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1. INTRODUCTION

A question that arises frequently in survey
sampling is what to do with very large
observations which occur in the sample. .In many
situations alternative estimators of the mean are
used which vreduce the effect of these large
values and which often have a lower mean square
error than the ordinary sample mean.

In sections 3 and 4 of this paper we compare
seven types of such estimators. Four of them
adjust for sample values greater than or egual to
some predetermined cutoff value t. The first of
these, 351), results from substituting t itself
for each of the large values. The  second
estimator, i'%iw » 1is obtained by giving all of
these large values a reduced weight W. X is
§%ﬂply the mean of all values below the cutoff.
X is obtained by first substituting a new
sample value below the cutoff for each large
value, and then taking the ordinary sample mean
of the modified sample.

The final three estimators adjust for the r
largest sample values, where r is a predetermined
positive integer. X', which is known as the r-
th Winsorized mean, Fesults from substituting the
(r + 1)-st largest value for each of the r
largest values. ?P , the r-th trimmed mean, is
the ordinary sample mean of the values remaining
after the r largest are discarded. Finally, Xg?w
is obtained by giving all of the r largest values
a reduced weight W.

Several of these estimators were studied by
Searls (1963) who compared the efficiency of each
of them with that of the ordinary sample mean.
One result that he obtained was that under quite
general conditions there always exists a value T
which minimizes MSE(X ) and that X'1' is more
efficient than the orginary sample mean.
In sections 3 and 4 we show that in a sense
is the best among the seven estimators by
proving that f;l) is, for the optimal 1, at least
as efficient as any of the other six estimators
for any choice of t, W, and r.

T

In section 5 we illustrate the results of
sections 3 and 4 using the exponential
distribution.

2. NOTATION AND TERMINOLOGY

The underlying population distribution X will
be assumed continvous with finite mean and
variance; its probability density function (pdf)
will be positive on some subinterval of [0, =)
with left endpoint a. Let u = E(X), while u ,0%
are, for t>0, respectively the mean and variance
of X truncated on the right at t.

We  assume simple random sampling with
replacement with sample size n. LetX;, X; ,
.++3 Xn denote the unordered variates and let my
denote the number of them with values at
least t. Let X(1)= X(z),..., X denote the
ordered _variates. Furthermore, in order to
define X(‘+ sampling will be continued untill
n sample “observations below t are obtained
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with Xy + , Xo ¢ » .., X i taken to be the
. 2 . £
unordered variates corresponding to the n sample
observations below _t in this extended sample.
Alsc in the case of X3} with m; = n, sampling is
continued until one observation below t, namely
Xl P is obtained.
k]

n
i;lf(xi)
For any function f of X let £(X) =—:—;;—--

We (n§Xt define the estimators iél), §42%’
TG T F5) g6y R(7) i

£ K Xr_ > X3, Xp,w for t > 0 (t >a in

the case of Xé3)and ié“b , We [0, 1), re {1,

2, «v., n=-1}. We let
n-m
z t X(i) + mtt
(1) _ i=1 _ D
Xt S ft (X) ’
where
X if x < t
Dy L {
t .
t if x> t H
n-mt n
z X(i) + W oz X(i)
X(Z% _ i=1 1=n—mt+1 f(2) x)
’ n
where
X if x < t
Do -
? Wx  if x > t 5
n-m
z t X, .
L
ifm, < n
(3 ) n-mg t
t
Xl,t if mt =n

(We note that the definition of ?éa) = X, in
kd
the case when m_ = n, is given to define Xésy in

what would otherwise be an undefined situation.)

n
%X
2(4) _ i=1 ot .
t - n ?
n-r
I X,., +rX
_(5) i=1 (l) (H—I’)
Xr — ;




X

- . (1)
X(6) _ i=1 :
T n-r

n-r n

I X,., +t W z X, .
—(7) _ 1=l (L) i=n-r+l1 (1)
r,w n

Finally, we note that in the proof of

theorems 4.1-4.3 certain expreﬁsions will, in

special cases, be of the form I, a; with 3 > k.
. 3 i=] k

In such situations we define 5 a. = O.

3. COMPARISON OF i(l’, §<2%, §(3), AND i‘“’

We proceed to establish that X(l is for the
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optimal T at least as efficient as X( » B
and X(”) for any t and W.

Lemma 3.1:

{E(Kél)): t e [0, »)}

- {E[fgl)(x)]: t e [0, > [0,1)

Proof: The first relation is obvious, while
the second follows upon noting that ft (X)
is nondecreasing continuous function of
t, E[fd“ ()1 = 0 and lim E[fél)(X)] = .

Lemma 3.2: £ ¢ is a measurable
function such that 0 < g(x) <x forallx > 0
and E[g(X)] < u, then there exists 1 > 0 for
which MSE(X'") < MSE[g(X)].

Proof: By lemma 3.1 there exists T > 0 with
E[f(IJ (X)1 = E[g(X)]. We observe that to obtain
our vresult for this T 15 equivalent to showing
that E[f(n (x)1% < E[g(X)]?, which we proceed to
do.

For any set S define Kg, the indicator
function of S by Kg(x) = 1 if x'e S, Kg(x) = 0 if

x £ S. Let
A= {x: ffl)(x) > g(x)},
Bo= i £900 < g0).
(We note that we may assume that

neither A nor B is empty, since otherwise
£\1 (x; = g(x) almost everywhere and, consequently,
ELe{1 ()12 = B[g()12.) " Then

eeD 012 < elge07?

- (1) 2 (0 2
ELE 77 (XK, 17 + ELE 7 (XK ]

< Bl200K,1? + Elg00Kp]”

(1)

o BLCE 0077 - Te(017)K, ]

< BL(z(0)? - e

17K,

(3.1)

Furthermore, by the definitions of A and B we
have

(1)

RLCCE (0037 - [CG017)K, ]

_ (1) (1),
= B(LE 77X+ gCOILE 77 (X) g(X)IK,)
< 2smptr Mo x e mECEP 0 - 201K,
(3.2)
and
EL(e(0717 - (£ 017K,
- ee00 + £P 0010 - £ 00T
> oine(r G0 x e BRI - £ 01K
(3.3)
. H) .
Also, since (x) = x> glx) if x< T,
and £ (x) = 1 if xzr, it follows that

x e A} < ¢

sup{fil) (x):

(l)

= lnf{f x): x e B} (3.4)

Firally, we note that



M0 - 20X = Be00 - £ P00y
(3.5)
since E[f( ) (x)1 = E[g(X)], and then combine

(3.1) - (375) to complete the proof.

Theorem 3.1: For any t, W there exists 1 for
which

+(1) 7(2)
MSE(X ") < MSE(X("Q)

Proof: TH%F follows immediately from lemma
3.2 with g = f¢ W
Remark: Since there always exists 1 which

minimizes the mean square error of X (Searls
1966), theorem 3.1 can be restated as follows:
There exists T such that

(1) +(2)
MSE(X) ') < MSE(xt W
for all t,W. All the other theorems in this
paper can be similarly restated.
Theorem 3.2: For any t there exists 1 for

which
MSE(X(I)) MSE()_((3))
T t
and
MSE ()’(Tm) < MSE()—(,ELU)
Proof: Let
x if 0 < x < t ,
c. (X3 = B
t if x>t
e >
Then_(lky lemma 3.2 there exists 1 satisfying
MSE(X. ') < MSE[ct(X)% Furthermof)er clearly
= = X! =
E[c] m, E(X ¢ [mt) EEY (m) =

Consequently, to complete the proof we need only
to show that
—Y (3)
Var[ct(X)] < Var(X ) (3.6)
and
(1)
Var[ctfx)] < Var(X ) . (3.7)

To prove (3.6) we observe that
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Var[c X)1 = E(Var[thX)lmt]) ,

Var(X( )) = E[Var(i(s)lm )] s
Var[ctfxilmt] = Var[X(3)|m ] if m_o=n,
and

(n-m_)s2 o2
N +
Var[ct(X)lmt] = ——Hg———E < n_;t
= Var[iis)]mt] if mo <.

To obtain (3.7) we simply note that

Var[ctiX)] = E(Var[ct(x)!mt]) .
E(n-m, )o? o2
Tt t
= " < = = Var(X(u))
4. COMPARISON OF X.'', %, [, ap X7

<

We proceed to establish that XT(S)is for the
optlmﬁ; T at least as efficient as X X, »
and X, W for any r and W.

Lefma 4.1: If Y, Z are functions of X

...y % with finite
E(Y) = E(Z) and

first and second moments,

k =

. min{Z: E(Z]mt =) > E(Ylmt = 0},

then MSE(Y) < MSE(Z) provided the following hold
for each t > 0:

(a)

E(Yln% = £) and B(Z]m = L) are
nondecreasing functions of 2

(b) E(Z|m,= L) > E(W|m_= L) 1f1_>k

(¢) Cov(Z+ Y, Z - YIm =4L) > 0if £ R

and

(d) EBLY®> - 22) m_ = /&J<B[(Y+z)|m =
K JEL(Y - Z)|m t= £7 if £ < k_.

Proof:~ From the Trelation E(Y) = E(Z) it

follows that



MSE(Y) < MSE(Z) <> E(Y?) < E(22)
w EL(Y? - 29 |m < k_IPr(n. < k)
t T t t

< E[(Z2 - YQ)Imt > kt]Pr(mt > kt)

To obtain this last inequality we first note that
by (4),

BL(Y? - ZQ)]m,C < k. J
< BLOY + 2)|mp = k JEL(Y - 2)|m, < k]

(4.1)

Furthermore, if £ > k. then by (¢), (a), and (b)

BL(z° - ¥)|n, = £]

> ElZ + Vm_ = K JELGZ - V)[m_ = 4],

and hence

2,2
CINCANES SN N

> ELGZ + Dmg = k JENEZ - V) [m > k]

t

(4.2)

Finally, we combine (4.1) and (4.2) with the
relation

EL(Y - z)[mt < kJPr(m, < k)

= E[(Z - Y)Imt > kt]Pr(mt > kt)

5

which follows since E(Y) = E(Z).
We next note the following relations for use
in the proof of theorems 4.1 - 4.3:

Cov (X;, xj)mt =£) > 0

for i, j=1,..., n. (4.3)

(X(i)|mt =) and (X(j)}mt = £)

are independent if i < n - £ < j. (4.4)
n-r

E(.Zl X n =0 < (- ifr > Lo (4.5)
i=

To establish (4.3) we observe that in case
icn-f and j<n-f, then X, and Xj are order
statistics from the distribution of X truncated
on the right at t, and conseguently (4.3) follows
from the fact that under very general conditions
the covariance of two order statistics is
nonnegative (David 1970, Ex. 3.1.11). Similarly
(4.3) holds if i>n-£ and Jj>n-£. On the other
hand, if exactly one of i,j exceeds n-£, then
(4.3) and (4.4) both follow since X, and X, are
then order statistics from indepgndent
distributions, namely X truncated on the right at
t and ¥X truncated on the left at t.

To obtain (4.5) we simply note that if r>Z,
then -

n-r n-£
ECZ X Im =0 < BCIX/[m =40
i=1 i=1
n-r n-Z

Theorem &4.1:, For any_ n there exists =
for which MSE(X; ) < MSE(X, ).

Proof: By lemma 3.1 there exists =
satisfying E(Yél)) = E(Y;S)). We will prove the
theorem by showing thaE(?Pnditions (%% - (d) of
lemma 4.1 hold with Y = X and Z = Xy’

Clearly (a) and (b) both hold and k; = r + 1.

To obtain (¢) we apply (4.3) after
first noting that if £ > k_ = r + 1, then

(@2 4 2N =
r T T
; n-£ n-r 70
21 X ,
N iilx(i) ' i:n§£+1x(i) F ey T

(4.6)

and



-(5) (l)

(X, m_ =
n-r

( I X,., + rX

i=n-£+1 ()

- L)

(n-r)

L
n

prove (d) we observe that if

r + 1, then

[(i(l)

(5) -

P )\mT [,]
L BT n-£
= (2% X,.y+ I X
noi= (1) i=n-r+l (5)

+ L1 + rX(n_r)

n-r
J—L(2 T X
0=

+ 2rT1)

(1).

A

and

which together with (4.3) and (4.5) imply that

R CARR GG {E RS T
T r T

< feGer, + 2ec LG 22D = 4
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Furthermore, from (4.6) with £=kT = r+l we obtain

(@)

- _(5). _
EL(x, "~ + X, )ImT = kT]
1 1
“[2(n-r-1)u_ + 2(r+1)1] > =[2(n-r)u_ + 2rT]
- n T - n T
Theorem 4.2: For any_ p there exists =

(1)

for which MSE(X, ) < MSE(X; ).

Theorem 4. 3( For any f W there exists 1
for which MSE(? 1)) < MSE(_£7 ).
The proofs of theorems %.2 and 4.3 have been

omitted due to lack of space. These proofs are

available from the author.

5. AN EXAMPLE

The following +tables illustrate the results
of the previous sections for the exponential
distribution with sample sizes of 10, 100, and
1,000. The exponential distribution was chosen
for reasons of computational simplicity and
because it is a pos1t1vely skewed distribution.

As has Dbeen proven X, attains the highest
efficiency among th? Feven estlm?tors. I?ﬂ this

example Xt’ y Xt W Xt N Xt , and Xr,w are
all, for the optimal 'choice of parameters, more
efficient than the ordinary sample mean, X. This
is true for these five estimators for all
continuous random variables X which take only
nonnegative values as was proven by Searls
(1863). This result does not always hold for
XS” nd X In the partlcular case of the
exponentlal distribution MSE(X‘5 ) and NSE(X(G))
increase as r increases and

wse(@ ) > mse(@?) = var(D)

It 1is also interesting to Pote that for the
exponentlal distribution MSE(X ) decreases as
increases, for optimal W, M and hence is
minimal if r = n-1. However, 1f the restriction
that r < n is removed, then %7l will attain its
maximal efficiency when r = n, W = n/(n+l).



1. Parameter Values Which Yield Maximal Relative Efficiency
of Estimators With Respect to X for Samples From the Exponential
Distribution With Mean u

Sample Size

Estimator 10 100 1000
iél) 2.10u 3.53u 5.32y
i%za 2.62u, 0.517 4.20p, 0.6u4k4 6.01u, 0.729
X 3.40u 5.48u 7.68u
3@“) 3.32u 5 .44y 7.66y
%(s) 1 1 1

T

X(6) 1 1 1
T

x(7) 9, 0.908 99, 0.990 999, 0.999
T,W ’

2. Relative Efficiency of Estimators with Respect to X
for Samples from the Exponential Distribution With Mean u When
Optimal Parameter Values are Used

Sample Size

11000

Estimator 10 100
iél) 1.6112 1.1401 1.0292
iéza 1.5466 1.1298 1.0275
§é3) 1.3385 1.0757 1.0145
Eé“’ 1.3796 1.0796 1.0150
% (5) 1.0000 1.0000 1.0000
T
% (8) 0.8605 0.9009 0.98701
T
§(7& 1.0999 1.0100 1.0010
r,
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