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I. INTRODUCTION 

A question that arises frequently in survey 
sampling is what to do with very large 
observations which occur in the sample. In many 
situations alternative estimators of the mean are 
used which reduce the effect of these large 
values and which often have a lower mean square 
error than the ordinary sample mean. 

In sections 3 and 4 of this paper we compare 
seven types of such estimators. Four of them 
adjust for sample values greater than or equal to 
some predgt.ermined cutoff value t. The first of 
these, ~t 1 ), results from substituting t itself 
for each of the large values. The second 

~'(2} estimator, A t,W , is obtained by givin~all of 
these large Values a reduced weight W. X~ ~ is 
si~nply the mean of all values below the cutoff. 
~.~4)at is obtained by first substituting a new 
sample value below the cutoff for each large 
value, and then taking the ordinary sample mean 
of the modified sample. 

The final three estimators adjust for the r 
largest sample values, where r is a predetermined 
positive integer. ~c5) , which is known as the r- 

r 
th Winsorized mean, results from substituting the 
(r + l)-st largest value for each of the r 
largest values. ~(r 6~ , the r-th trimmed mean, is 
the ordinar9 sample mean of the values remaining 
after the r largest are discarded. Finall, y, X!7)u~,,, 
is obtained by giving all of the r largest values 
a reduced weight W. 

Several of these estimators were studied by 
Searls (1968) who compared the efficiency of each 
of them with that of the ordinary sample mean. 
One result that he obtained was that under quite 
general conditions there always exists a value 
which minimizes MSE(X(t I~ ) and that ~II) is more 

T 
efficient than the ordinary sample mean. 

In sections 3 and 4 we show that in a sense 
--(1)Xt is the best among the seven estimators by 

-(I) is, for the optimal T, at least proving that X T 
as efficient as any of the other six estimators 
for any choice of t, W, and r. 

In section 5 we illustrate the results of 
sections 3 and 4 using the exponential 
distribution. 

2. NOTATION AND TERMINOLOGY 

The underlying population distribution X will 
be assumed continuous with finite mean and 
variance; its probability density function (pdf) 
will be positive on some subinterval of [0, ~) 

2 with left endpoint a. Let ~ = E(X), while Z , o t 
are, for t>_0, respectively the mean and variance 
of X truncated on the right at t. 

We assume simple random sampling with 
replacement with sample size n. Let X 1 , X 2 , 
..., X n denote the. unordered variates and let m t 
denote the number of them with values at 
least t. Let X(I~ , XIo) ,..., X, , denote the 
ordered zaTiates. Furthermore, in order to 
define ~(4~ sampling will be continued untill 

t 
n sample observations below t are obtained 

with Xl t , X2,t , ..., Xn,t taken to be the 
unordere~ variates corresponding to the n sample 
observations below t in this extended sample. 

Also in the case of Xt ~3) with m t = n, sampling is 
continued until one observation below t, namely 

Xl,t' is obtained. 

n 
___ i{~f(x i) 

For any function f of X let f(X) = - -  " 
n 

We next define the estimators it (1)- ~{21 
' t,W' 

~t(3) ~(4) ~r(5) ~r(61 ~(7) W for t > 0 (t >a ~n 
' t ' ' ' r, -- 

-- (31 and -''x~40 , w ~ [0, l) , r the case of X t {1, 

2 ..... n-l} . We let 

n-m t 
Z X(i ) + mtt 

~I) = i=l n = f~1) (x) , 

where 

(1)(x) : { x if x < t 

ft t ifx>_ t ; 

n 
nE mt- X + W r. X 

~(2) = i=l (i) i=n_mt+l (i) 
t , W  

n 

where 

= f~2) (x) , 

(2)( {x if x < t 

ft,w x) : 
Wx ifx > t ; 

n-m t 

i z  X =i (i) 
ifm < n 

n-m t t 

X l , t  i f  m = n ; 
t 

(We note that the definition of ~J3)~ = Xl,t in 

the case when m = n, is given to define ~( 3~ in 
t t 

what would otherwise be an undefined situation. ) 

~(4) 
t 

r 

n 
Z X. 

l,t 
i=l 

n 
n-r 

X X(i ) 
i = l  

+ rX 
(n-r) 
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x (6 )  

2( 7 ) 
r,W 

n-r 

z x ( i )  
i = l  

n-r 
n-r n 

< x,i ~ J +w z x 
i=l i=n-r+l 

(i) 

Finally, we note that in the proof of 

theorems 4.1-4.3 certain expressions will, in 
k 

special cases, be of the form T. a i w~th j > k. 
i=j 

In such situations we define T a. = 0. 
i:j i 

-- ll) ~ (2) ~t13) AND Xt(4) 3. COMPARISON OF X t , t,W' 

We proceed to establish that ~[I)is for the 
T 

optimal T at least as efficient as ~(2) ~ 3] 
\ 

and ~4~ for any t and W. 
t 

Lemma 3. i" 

{ E ( ~ l ) )  • t s [o,  - ) }  

= { E [ f ~  1 ) ( X ) ] .  t s [0 ,~ ) }  o [ 0 , ~ )  . 

E [ f ( 1 ) ( X ) ]  2 < E [ g ( X ) ]  
T 

~-+ E[f(1)(X)KA ]2 + E[f(1)(X)KB ] 
T T 

<_ E[g(X)KA ]2 + E[g(X)K B] 

+-+ E[([f(1)(X)]2T - [g(X)]2)KA ] 

< EE(Eg(X) ]  2 - [ f  (1 )  
- T 

(X)]2)KB] 

( 3 . 1 )  

Furthermore, by the definitions of A and B we 
have 

E[([f(1)(X)]2T - [g(X)]2)KA] 

: E([f(1)(X) + g(X)][f(1)(X) - g(X)]K A) 
T T 

< 2sup{f(1)(x) • x s A}E([f(1)(X) - g(X)]KA), 
- T T 

( 3 , 2 )  

Proof: The first relation is obvious, while 
the s~cond follows upon noting that ft {I) (x) 
is a nondecreasing continuous function of 
t, E[f~ I' (X)] = 0 and lim E[f~ II (X)] = ~. 

Lemma 3.2 : If t÷ ~g as a measurable 
function such that 0 < g(x) < x for all x >_ 0 
and E[g(X)] < ~, then there exists ~ > 0 for 
which MSE(XT 'II ) <_ MSE[g(X)]. 

Proof: By lemma 3.1 there exists T > 0 with 
E[f~~] = E[g(X)]. We observe that to obtain 
our result for this • is equivalent to showing 

f(l) 2 2 that E[ T (X)] <_ E[g(X)] , which we proceed to 

do. 
For any set S define K S, the indicator 

function of S by Ks(X) = 1 if x e S, Ks(X) = 0 if 
x ~ S. Let 

A = {x- f(1)(x) > g(x)}, 
T 

B = {x" f(1)(x) < g(x)}. 
T 

(We note that we may assume that 
neither A nor B is empty, since otherwise 
f(1)(x I : g(x) almost everywhere and, consequently, 
E~f I*- (X) n ~ : E[g(X) ]2. ) Then 

T 

and 

E[([g(X)] 2 -[f(1)(X)]2)KB] 
T 

: E([g(X) + f(1)(X)][g(X) - f(1)(X)]KB ) 
T T 

> 2inf{f(1)(x) • x e B}E([g(X) - f(1)(X)]KB) . 
- T T 

( 3 , 3 )  

Also, since f$11 (x) = x >_ g(x) if x < T, 

and f i l l  ( x )  = "r i f  x>'t-, i t  f o l l o w s  t h a t  
T - -  

sup{f (I) (x)" x e A} < T 
T 

: inf{f(l)(x), x e B} 
T 

(3.4) 

Finally, we note that 
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E(Ef(1)T (X) - g(X)]K A) : E(Eg(X) - f(1)T (X)]KB) 

(3.5) 

since EEf (!) (X)] : EEg(X)], and then combine 
(3.1) - (3T. 5) to complete the proof• 

Theorem 3.1: For any t, W there exists T for 
which 

- " t , W "  

Proof: T~ follows immediately from lemma 
3.2 ~ g  = ~t,W. 

Remark: Since there always exists T which 
minimizes the mean square error of X (I) (Sear!s 
1966), theorem 3.1 can be restate~ as follows: 
There exists T such that 

-(2)~ MSE(X~ 1)) < MSE(Xt, W. 

for all t,W. All the other theorems in this 
paper can be similarly restated. 

Theorem 3.2: For any t there exists T for 
which 

MSE( } < MSE(   3)) 

and 

MSE(X~ I)) <_ MSE(X~4)) • 

Proof: Let 

x if 0 < x < t 
ct(x) = 

Vt if x > t . 

Then by lemma 3.2 there exists T satSsfying 
MSE(~T(1)) <_ MSE[ct(X~,~ Furthermore clearly 

E[ct (X)]mt] : E(~t°i Imt) = E(~it4)[mt) = Pt. 

Consequently, to complete the proof we need only 
to show that 

and 

-(3)) (3 6) VarEct (x) ] <_ Var(x t 

varEct(X)] <- Var(X(4))t " (3.7) 

To prove (3.6) we observe that 

Vat [ ct-~~] - E (Var[~I m t ]) , 

Var (~ 3) ) : E[Var(~3) I mt ) ] , 

Var[ct~]m t] : 0 <- Var[X(3)Imt I t  ifm :n , 
t 

and 

2 (n-m t )o 2 o t 
Var[ct(X)Im t] : n2 < 

n -mt 

Var[X~3) i m t] if m t < n . 

To obtain (3.7) we simply note that 

Var[c t(X)] : E(Var[c t(X)Im t]) . 

E (n-m t )o 2 o 2 
t t x(4) 

n2 < -- = Var( - n t 
• 

4. COMPARISON OF Xt (I), -Xr(5), -Xr(6), AND Xr,W(7) 

proceed to establish that -- -~I~_ is for the We 
• -- 5--( ) ~6) optima] T at least as efficient as ~ , 

~7 W for any r and W. and 
Lamina 4.1: If Y, Z are functions of X 1 , 

..., X n with finite first and second moments, 
E(Y) = E(Z) and 

k t = min{£" E(ZIm t = £) > E(Y]m t = £)}, 

then MSE(Y) <_ MSE(Z) provided the following hold 
for each t > 0: 

(a) E(YIm. : Z) and E(ZIm t. : Z) are 
nondecreasing functions of Z; 

(b) E(ZIm t = £) > E(YIm ~ = Z) if £ > k ; 
(c) Cov(Z + Y, Z-- Ylmt ~: Z) _> 0 if £t_> k t. 

and 
(d) E[Y 2 - Z 2 .)Ira t = Z] < E[CY + Z)Im t : 

k ]E[(Y - Z)Im = Z] if Z < k 
Proof: t From the trelation E(Y) t" E(Z) it 

follows that 
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MSE(Y) <_ MSE(Z) +-+ E(Y 2) <_ E(Z 2) 

+-~ El(y2 _ Z2)Im t < k t]Pr(m t < k t) 

< E[ (Z 2 - y2) I m t _> kt]Pr(mt > kt) 

To obtain this last inequality we first note that 
by (d), 

E[(y2 _ Z 2)Im t < k t ] 

<_ E[(Y + Z)Im t : kt]E[(y _ Z)Im t < kt ] . 

(4.1) 

Furthermore, if £ _> k t then by (c), (a), and (b) 

E[(Z 2 - y2)im t : £] 

>_ E[(Z + Y)Im t : kt]E[(Z - Y)Im t : £] , 

and hence 

E[(Z 2 _ Y2)Im t >_ k t] 

>_ E[(Z + Y)Im t : kt]E[(Z - Y)Im t >_ k t] . 

(4.2) 

Finally, we combine (4.1) and (4.2) with the 
relation 

Coy (X i, Xj;m t = l) > 0 

for i, j=l ..... n. (4.3) 

(X(i) Imt= Z) and (X(j)Im t : l) 

are independent if i < n - 1 < j. (4.4) 

n-r 
E( F. Xilm t = l) <_ (n-r)~ t if r > l. (4.5) 

i=l 

To establish (4.3) we observe that in case 
i<n-Z and jin-£, then X. and Xj are order 
st-atistics from the distribution of X truncated 
on the right at t, and consequently (4.3) follows 
from the fact that under very general conditions 
the covariance of two order statistics is 
nonnegative (David 1970, Ex. 3.1.11). Similarly 
(4.3) holds if i>n-/ and j>n-/. On the other 
hand, if exactly one of i,j exceeds n-l, then 
(4.3) and (4.4) both follow since X. and X i are 
then order statistics from I independent 
distributions, namely X truncated on the right at 
t and X truncated on the left at t. 

To obtain (4.5) we simply note that if r>/, 
then 

n-r n-£ 

E( r, Xilm t = l) <_ E(iZ Xilm t = l) 
i=l =i 

n-r n-1 = ~t 

Theorem 4.1:(i For any r )there exists T 
fo~ which Msz(X~ ~ ) < Ms~ ~ . 

Proof: By lemma 3.1 there exists T 
(I) (5) satisfying E(~ T ) = E(~_ ). We will prove the 

theorem by showing tha~_.conditions (a.). - (d) of 
lemma 4.1 hold with Y = ~I) and Z = X95) . 

Clearly (a) and (b) both hold and k T = r + i. 
To obtain (c) we apply (4.3) after 

= r + 1 then first noting that if £ > kT 

E[(Y - Z)Im t < kt]Pr(m t < k t) 

: E[(Z- Y)[m t >_ kt]Pr(m t >_ kt) , 

which follows since E(Y) : E(Z). 
We next note the following relations for use 

in the proof of theorems 4.1 - 4.3: 

[(~(5) + ~(1))l m : l] 
r T T 

n-I n-r 
1(2 Z X + Z X + 1T) 

= n i=l (i) i=n-/+l (i) rXin_r) + ' 

and 

(4.6) 
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[(X(r 5) - 9~(1))lm-[ T = l] 

n - r  
= l_( z x (i) + rX(n-r) 

n i=n-l+l 

- /T) • 

To .... prove (d) we observe that if 
£ < k = r + i, then 

T 

~(5))I m = £] [(R(~ i) + r 

n-r n-g 
1(2 X X + Z X(i ) 

= n (i) 
i=l i=n-r+l 

+ £~ + rX 
(n-r) 

n-r 
1 < -(2 Z X + 2r~) 

- n " (i). 
i=l 

and 

[(~,(1),r - X'(5))[mTr : £] 

n-1 
: i( X X(i ) + ZT - rX(n_r)) , 

n. i=n-r+l 

which together with (4.3) and (4.5) imply that 

Furthermore, from (4,6) with l=k = r+l we obtain 
T 

E[(X (i) + ff(5))"Im = k ] 
T r T T 

> l[2(n-r-l)u + 2(r+l)T] > l[2(n-r)p + 2rT] . 
- n • - n T 

Theorem 4.2: For any )there exists 
for which MSE<~ ~ ) ! MSZ(~ 5 . .  

Theorem 4.3: For any r W there exists 

The proofs of theorems ~.2 and 4.3 have been 
omitted due to lack of space. These proofs are 
available from the author. 

5. AN EXAMPLE 

The following tables illustrate the results 
of the previous sections for the exponential 
distribution with sample sizes of I0, i00, and 
1,000. The exponential distribution was chosen 
for reasons of computational simplicity and 
because it is a positively skewed distribution. 
As has been proven ~t {I| attains the highest 
efficiency among the seven estimators. In this 
ex_m_~e 3(1) ~|2) ~|3J ~(4; _ .-:(7) P~ t , At, W , A t , A t , ana Ar, W are 
all, for the optimal choice of parameters, more 
efficient than the ordinary sample mean, X. This 
is true for these five estimators for all 
continuous random variables X which take only 
nonnegative values as was proven by Searls 
(1963). This result does not always hold for 

~(6) In the particular case of the X(r 5) and -r " 

--(5) ) and MSE(X(r 6) ) exponential distribution MSE(X r 
increase as r increases and 

MSE(~ (6)) > MSE(-(5)) = Var(X) . 
1 X1 

E([(x(1)) 2 - (~(5))211m = £) 
T r - T 

< l[2(n-r)p + 2rT]E[(X (I) - X(5))Im = £] . 
- n T T r T 

It is also interesting to Dote that for the 
exponential distribution MSE(~(7$) decreases as r 
increases, for optimal W, ' and hence is 
minimal if r = n-l. However, if the restriction 

r < n is removed, then ~7~ wil'l attain its that 
maximal efficiency when r = n, W = n/(n+l). 
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I. Parameter Values Which Yield Maximal Relative Efficiency 
of Estimators With Respect to X for Samples From the Exponential 

Distribution With Mean 

Estimator 
Sample Size 

i0 i00 i000 

~(I) 2.10]J 3.53p 
t 

~(2) 2 62# 0.517 4.20#, 0.644 
t,W " ' 

~(3) 3.40p 5.481/ 
t 

Xt (4) 3.32~ 5.44p 

~(s) i 
r 

i(~) i i 
r 

i(7) 9, 0.908 99, 0.990 
r,W 

5.32p 

6.01~, 0 729 

7.68~ 

7.66p 

1 

1 

999, 0.999 
. .  

2. Relative Efficiency of Estimators with Respect to X 
for Samples from the Exponential Distribution With Mean ~ When 

Optimal Parameter Values are Used 

Estimator 
Sample Size 

i0 ' i00 I000 

(I) 1.6112 1.1401 1.0292 
t 

(2) 1.5466 1.1298 1.0275 
t,W 

(3) 1.3395 1.0757 1.0145 
t 

(4) i. 3796 1.0796 1.0150 
t 

(s) i .  oooo i.oooo 1.oooo 
r 
(G~ 0.8605 0.9009 0.9701 
r 

~(7) i .  0999 1.0100 1.0010 
r,W 
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