hold 

a n d  

N 
En(i) = n. 

i=l 

The process of sample selection can be con- 
sidered as the process of determining the values 
of n(i) for i = 1,2,...,N. If a probability 
nonreplacement (PNR) sample design is employed, 
then n(i) will equal one for n values of i and 
will equal zero for all other values of i. If a 
probability replacement (PR) sample design is 
employed, the same sampling unit can be selected 
more than once, i.e., each n(i) can assume values 
0 through n. In both cases, PNR and PR, it holds 
that 

N 
n(i) = n. 

i=1 

Both PR and PNR sample designs are well de- 
fined in the statistical sampling literature. 
The concept of a probability minimum replacement 
(PFIR) sample design is defined for the purposes 
of this paper. A PMR sample design is defined as 
a PPS design in which each n(i) can assume at 
most two values: (i) the integer portions of 
nS(i)/S(+), and (2) the next largest integer. It 
can be verified that a PMR sample design is PPS 
if 

Prob{n(i) = Int[nS(i)/S(+)] + i} 
= Frac [nS(i)/S(+)]. 

Note that if n S(i)/S(+)<l for i = 1,2,...,N, 
then a PMIR design is also a PNR design. 

Special equal probability cases of the gen- 
eral probability sampling designs discussed above 
occur when all the size measures, S(i), are equal. 
Equal probability cases of PR, PNR, and PMR designs 
can be denoted by EPR, EPNR, and EPMR respectively. 

3. A SEQUENTIAL ALGORITHM FOR A PMR DESIGN 

Some additional terms must be defined in 
aer to describe the algorithm proposed for 

achieving one particular PMR sample design. 
Assume the sampling units in the sample frame 
are ordered from I to N. Let 

i 
I(i) = Int { ~ n S(i)/S(+)}, 

j=l 

and 

i 
F(i) = Frac { ~ n S(i)/S(+)} . 

j=l 
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By definition, I(0) = 0 and F(0) = 0. With this 
convention the PMR algorithm can be described as 
a sequential selection scheme where 

i li-I 
Prob { Z n(j) = l(i) + 1 

j = l  j = l  
n(j)} 

is defined as a function of F(i) and F(i-l). 
Conditional sequential probabilities of selection 
for three possible cases are shown in Table I. 

i 
To select the sample, ~ n(j) is determined 

j=l 

for each value of i by the calculation of the 
appropriate conditional probability and comparison 
of the probability with a uniform random number. 
If the random number is less than the appropriate 
conditional probability, then 

i 
n(j) = l(i) + i. 

j=l 

Otherwise it is set at l(i). The values of n(i) 
are determined as 

i i-I 
n(i) = ~ n(j)- ~ n(j). 

j = l  j = l  

For PNR designs, the sequential selection 
table can be stated in terms of conditional prob- 
abilities of selection as shown in Table 2. 

4. PROPERTIES OF THE BASIC DESIGN 

It can be shown that the sample design is 
PPS and further that it is PMR. The following 
lemma is required for the proofs. 

Lemma" After each sequential sample selection 
step, the following condition holds" 

i 
Prob { ~ n(j) = l(i) + i} = F(i). 

j=l 

Both the lemma and the PPS and PMR properties can 
be proved inductively since the algorithm is 
applied sequentially. All three cases in Table I 
must be considered at each step of the respective 
proofs. 

5. AN UNBIASED ESTIMATE FOR THE POPULATION TOTAL 

The population total, T, is defined as 

N • 

T = Y Y(i) 
i=I 

where Y(i) is an observed value for sampling unit 
i. 

Table I. Conditional Sequential Probabilities for 
Cumulative Sample Counts 

Case Deterministic 
no. conditions 

(1) F(i) = 0 

(2) F ( i ) > F ( i - 1 ) > 0  

(3) F(i-1)>F(i)>0 

i li-I 
Prob { ~ n(j) = I(i) + 1 ~ n(j)} 

j = l  j = l  

i-I i-I 
n(j) = I(i-l) ~ n(j) = I(i-l)+l 

j = l  j = l  

0 0 

[F(i)-F(i-Z) ]/[1-F(i-1) ] I 

0 F(i)/F(i-l) 

Table 2. Conditional Sequential Probabilities of Selection 
(PNR Designs Only) 

Case Deterministic 
no. conditions 

(1) F ( i )  = 0 

(2) F(i)>F(i-1)>0 

(3) F(i-1)>F(i)>0 

i -1 
Prob { n ( i )  = 1 ~ n ( j )  } 

j=l 
i - 1  i - 1  

n ( j )  = I ( i - 1 )  [ n ( j )  = I ( i - 1 ) + 1  
. . . . . . . .  j = l  j = l  

1 0 

[ F ( i ) - F ( i - 1 ) ] / [ 1 - F ( i - 1 ) ]  0 

1 F ( i ) / F ( i - 1 )  
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The sequential PMR selection algorithm 
always produces n hits, although they may some- 
times be associated with fewer than n unique 
values of i. The sample can be represented in 
terms of an array of n labels 

il' i2' i3''''' ih'''''i "n 

The general form of estimator suggested for this 
design is 

^ n 

t = ~ W(i h) Y(ih). 
h=1 

The term %(ih) is defined in order to find 
general conditions for unbiasedness as E(ih) = i 
if sampling unit i is the h th element in the 
sample and as %(ih) = 0 otherwise. (It is also 
used to facilitate variance estimation later in 
this paper.) Note that 

n 

n(i) = [ %(ih). 
h = l  

The estimator t can then be written as 

N n 

t = ~ Y(i) ~ W(i h) h(ih), 
i=l h=l 

and is seen to be an unbiased estimator of T if 

n 

E [ W(i h) h(ih) = i 
h=l 

for i = 1,2,...,N. The general condition for 
unbiasedness of t can be utilized to achieve self- 
weighting samples in multi-stage sample designs 
when the second-stage sample size is based on the 
selection h rather than being uniform over all 
selections. Ordinarily, W(i h) does not depend 
on h; under this circumstance, the condition for 
unbiasedness becomes 

n 

W(i) E ~ k(i h) : i, 
h=l 

or 

W(i) E n(i) - i, 

o r  

a n d  

W(i) = i/En(i), 

n 

t = ~: Y(ih)/En(ih). 
h=l 

For PPS d e s i g n s ,  

W(i) = [S(+)/n][I/S(i)] 

and 

n 

t = [S(+)/n] ~ Y(ih)/S(ih)- 
h=l 

The variance of t for the case W(i) = I/En(i) 
can be determined readily by noting that 

N 

t = ~ n(i)[Y(i)/En(i)] . 
i=l 

Then since the n(i) are the only random variables 
in the above expression, 

N 2 
Var[t] = % [Y(i)/En(i)] Var[n(i)] 

i=l 

N N 

+ ~ Z [Y(i)/En(i)][Y(j)/En(j)] Cov[n(i) n(j)] . 
i#j 

Note that if this sample design is also PNR (i.e., 
if En(i) < 1 for each i = 1,2,...,N), then the 
estimator t and its variance correspond to those 
developed by Horvitz and Thompson (1952). It 
should be noted that unless En(i)n(j) > 0 for all 
i # j, no unbiased estimator of the variance 
exists. Some useful biased estimators of the vari- 
ance could perhaps be developed based on assump- 
tions similar to those used for obtaining approxi- 
mate variance estimates when systematic or one- 
draw-per-stratum stratified sample designs are 
used. Such approximations are not treated in 
this paper, since a fairly simple modification 
which resolves this problem is discussed in the 
next section. 

An alternate expression for the variance 
corresponding to the one developed for PNR sample 
designs by Yates and Grundy (1953) can be written 
as 

2 
Var[t] = Z % [Y(i)/En(i) - Y(j)/En(j)] 

i < j 

[En(i)En(j) - En(i)n(j)] . 

Some additional notation is useful for eval- 
uating En(i)En(j) - En(i)n(j). 

Let 

re(i) = Frac[En(i)] 

= Prob{n(i) = Int[En(i)] + I}, 

and 

~(ij) = Prob{n(i) = Int[En(i)] + I, 
n(j) = Int[En(j)] + I} . 

Note that these quantities correspond to unit and 
pairwise probabilities in a PNR sample design. 
Then, it can be shown that 

En(i)En(j) - En(i)n(j) = K(i)K(j) - K(ij) . 

Reductions in variance associated with systematic, 
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stratified, or zone sampling from meaningfully 
ordered lists also accrue to the proposed PMR 
selection scheme since for units adequately far 
apart on the sampling frame listing En(i)n(j) = 
En(i)En(j) and their contribution to the variance 
of t can be seen to be zero from examination of 
the Yates-Grundy analogue to the variance formula. 

6. AN ALGORITHM MODIFICATION FOR 
UNBIASED VARIANCE ESTIMATION 

Most sampling frames can be viewed as a closed 
loop. Although stratification can be achieved by 
classification, it is more often based on ordering 
or on some combination of classification and order- 
ing which ultimately results in an ordered list 
of N sampling units. The algorithm modification 
required to insure that 

En(i)n(j) > 0 

for all i ~ j requires the following steps: 

(I) Develop an ordered sampling frame of N 
sampling units; 

(2) Select a ffnit with probability propor- 
tional to its size to receive the label 
I; 

(3) Continue labeling serially to the end 
of the sampling frame; 

(4) Assign the next serial label to the 
first unit at the beginning of the list 
and continue until all sampling units 
are labeled; 

(5) Apply the sequential PMR sample selec- 
tion algorithm starting with the sampl- 
ing unit labeled I. 

With this modification, an unbiased variance 
estimator can be obtained for sample designs with 

n 
Frac[En(i)] > 2. 

i=l 

7. EXAMPLES AND APPLICATIONS 

Example I: An equal probability sample of 2 
out of 5. The working probabilities worksheet 

assuming a random start of 1 is illustrated in 
Table 3. 

For a fixed start to the 6equential selection 
process, the values of En(i)n(j) in matrix form 
are 

1/20 

"0 0 2 3 3 

0 0 2 3 3 

2 2 0 2 2 

3 3 2 0 0 

_3 3 2 0 O_ 

By allowing a random start and taking expectation 
over the 5 equally probable random starts, we get 
En(i)n(j) in matrix form as 

m m 

0 .07 .13 .13 .07 

.07 0 .07 .13 .13 

.13 .07 0 .07 .13 

.13 .13 .07 0 .07 

_.07 .13 .13 .07 0_ 

This structure can be summarized as follows: 

(I) En(i) = 2/5 for i = 1,2,...,5; 

(2) For i<j and Min{j-i, 5+i-j} = I, 

En(i)n(j) = .07, 

and 

[En(i)En(j) - En(i)n(j)]/En(i)n(j) = 9/7. 

For other i~j 

En(i)n(j) = .13, 

and 

[En(i)En(j) - En(i)n(j)]/En(i)n(j) = 3/13. 

Table 3. Working Probability Worksheet for Example 1 

i 
i En ( i )  ZEn(i)  I ( i )  F ( i )  

j = l  

i 
Prob { [ n(i) = I(i) + 1 

j=l 

1 .4 .4 0 .4 

2 .4 .8 0 .8 

3 .4 1.2 1 .2 

4 .4 1.6 1 .6 

5 .4 2.0 2 0 

i - 1  
n(j)} 

j=l 

i - 1  i - 1  
n ( i )  = I ( i - 1 )  ~ n ( i )  = I ( i - 1 ) + l  

j = l  j = l  

.4 1 

2/3 1 

0 1/4 

1/2 1 

0 0 
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The variance estimator is 

v(t) = (9/7)[5Y(i)/2 - 5Y(j)/2] 2 

for Min{ji, 5+i-j} = I, or 

v(t) = (3/13)[5Y(i)/2- 5Y(j)/2] 2 

for other i ~ j. 

Example 2: An unequal probability sample of 
2 out of 4. Assuming a random start at the unit 
labeled 1, the working probability worksheet is 
illustrated below. Since this is a PNR design, 
the conditional probabilities are stated in terms 
of probabilities of selection rather than proba- 
bilities relating to the accumulated sample count. 
(See Table 4). 

A method of computing pairwise probabilities 
can be developed if Table 5 is constructed based 
on Table 4. 

Note that selection probabilities can be 
computed for each unit i as 

1 
ProD {n(i) = I} = ~ ProD {n(i)= I [ u} 

u=0 

i-I 
P r o b  { :; n ( j )  = u} . 

j = l  

Pairwise probabilities for unit I and all 
other units can be obtained by constructing a 
worksheet for i > 1 conditional on the selection 
of unit 1 as shown in Table 6. 

Now for each i > I, the joint probability of 
unit i and unit I can be computed as 

I 

Prob  { n ( 1 ) =  1, n ( i ) =  1} = Y Prob  { n ( i ) =  11 u } 
u=O 

i-I 
Prob {n(1) = I, ~ n(j) = u} . 

j=l 

Note that for PNR designs, 

En(i)n(j) = ProD {n(i) = I, n(j)= I} . 

The same procedure can be applied for computing 
En(2) n(i) for i > 2 and for En(3) n(4). If the 
procedure is repeated for all possible random 
starts, unconditonal values of En(i)n(j) may be 
determined and are shown in Table 7. 

8.  PRACTICAL CONSIDERATIONS FOR VARIANCE 
ESTIMATION 

Most applications of this method are associ- 
ated with first-stage selection of multi-stage 
samples. In such applications, simpler variance 

Table 4. Working Probability Worksheet for Example 2 

i 
i En(i) ~ n(j) l(i) F(i) 
..... j=1 

1 .2  .2  0 .2  

2 .4 .6 0 .6 

3 .6 1.2 1 .2 

4 .8 2.0 2 0 

i- 1 ! 

Prob { n(i)= 1 [ ~ n(j) } 
I j=l, 

i-1 i-I 
n(i) = l(i-l) ~ n(i) = I(i-I)+I 

j= l  J=! 
.2 

.5 0 

1 1/3 

1 0 

Table 5. Alternate Form of Working Probability Worksheet 
for Example 2 

: ~ .:.: 

i-I 
Prob { ~ n(j) = u } 

j=l 
ProD { n(i)= l lu = 0 } ProD { n(i)= l lu = I } 

i u = O  u =  1 u = 2  

1 1 0 0 .2 - 

2 .8 .2 0 .5 0 

3 .4 .6 0 1 1 /3  

4 0 .8 .2 0 1 

~05 



Table 6. Worksheet for Computing En(1)n(i) 

i - 1  
Prob {n(1)  = 1, ~ n ( j )  = u} 

j = l  

i u = O  u =  1 u = 2  

Prob { n(i) = 1 I u = 0 } Prob { n ( i )  = 1 l u  = 1 } 

2 0 .2 0 

3 0 .2 0 

4 0 . 13333 . 06667 

.5 

1 

1 

0 

I/3 

0 

Table 7. Unconditional Pairwise Expeditious 

En(i)n(j) for (ij) = 

Start P(start) (12) (13) (14) (23) (24) 

1 .1 0 .06667 .13333 .13333 .26667 

2 .2 .08 .12 0 0 .32 

3 .3 0 .06667 .13333 .13333 .26667 

4 .4 .08 .12 0 0 .32 

Expected value .048 .09867 .05333 .05333 .29867 

(34) 

.4 

.48 

.4 

.48 

.448 

formulations which do not require computation of 
En(i)n(j) would usually be recommended. If pair- 
wise expectations, En(i)n(j), are used for develop- 
ing unbiased variance estimates, they only need 
to be computed for the pairs of sampling units in 
the sample. 
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