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I. INTRODUCTION 

The allocation problem in survey design as usually 
stated is the problem of allocating a sa m pie over a set 
of strata, in order to minimize a variance expression, 
subject to a constraint on cost or other considerations. 
Many times the problem stated in this way is 
incomplete, because the variances used are estimated, 
and thus are subject to error. If the estimates are of 
poor reliability, then the knowledge or the am ount of 
information known about the variances is not greatly 
increased over that of no information. Thus, the 
allocation of the sample over the strata should be 
"close" to that of the allocation over strata that would 
be if no inform ation was available. 

In many surveys, more than one characteristic is of 
interest. The allocation that is optimal for one of the 
characteristics may not be optimal for the other 
characteristics. Of importance are the probabilities 
that an allocation will yield an estimate with 
reliability better than a given reliability. The 
allocation problem can be viewed as operating on a 
function of these probabilities, a function which 
considers the desires of the sponsor of the survey. 
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Further suppose that p(o~ is the proper or improper 

prior distribution functionUof a .2. Then the posterior 
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distribution of o ~. given a realized value of Z. is: 
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In this paper we estimate the posterior variance, using 
empirical Bayesian estimation techniques, under an 
assu m ed underlying population distribution for 
variances. The estimated variance is a weighted sum 
of the usual unbiased estimate of variance, and a 
"prior" estimate of variance based on a prior 
assumption of the relationships between the variances 
over the strata. These "prior estimates are derived 
using the observed data. We then estimate the 
posterior probability distribution e m pirically. 

Let j be the index for a stratum; j=1,...J, and let n• 
3 

be the sample size in stratum j. Let x. be the 
3 

estimator for the jth stratum, with variance=: o 2/n.. 
fl 3 

The allocation problem is to find nl, .... nj su~ch that the 

J 
variance of x = X W. x., where the W j are ~ed, is 

i-I 3 3 
minimized, subjec[ to a contraint n = Z. n.. Suppose a 

3 3 
simpie random sampIe without replacement in each 

stratum. The variance of x can then be written as: 

2 2 
(I) V = XW (1-fj) c /n • . 

x 3 .1 .1 ,.1 

wb~ere f. is the finite population correction factor, and 

a.~is the J "unit" variance for the jth stratum, j= I ,...,J. 
3 

Data, from a past survey is available, and an estimator 

of --~q'1, Zj is used. Suppose that p (Z]Y~ 2_j) is the2 

conditional probability function of Zj given ~ 3"" 

At this point, many times the complete determination 
2 

of c~3"B is not possible, because the prior distribution 

p ~i)' depends upon unknown para m eters, say ~ If 6 is 

not dependent upon j, then by considering the 

variables, ZI,...,Zj, one can estimate 8 using any of 

the sampling or bayesian estimation proceduresl The 

likelihood ofe, given ZI,...,Z J is: 2 2 

(4) L(O/ZI'""ZJ) ~j=~1 p (ZJ aj) p( ~ ) 

Once an estimate of 6 is determined, this can be 

inserted into equation (3) to derive the estimate of j, 

2 
and to determine the posterior distribution of ~ j given 

2 
ZI,...,Z J. The estimator IB' determined in this 

fashion is termed the "empirical" Bayes estimator of 

o 2. and the probability function of the posterior 
3 

distribution p(~2/Zj) will be termed the "empirical" 

p.d.f. 

2 
We can now view (I) as a sum of random variables cj, 

with known constant W j 2 (1-fj)/nj as weights, where 

the designer has "control over the values (1-fj)/nj. 

Thus the p.d.f, of V can be estimated using the 
x 

2 and the probabilities. em pirical p.d.f, of the cj, 
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(5) ~x (Vox): Pr (V <Vox) 

where Vox is a constant, as a function of n I ...,nj 

If X I ,...,X k are K different characteristics each for 

which a sponsor wants all estimates to be equally 

reliable, i.e., V are all equal~ then the choice of 
ox 

nl,...,n J to be made might be that which minimizes a 

maximum of a function which measures the variability 

of the probabilities. 

The Bayesian method of deriving optimal designs has 
been discussed by various authors. See article by 
Ericson and Rao. The method of estimating the 
para m eters of the prior distribution will depend much 
on the prior belief of certain relationships. Without 
prior beliefs, then an empirical approach will depend 
upon data analysis on the raw observations. Many 
articles on "Empirical Bayes" methods of estimation 
have been written. See particularly an article by 
Enfron and Morris, 1975 in Jg~nal of the American 
Statistical Association (J AS A ).~oJ 

II. ESTIM A TIO N 

2 
Let s. be the sample sum of squares about the mean 

J 
associated with the jth stratum, and V. the degrees of 

J 
• 

o ,D 

freedo m of s =.J. Let Zj = ~s?Vj' and assu m e that 

(6) p(Zj/o 2) = i (bj)bj Zj b.-I 
r(bj) ~ 3 

• exp ( - b 3Z 3 / e ~ )  
w here b. > 0, This is a ga m m a distribution and 

J 

2 
(7) E(Zy~j2 ) : o. 

2 J 
Var(Z/ ~j ) : ~ .4/b. 

J J 

Thus, b~ can be thought of as a generalization of the 

degrees ~ of freedom i.e., if (si2/v oj2 ) was a chi-square 

with v. degrees of freedom, then b.=v/2 . We shall 
J J J 

assume that b. can be estimated, using the raw data, 
J 

or using a replication technique. 

I 
For _t~e co mputations done here w e took biv : 2 Vj (I+ 

~/2 ) where ~ is the standardized measure of the 

kurtosis, i.e., the fourth cumulant divided by the 

square of the variance. This is the first term of the 

R oy-Tika approximation of the distribution of Z. using 
J 

gam ma functions and Laguerre polynomials. (4) 

We shall take as a prior distribution of ~ .2 the natural 
J 

conjugate, the inverted ga m m a with para meters a. and 

v, i.e., aj v-l(qj 2) -v J 

P(Oj/2aj,v) = axp(-aj ) 

(8) r(v-1) 
v >i. ~ 
Thus, the posterior distribution is: 

qj2/ aj, ~2 )-(bj + V)zj(b j - I) (9) p( Zj, v) ~( 

v-1 a .+ b .Z. 
• aj exp ( -_~_~_~ 

Uj 

which is an inverted gam ma distribution. 
Hence 

{10) E( j2/Zj, aj, v) = (aj + bj Zj)/(bj + v-2) 

Var ((~j2 " aj+bj zj 2 
/Zj,a~,v) = ( ~ )  . 1 

~ - 3  

The expected value can be seen to be weighted 

average of the unbiased s~mple estimate, Z j, and the 

"prior" expected value of o. = J Moreover, the rel- 

variance of the posterior distribution = (bj + v-3) for 

>3 is s maller than the rel-variance of (Z_Yj ~j2 ). v 

Taking the product of (6) and (7), and intergrating with 

respectto ~2, we have that the p.d.f, of Zj given 

bj, a~ u and V is: 

b.-1 
J v-1 (11) p(Zfbj, aj, v) ~Z a 

3 J 
/(bj Zj +aj)(bj + v-l) 

This is of the form of an inverted beta distribution. 

The expected value and variance are: 

(12) E (Z Yb., v) : a Yv-2 
J J aj, J 2 

Var (Z/Dj, aj, v) = (a/v-R) (bj + v-2) 

bj (v-3) 

This implies that the rel-variance (bj + V-2) bj (v-3) is 

i n d e p e n d e n t  of  E(Zj). An e s t i m a t e  of  th i s  q u a n t i t y  is: 

^ 2 
(I 3) 4 : (Zj-Zj) /Zj2 

where Z.is an estimate of the expected value of Z .. 

Let R 2 J R2j, J be the average of so that we have 
J 

I 7 2 

(14) R 2 : ~ j=l Rj J 

= i (1 + v---X2 z i/bj) 
v-3 J j=l 
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From this an estimate of V can be derived, i.e. 

(15) V-2 : (R 2 2 +I)/(R -~b). 

J 
I 

whereHb : G r I/b.. J 
j= I 

W e are considering maxim u m likelihood estimates, 
which would involve iterative solutions, where the 
initial values are those derived from the regression 
and equation 15. If time permits, an effort will be put 
forth to derive a m axim u m likelihood solution. 

^ ^ 

Let a and v be the estimates of a and v. The empirical 

Bayes  e s t i m a t e  ofe 2. can be wr i t t en .  
J 

(16) (:2j, Bayes : :~.Zj j+ (1 - t j )a /v -2 ,  where 

(17) ~ : 
J 

(bjRj2-1) / (bj+1) ~j2 and 

w here 
1_ (1 +)-2/ 

R 2 
j V-3 b. 

J 

Note that 

lim ~ =I 

÷ 2 + 

liml = I 
J 

b. '~ oo 

J 

Thus small values of V and large bj give more weight 
z 

to Z., the unbiased estimates of q_. , as should be the 
J ^ J 

case since V is a measure of the precision of the 

"prior" distribtuion and b. is a measure of the relative 
3 

precision of Z .. 
3 

From equation (14), we get the empirical Bayes 

estimates of Vx, i.e., 

(18) V (Bayes) : 
x 

x w j2(I j2, -5) ~ Bayes/nj 

Minimizing this, subject to Z. n = n, we have to solve 
3 3 

an equation using iteration, in order that nj < N j, the 

universe size for the jth stratum. Assuming an infinite 
^ 

size universe, we have n ~ w q . 
3 3 3 

This shows that the value of n is a weighted sum of 
J 

the usual Neyman allocation, say nj (Z) and the 

allocation using a, i.e. proportional allocation say 

nj(p). That is, we can write: 

n.3 = Fj nj. (Z) + Gj nj (p) 

where F. and G are numbers, which, however, do not 
3 3 

add to I for a given j. 

We can express V as a sum, V = xC.V'where C isa 
x 3 ~ 3 

constant, a function of nj, and V~ = q j . We shall 

assu m e that V "are independent, and distributed with 
3 

distribution p (q2/zj). In the case we are posterior 

concerned with, V: is distributed as an inverted 
3 

gam m a, with parameters, (aj+b zj)= dj, and (bj+v) = gj, 

i.e. 

(19) p (V i) ~ (V j)-gj exp (-d~vj) 

Sufficiently high moments of V do not exit i.e. the 
th " J 

r m o m ent about zero of V is: 
3 

" dj2/(gj (20) Pr = - 2) (gj- 3)... 

... (gj-<r + I )) 

valid f o r  r <gj-1. The v a r i a n c e  of  Vj ks: 

(21) 2 : dy(gj-2) 2 (gj-3). 

Hence the ratio, 

2 = I/2), 
(22) pr/U2 0 (gj r< gj-1 

If gj is large enough, so that fourth m o m ents exist, and 

are measured with a certain degree Of reliability, then 

by computing the first four moments, one can 

estimate the p.d.f., by determining which of the 

"Pearson" type of p.d.f, best fits the p.d.f, of V . We 
X 

note that V is a type V as classified by K endall V O L. I 
J 

"The Advanced Theory of Statistics". (5) 

It is not suggested the estimates of variances be based 
on Bayesian methods, but that only these methods be 
used for the purposes of allocating a sample and for 
predicting the unknown variances, (the result of the 
next period survey). However, when smoothing, or 

generating variances, the e m piric al Bayes 
estimation should be considered, because of the 
properties associated with the m (i.e. the 
admissibility or the decrease in the MSE, under 
certain conditions.) The form of the estimator 
need not be exactly like (14) but in many cases 
will end up to be a weighted average between the 
prior and "unbiased" estimates, where the weights 
are inversely proportional to the variance of the 
esti m at es. 

If one approaches the problem from the sampiing 
theory point of view then by minimizing the MSE, 
one derives a similar kind of result, with a 
slight shrinkage toward the unbiased estimator, 
due to the correlation that exists between the 
estimates of the prior and unbiased estimates.'-" 
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Ill. A n E m pirical Study 

Data for a one month period (March, 1978) Prom 
the Labor Turnover Survey conducted by the Bure~ 
of Labor Statistics was availab~. This ~urvey 
measures the rate of new hires and s~parations, 
on a m onthly basis, for establish m ~nts clamiLfied 
in the m anufacturing standard industrial 
classification (SI C) sche m e. A pproxim ately 
36,000 establishments are sampled each month, at 
the national level. The statistic of interest is 
the num ber of turnovers. 

For our study, we considered the allocation of 
the sample for each of seven two digit SIC 
classes, for which a sufficient sampIe size for 
our purpose was available. The strata that are 
commonly used by the Bureau for both internal 
analysis, and publication are "size classes", 
where size is the number of employees in the 
establishment; and ranges from I-3; 4-9; 10-19; 
20-49; 50-99; 100-249; 250-499; 500-999; I000 +; 
9 strata in all T he esti m ate under 
con~deration can be written: 
(I) r= EE (Xl/Y j) 

J J 
where E. is the "benchmark" employment for the 

J .th O size class, X. is the estimated number of new 
O 

hires, and yj is the estimated num ber of 
.th 

employees in the O size class. By linearizing 

the estimate, we can express the variance by 

= .~E2Var (Xyyj) (2) vat(r) J j 

: EE 2 
j (1-fj)c nj 

where n. is the number of establishments in the 
J .th 

sampie in the 3 size class, c 2. is the "unit" 
J 

variance of the '~inearized value" for the 

establishments in the jth size class, and f. is 
J 

the finite correction factor (we are assuming a 

simple random sample without replacement). An 
2 

estimate of ~ was made by computing 
J 

n 

J ^ 

(3) 2 i J j --2 E (X i rjYij )2/(nj - i) 
i=l Yj 

where x~, y~ are the new hires and number of 
~U 

.th 
employees for the z establishment, r.j = x/y j, 

and Y i the average number of employees per 

establish ment. 

• ^2 
On examining the data, we noticed that c ~ was 

J ^2 
correlated with j. In fact, when averaging c . 

J 
over the SIC's, for a given j, and then taking 

this average and regressing against j, a simple 

linear regression resulted, with a correlation of 

-0.95. In view of this, we assumed apriori that 

"a." of equation (8) of s~ction II, was line~rly 
J 

related with j, ~e. 

(4) ( aj ) = a + b j 

The sam pie was randomly divided into five 
subsa m pies, by SIC and size c lasm. Each 
subsample was used to derive an allocation by the 
"e m pirical Bayes" m ethod of allocation, outlined 
in Section II, for the N eyman allocation, and for 
an allocation using the regressed value as the 
estimate of the variance described below. Thus, 
for each SIC we have five comparisons; and with 
seven SICs, this gave us 35 comparisons. 

The values of ~, ~ and V (equation 8 of Section 

I) were computed by regressing log (Z~, on 

(7) using a non-parametric method. We determined 

all possible slopes between all the pairs of 

points, and used the median of these to be the 

slope and we had the regression line pass through 

the medians. Then an estimate of V was computed 

fro m equation (I 5) of Section I. 

IV. RESULTS 

We computed variances for the optimal allocations 
for a 20 percent, 10 percent and 5 percent sample 
using the three different methods of estimating 
variances. We found that the Bayes method of 
estimating variances was the best of the three 
methods. Though, it did not give the allocation 
with the minimum variance in 60 percent of the 
cases, it was at least the second best of the 
three methods in all cases. For the Neyman 
optimal allocation, and the optimal allocation 
using the regressed values of variances, the 
regression method was slightly better, but both 
exhibited a tendency for wide variation, even 
within the sam e SIC. 

For each sample size, and for each case (35 in 
all), we ranked the variances the lowest getting 
a rank of one, the highest a rank of three. The 
results can be sum m arized in the chart below: 

20% Sample Neyman Regression Bayes 

N u m ber of 3's 24 11 0 
N u m ber of 2's 6 8 21 
Number of 1's 5 16 14 
Sum of Ranks 89 65 56 

I 0 % Sam ple N ey m an Regression Bayes 

N u m ber of 3's 20 15 0 
Number of 2's 8 6 21 
Numberof 1's 5 16 14 
Sum of Ranks 81 73 56 
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5 % Sample Neyman Regression Bayes 

Number of 3's 19 16 0 
N u m ber of 2's 8 5 22 
Number of 1's 8 14 13 
Sum of Ranks 81 72 57 

With regards to the probability distribtuion 
based on the empirically Bayes estimation, we 
computed the first four moments of V , using 
equation (20), and using the fact t~at the 
sum mands V are independent. From this we 
classified th~ curve according to one of the 
Pearson types. The Pearson type that seemed to 
described the distribtuion was the Pe~on type 
IV as classified by Kendall and Stuart. More 
research is needed in this area. 

As suggested during the meetings we are providing 
the following table• The entries are the average 
differences between the variance computed for a 
given type of allocation and the optimal variance 
divided by the optimal variance for the different 
sample sizes. That is, we computed the average 
over the 35 cases of the quantity. 

(V arianc e(type)NO ptim al)/O ptim al 

where type = Bayes, Regression or Neyman. 

20% 
I0% 
5% 

Bayes R egression N ey m an 

.05341 .04804 .11887 

.0499 •05487 .09955 
• 04376 . 04752 .08636 

It is apparent that Bayes and Regression are 
clearly superior to Neyman and that Bayes is 
slightly superior to Regression except in the 20% 
case. 

V. CONCLUSION 

Other methods and distributional assumptions can 
be considered, and we hope that more research is 
done concerning the questions that w e have 
addressed. The important thing in the allocation 
problem is really the ratio of variances, so an 
approach estimating these ratios, with some prior 
estimates might be fruitful. Further, the above 
concepts can be extended to m ore co m plex designs. 

It seems to us that the empirical Bayes method of 
estimation has built into it certain "safety" 
features, which allow s one to calc ulate the 
degree in which an estimate yields information. 
Thus, we believe such methods, even if they do 
not yield the optimal, are m ore sturdy and 

consistent on repeated uses. This may be, since 
we are using more information from the available 

data. 

We would like to express our thanks to the staff 
of the Bureau of Labor statistics, for all their 
help in the typing of the paper, with particular 
appreciation to Anna Taylor and Alfreda Reeves 
who typed the final paper. 
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