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Measurement of change in some characteristic 
of each element of a population over time is 
often a significant statistical problem. For 
example, some users of the Federal Trade Comm- 
ission's publication, the Quarterly Financial 
Report, will bench mark on a large sample sur- 
vey which is out of date. They adjust by adding 
quarter to quarter change estimates from the QFR. 
Standard references on sampling; Cochran (1977), 
Hansen, Hurwitz, and Madow (1953), and Raj 
(1968), treat the statistical aspects of change 
estimation when the population sizes and var- 
iances do not change from period to period, 
when the unmatched portion of the sample is the 
same from period to period, and the correlation 
of units over time is known. 
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The conditions under which the mathematical 
results are derived are not met in some surveys 
In the Quarterly Financial Report population 
counts must be estimated, and such estimates 
incorporate the same data used in estimating 
chanmes in the averages. The other statistical 
assumptions are also violated. The essential 
reason is that companies are bought, sold, 
merged, react differently to general economic 
conditions, have different technological prob- 
lems and successes, etc. The purpose of this 
paper is to expand the general theory to handle 
these differences. 

The basic problem can be handled through use 
of Aiken's regression estimate. It is assumes 
that a population has mean ~-i in period one 
and mean~2 in periof two. Further, a sample 
of A units is drawn in period one and not re- 
peated in period two, while B in period one are 
repeated in period two. C are sampled in period 
two, but not in period one. The data in,period 
one ma~ be represented by the vector (Yl, Y2 ), 
with Yl the data vector for the sample units not 
repeated in period two. Similarly, the data 
vector for period two may be represented by 
(Zl, z ), where z I is the data vector for units 

! • 
repea~2d in periods one and two. ~i Is ixA, 
y~ and z{ are each ixB, while z~ is ixC. The 
~esults can be summarized as 
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where the "~'s" from topto bottom are Axl, Bxl, 
Bxl, and Cxl vectors, each of whose components 
are the integer one. A comparable size holds for 
the "0~" vectors, and the J.~'s are the population 
means. The covariance of the error term is 
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In practice, A,B, and C may be stochastic. This 
makes the row dimensions in X in (I) random 
variables. 

GENERAL CHARACTERISTICS 

If the population sizes are N I and N^, the 
z. 

item to be estimated is N~2 - NI~ I. Using 
the popu lation estimates, designated by N I and 

N2, t h e  e s t i m a t e s  h e r e  w i l l  be  N - ( -N1 ,N2 .~ . . .  2 

, and  w i l l  be  u n b i a s e d  i f  N i s  u n b i a s e d  and .~- 
i s  c o n d i t i o n a l l y  u n b i a s e d .  The e s t i m a t e s  o f  ~t. 
w i l l  be  t a k e n  o f  t h e  f o r m  Q~, w h e r e  Q i s  a 2xk 

.% 

m a t r i x .  I f QX = I .  and  N and  Q a r e  i r ~ e p e n e n t  
t h e n  E[NOw] = E [ E [ ~ 0 w I N , Q I ]  = N'~ ~- A l s o ,  _ 

. ~ . ~ o A~ A 

var[N'Qw] = E[var[N'0wlN,Q]] + var[E[N QwlN,Q]] 
= E[N'Q~0'~] + ~ N  ~. This variance expression 
holds whether or not the variables N and Q are 
independent. 

Now, a general formula can be derived for 
E[~'Q~O~N], when N and Q are independent It is 

k k 
0 %  ~ . , - . - . .  

E[N'QZQ'N] = Z ~ C-ijtr[Z--NC°V(qi,q j) 
i=l j=l 

t 
+ N'cov(qi,qj)N + E(qi) (Z N + NN')E(qj)] 

3) 

Equation (3) seems Aawkward to work with in prac- 
j. 

tice, and worse, N and Q may not be independent. 
This paper will develop properties of two es- 
timates of change where N and Q are not independ- 
ent, population parameters may vary from period 
to period, and the amount of data may vary 
stochastically from that planned. 

TWO ESTIMATES OF FORM Qw 

In (i) w is of the form w = Xb + e, ie the 
usual regression form. As a result the Q which 
minimizes var[N'QwI~,O] is 

Q = (x'~ -Ix) -Ix'Z -i , (4) 

and 
A 

N'Q~ = N' (X'Z -1X)-ix'i -lw . (5) 

Using X in (I) and in (2), Qw becomes 

Q~ = h.v (6) 

where the scalar h = [AC(I-,~'2)+(A+C)B + B2] -I 
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and the vector v is 

[ B+C (i- ,~ 2 ) ]A B (B+C) 

AB c- 2 f~ 
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-AB (~2 "I° 
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-BC ~'le BC c~ I {o 

~2 c~"~ 

B(A+B) C[B+A(I-/~2) 

/ 

-- -- -- -- T 

t imes the vec to r  (Yl'  Y2' Zl '  z2) 

Another choice is 

(6) 

Ow = (X'X)-Ix'w 
.. • 
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~2 

(7) 

In the special case that A=C, q = ~ 
~= A/(A+B), > = B/(B+C), it is 2' 
straight forward to show that (6) becomes 

(~l_P2 (i-.~¢,~ 2 ) 

which are the standard results, Raj (1968). 

THE EFFECT OF N 

(8) 

In some series the population in the sec- 
ond period is not the same as in the first. This 
is because there are births and deaths. In an 
economic survey with f~ns classified by industry 
this will occur because companies are: bought, 
sold, formed, spin off subsidiaries, etc. The 
population in existence during period one can 
only decrease, although the total population 
count at time two may be larger due to births. 
The notation TAs (1) and ~b will be used for the 

mean of the survivors and the births. Ns(1) , N b 
will be u sed for the corresponding population 
counts. Estimates of these will wear the usual 
"hat s". 

If at time one a sample of size R is planned 
with ~R sample units not repeating in period 
two, and AR in the sample both times, with.~+A = 
I, A,B, and C can be determined by what happens 
to these cFuant~itie~. 

If k I units were expected to be in the 
sample in period two, having been in the sample 
in period one, and died then 

A =~XR + k I 

B = ~R - k I 

~9) 

If k_ units were expected at time one to yield 
vali~ data at time two but susequently died, then 

C = ~R - k 2 . (i0) 

If the population size at time one is estimated 
with NI, then the number of survivors at time 
two will be estimated with 

Ns(1) = N I[I - (kl+k 2)/R] (ii) 

The estimate in (ii) is the same percentage of 
N I as the perecentage of the sample actually in 
period two relative to what was planned in per- 
iod two. Further, if k I and k 2 are a random 
sample of deaths then (ll) is an unbiase~ 
estimate for the number of survivors if N I is 
unbiased. Subsequently kl will be assumed to 
have a binomial distribution with parameters 
(,\R, p), k 2 to be binomial with parameters 
(Z(R, p) independnet of kl, and Ns(1)~ Nl(l-p) 
Further, it can easily be shown that (ii) can 
be written 

A 
Ns(1) = N I(B+C)/R . (12) 

If there is a population of births with 
N b an unbiased estimate,~ of the number and x b the 
, independent of N b, average measured response 
on a sample of b births, then the total popula- 
tion estimate at time two can be taken to be 
N 2 = Ns(1) + N b. The estimate of N2.~ 2 - NI.~/I 
will be taken to be 

-NI.~I + Ns(1)~s(1) + Nb~ = N'Qw + Nb~ b , (13) 

with ~' = ~i(-i C+B ) (14) .q. , ----~ , 

and Qw given by (6) or (7) . 

Using Qw from (7) one finds ~ not independ- 
ent of Q, However, 

A 
i, Qw = NI(-A -B ~ C ) Y2 ' 

A+B A+B R R 

~2 
A A A 

so E[N'Qw],~ = E[E[N'QwlA,B,C,NI] ] . .  

A 
= E[NI(-~t I + (B+C)~s(1)/R ] 

/" k I + k2)~(s(l,)) 7 = E[NI(-~I +(I- 

A R 

= -NI~,+ Ns(1) ~s(1) . 
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It f~llows that (13) is unbiased for -N]~ 1 + 
N2/~ ~ . A similar ~esult holds on using- Qw- in (6) 
, bu~ sho~ing its unbiased characteristic is 
somewhat ~Ifferent. Using Qw from (6) 

B+C ~'Q~_~ = [NI/(b~(I-/O2)+(A+C)B+B2)].(-I ,-~-) • 

[B+C(I-,O 2) ]A B(B+C) -BC.~ BCp% 

2 2 . 

AB ~ -AB~ B (A+B) [ B+A ( i-~ 2 ) 

. . . .  ! 

(YI' Y2' Zl' z2) " 

Again, the elements in N and Q are not independ- 
ent. However, 

E[~'Qw] = E[E[~'Qw~,B C ~  , ,NI]] 

= E [N I (-i ) ] 
' R 

( 

= -HILL I + N ~s s(1) (1) 

Since E[N'Ow|A,B,C,N I]...._~ is the same for both 
Q's, it follows that as in the general char- 

~v 

acteristics section, that var[~ Qw] = 
E[var[~'QwiA,B,C,~I] ] + var[E[~'Qw~A,B,C,N ]] 
is smaller using Qw from (6) rather than (~). 
However, the conclusion is different from that 
in the usual regression theory since even using 
Q~ from (6) it cannot be claimed that a BLUE has 
been obtained. Rather, it can only be concluded 
that such a choice yields an estimate with a 
smaller variance than is obtainedby simply 
subtracting level estimates. 

ALTERNATIVE ON BIRTHS 

AV 

Although N Qw in (13) and (14), and the sub- 
sequent development does estimate change from 
that extant at time one, it seems plausible that 
Aiken's estimate including births might do better 
still. However, if there are b births with the 
corresponding data vector Xb, then all the data 
can be assembled into the single vector 

Yl i 0 0 

Y~2 i001 "~i 

~5 = ~ = 1 .&~s(  + e = X b  + e 

00 1 "t'ib (!.5) z 2 1 

x b o 

with covariance matrix 

-2i 
iA 

0 0 0 

0 O-21 B ~I B 0 

21 B 0 0 ~ I B ~r 2 

0 0 0 O"21 
2 C 

0 0 0 0 

0 

0 

0 

0 

O-21 b 

(16) 

The population at time two, which is the sur- 
vivors plus births, will have mean /~ 2 = (N4~s(1) 

+ N b/X b)/(Ns(1) + Nb). It is straight forward 

using (15) and (16), to show that 

s ~b ) ~s(l = 

(-HI, Ns(1) , N b) ( X ' ~ ' - I x ) - I x ' ~ - l w  is 

given by (13). 

VARIANCES 

In this section expressions for the var- 
iance of N'Qw are developed, using var~'Qw] = 

- E~'Q~-Q'N] +~.'Z" .~ 2The (i i) element of 
~N is E[(NI-NI)2j =O- . The (1,2) and 

i 
._ 

(2,1) elements of Z N are 

E [ (NI-N I) (N I B+C (~) - (l-p)Nl) ] 
A 

= E[(NI-N I)(N l(1-p) - (l-p)N I)1 

= O'-~1 (l-p) 

Similarly, the (2,2) element is 

B+C) _ (l_p)Nl) 2 ] E [ (N I ( R 

= R-I [ ~2 N2) P ~'~i ~I + (l-p) + R(l-p) 2 2 ] . 

These can be substituted back to yield the exact 
for.~'~-N ~. A direct use of Q in expression 

(7) yields 

, , 2. + N12)_ [ C  12 ~ ~,/oe,!c~ E[N Q~Q N] = (c~ i - = (l-p) ] 

+~r 2 2(l-p)] ° it follows that 

A 

var [N'Qw] is 
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R-I (~.2 + NI2)[0" 2 _ 2~\p~.iO_2 (l-p) +O-2(l-p) ] 
N I 

20".2 + 2A,~I~20"2~ , (l-p) 
+ ~'{ i N I ' N1 

+ R_Iz622[(O_ 12 2 + Nl)P(l-p) + R(l-p)20"~. ] . 
2 

"'I 

(18) 

births added in, Aiken's estimate from regress- 
ion has been shown to yield an unbiased estimate 
of change with smaller variance than simply 
subtracting level estimates. The proof does not 
show that Aiken's estimate yields a BLUE, how- 
ever, as would be the case if the population 
counts were known. An explicit formula for the 
variance of Aiken's estimate was not obtained. 
The variance for the difference in the levels 
was obtained and shows how the usual estimate of 
change has its variance inflated when population 
counts must be estimated. 

Q can also be substituted from (6), but it seems 
difficult to find a closed form expression as 
simple as (18). Of course, (18) is an upper 
bound. It is clear from the way that occurs in 
(18) that it should be as large as possible, 
as in the usual case, even if A,B, and C are 
stochastic. 

CONCLUSIONS 

Provided the estimate of the number of sur- 
vivors is treated properly and the effect of 
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TABLE I: ~ l  OF ~ ~ [ I ~  FOR ~ I _XIKRATIVE RF~-_qSION 

Class of 
Statistic 

Narrow Range 

Meal. Range 

Wide Range 

Average Absolute Difference 

1(/'/' Samples 
Number of 
Specified 

Re]etiv e Average Absolute D4 ffere~e 

6O4 

307 

327 

20% Samples 10"/' Samples 20% Samples 

, (S.E'.) (S.E.)__ (S.E.)~ (S,?E. ~) (S.E.~) (S.E.) (S.E.~) (S.E.) 

.0336 .0254 .0601 .0462 1.9064 2.2854 3.2310 3.3934 
(.0068) (.0046) (.0081) (.0059) (.2560) (.2790 (.3328) (.2990) 

.0352 .0120 .0243 .0365 .7809 .4291 .6025 .8229 
(.0086) (.0031) (.0049) (.0070) (.0813) (.0435) (.0531) (.0754) 

.0140 .0275 .0126 .0196 .5961 .8817 .5117 .8307 
(.0029) (.0065) (.0022) (.0033) (.1314) (.1802) (.0890) (.1210) 

TABLE II: ESTIMATED ~ZSION OOEFFICIENTS USING XHE ITERATIVE 

Class of 
Statistic 

10% Samples 2~/' Samples 
Number of ^ 
Specified ~ 8 ~ 8 ~ 8 ~ 
~ i n ~ ( N )  . . . .  

Narrow Range 

Med. Range 

Wide Range 

604 

307 

327 

.000134 

.001517 

.002434 

54.915 

23.474 

1200.219 

.002239 

.001771 

.001663 

37.515 

13.6316 

1979.673 

. -000291 

.001661 

• 002447 

110.049 

20.296 

1203.177 

.001520 

.001162 

.002485 

82.955 

25.3201 

1140.034 

TABLE IIl: M F ~  OF RELIABILITY FOR ~ WEIGHTED LFAST SQUARES RF~SION 

Average Absolute Difference Relative Average Absolute Difference 

Class of 
Statistic 

Narrow Range 

Med. Range 

Wide Range 

10% Samples 20"/0 Samples I~/' Samples 2~/, Samples 
Number of 
Specified ~ ~ ~ ~ ~ ~ ~ 
Dcmmin" s~N ) (S.E. ~ ) (S .E.~)  (S.E.~)  (S.E.~) (S.E.) (~S.E. ~) (S.E.~)  (S.E.) 

604 .0239 .0225 .0273 .0268 I. 5225 i .  9194 2.5301 2.6902 
(.0054) (.0045) (.0036) (.0038) (.1489) (.2052) (.2625) (.2747) 

307 .0187 .0093 .0181 .0238 .6080 .3952 .5136 .6308 
(.0047 (.0024) (.0036 (.0053) (.0692) (.0415) (.0494) (.0579) 

327 .0134 .0225 .0121 .0184 .5430 .7146 .4803 .7515 
(.0027) (.0058) (.0021) (.0032). (.1082) (.1157) (.0802) (.0996) 

TABLE IV: ESm~TED ~O~SSmN ~cm~m FOR THE ~IOnXD LEAST ~ PmCEmmE 

Class of 
Statistic 

Number of ^ 
Specified 
~s~N~ .... (S.E.) '. 

Range 

Med. Range 

Wide Range 

604 

307 

327 

.000916 
(.oon) 

.002510 
(.0012) 

.002920 
(.0010) 

lO7. Samples 

(s.~. ~ ;.~.. ~ (S.E.) , .  

33,2 31. (6.C~! 312 
) ~ 7) (5.044) 

13.6 ~ ~) ii.163 
(2.1~;) (.832) 

i03C(126 ~) O 1428 )0336 .750 
325 3)| (308. 704) 

I 

20"/' Samples 
^ ^ 

.(S.E.) (S.E. ~ (S.E.~ 

.0030706 43.007 .003166 
(.001455) (7.639) (.001575) 

.002369 15.079 .002489 
(. 000940) (1.540) (.001700) 

.002819 Ii01. 744 .003272 
(.000940) (102.682) (.00158) 

TABLE V: PERCENT IP~ROV~Vf IN RELIABILITY OF ~ZuS 
' • OVER X~E' ITERATIVE'~SION PROCEDURE 

(S.E.~ 

42.220 
(8.383) 

16.666 
(2.868) 

1228.045 
(169.015) 

Class of 
Statistic 

Narrow Range 

Ivied. Range 

Wide Range 

Number of 
Specified 
~~s~ 

6O4 

307 

327 

Improvement Relative to 

10"% Samples 

28.9 

46.9 

4.3 

I I 

11.4 

22.5 

18.2 

207o Samples 

I I I I 

54.6 

25.5 

4.0 

42.0 

34.8 

6.1 

Improvement Relative to 

i0 7. Samples 

12 12 

20"/, Samples 

12 

20. i 

22.1 

8.9 
, 

16.0 

7.9 

19.0 

21.7 

14.8 

6.1 

12 

20.7 

23.3 

9.5 
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