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I. INTRODUCTION

The allocation problem in survey design as usually
stated is the problem of allocating a sample over a set
of strata, in order to minimize a variance expression,
subject to a constraint on cost or other considerations.
Many times the problem stated in this way is
incomplete, because the variances used are estimated,
and thus are subject to error. If the estimates are of
poor reliability, then the knowledge or the amount of
information known about the variances is not greatly
increased over that of no information. Thus, the
allocation of the sample over the strata should be
"close" to that of the allocation over strata that would
be if no information was available.

In many surveys, more than one characteristic is of
interest. The allocation that is optimal for one of the
characteristics may not be optimal for the other
characteristics. Of importance are the probabilities
that an allocation will yield an estimate with
reliability better than a given reliability. The
allocation problem can be viewed as operating on a
function of these probabilities, a function which
considers the desires of the sponsor of the survey.

In this paper we estimate the posterior variance, using
empirical Bayesian estimation techniques, under an
assumed underlying population distribution for
variances. The estimated variance is a weighted sum
of the usual unbiased estimate of variance, and a
"prior" estimate of variance based on a prior
assumption of the relationships between the variances
over the strata. These "prior estimates are derived
using the observed data. We then estimate the
posterior probability distribution empirically.

Let j be the index for a stratum; j=1,...d, and let nj
be the sample size in stratum j. Let Xj be the
estimator for the jth stratum, with variance= cjz/nj.
The allocation problem is to find n, seeell 5 such that the
variance of X = "; W\j xj, where the wj are fixed, is
minimized, subje&é 1t,o a contraint n = % nj. Suppose a

simple random sample without replacement in each

stratum. The variance of x can then be written as:
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= SW, (-f) ¢ /n,
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wk?re f‘jis the finite population correction factor, and

Oj is the "unit" variance for the jth stratum, j=1,ee.,d.

Data, from a past survey is available, and an estimator
2y .

of ozj, Zj is used. Suppose that p (ZJ/o j) is the

conditional probability function of ZJ given Oj.
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Further suppose that p(cJ?) is the proper or improper
prior distribution function of © .2.
distribution of %given a realized value of Zj is:

Then the posterior

5 2 2
)] P(UJ/ZJ-) o P(ZJ/ cj) P( o5 )

The expected value of‘ci. given Zj is:
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which we shall take to be the estimator of

o2,

J

At this point, many times the complete determination

2
of ¢ B

PG j) depends upon unknown parameters, say 6 If 0 is

is not possible, because the prior distribution

not dependent upon Jj, then by considering the

variables, Z1,...,ZJ, one can estimate § using any of
the sampling or bayesian estimation proceduress The

likelihood of 6, given Z1 ,...,ZJ 1s > P
I o)

L) L Z yeesZ 5) ol p(ZJ/ j) p( g )

Once an estimate of 6 is determined, this can be

inserted into equation (3) to derive the estimate of 0%,

s 2 .
and to determine the posterior distribution of oj given

The estimator cx2 determined in this

Z1,...,ZJ. Ip?
fashion is termed the "empirical” Bayes estimator of
02. and the probability function of the posterior
J

distribution p( 02/Zj) will be termed the "empirical"
p.d.f.

. 2
We can now view (1) as a sum of random variables Oj’
with known constant Wj2 (1 -f‘j)/nj as weights, where
the designer has "control over the values (1-fj)/nj.

Thus the p.d.f. of Vx can be estimated using the

empirical p.d.f. of the ozj, and the probabilities.



(5) o (V =P (V<V )

where Vox is a constant, as a function of Djesesll g

If X1,...,X are K different characteristics each for

k
which a sponsor wants all estimates to be equally

reliable, i.e., Vox are all equal, then the choice of
DyyeenyB to be made might be that which minimizes a
maximum of a function which measures the variability

of the probabilities.

The Bayesian method of deriving optimal designs has
been discussed by various authors. See article by
Ericson and Rao. The method of estimating the
parameters of the prior distribution will depend much
on the prior belief of certain relationships. Without
prior beliefs, then an empirical approach will depend
upon data analysis on the raw observations. Many
articles on "Empirical Bayes" methods of estimation
have been written. See particularly an article by
Enfron and Morris, 1975 in J?ét)mal of the American
Statistical Association (JASA).

II. ESTIMATION

Let SJ? be the sample sum of squares about the mean

associated with the jth stratum, and Vj the degrees of

freedom of s?. Let Z.= s\?/VJ., and assume that

J
6) (zs/ 2y o 1 bs b . b,~1
p JoJ) ?@)(21) Izy 73
93

. exp ( - ijj/Gz,)
where bj >0, Thisis anam ma distribution and
> 2

N E(Z/0.") = o,
JJ o, d

Var(Z2/ o, ) = 4
J J

cj /bj

Thus, bj can be thought of as a generalization of the
degrees of freedom i.e., if (sjz/ OJZ ) was a chi~square
with vj degrees of freedom, then bJ.:vJ/Z . We shall
assume that bj can be estimated, using the raw data,

or using a replication technique.

For t‘;k“\e computations done here we took bj = 15 Vj 1+
21/2) where N is the standardized measure of the
kurtosis, the fourth cumulant divided by the

This is the first term of the

il.e.,

square of the variance.

Roy-Tika approximation of the distribution of Zj using
)

gam ma functions and Laguerre polynomials.
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We shall take as a prior distribution of ojz the natural

conjugate, the inverted gam ma with parameters aJ. and
v, i.e., V‘l( 2, v
aj O’j )

p(o /2a ) a
e vy = _a,
3 (1) exp (=73 )
(®) 7

v>1,
Thus, the posterior distribution is:

2 - -
Q) p( OJ' / ZJ-’ aj, V) o %2 ) (bJ + V)Zj(bj 1)
vl a+b.z,
-a, exp(-_9_J
J o2
J

which is an inverted gam ma distribution.
Hence

2
(10 E( %7, = (a. -
( 372 aJ v) (aJ + bj Zj)/(bj + v=2)

aj+bj zj 2

2
Var (CJ /Zj,ajxv) =(b' F 2)
T

1
"By F V-3

The expected value can be seen to be weighted

average of the unbiased sazm pale estimate, Zj’ and the

J
vz

variance of the posterior distribution =

Moreover, the rel-
(bj + v=3) for

"prior" expected value of Gj =

v >3 is smaller than the rel-variance of (ZJ/ OjZ )

Taking the product of (6) and (7), and intergrating with
respect to GJ.Z, we have that the p.d.f. of Zj given
b,a.and V is:

JJ

b,j_1 v-1
11 ZJ/b,a,v)aZ, a.
an p(JJ,J,)J)J
(b, + v-1
/(b.Z.+a,
(b525+29™3
This is of the form of an inverted beta distribution.

The expected value and variance are:

(12) 5

(aJ/v—Z) (bj + v=2)

E(ZJ/bJ., aj,v) = aJ/v—Z
Var‘(ZJ/bJ., aj,v) =

bj (V—3)

This implies that the rel-variance (bj + V=2) bj (v~3) is
independent of E(Zj). An estimate of this quantity is:

A2

2
2.-2) /2,
(.] J) J

a3 B =
3 J

where Z,is an estimate of the expected value of Zj'
Let R2 be the average of sz, so that we have

1
am R Ty M

1
v-3 J



From this an estimate of V can be derived, i.e.

(R® + 1)/ (R?

(15) V-2 = =1Th).
1 J

wherellb Jz Vbj‘
J=1

We are considering maximum likelihood estimates,
which would involve iterative solutions, where the
initial values are those derived from the regression
and equation 15, If time permits, an effort will be put
forth to derive a maximum likelihood solution.

Let a; and v be the estimates of a and v. The empirical

Bayes estimate of‘ci. can be written.

(16) ci, Bayes = AJ.ZJ. +(1- Aj) :;/3—2, where
an )‘j = (bR —‘I)/(b+1)R and
wher'e R
R 2 o~ (1 + V-2)
j V- b.
J 3 |
Note that
lim X =1
v o> 2*
limi.=1
J
b. - o

Thus small values of \; and large b. give r;lor'e weight
to Zj’ the uribiased estimates of GJ. , as should be the
case since V is a measure of the precision of the
"prior'! distribtuion and bj is a measure of the relative
precision of Zj’

From equation (14), we get the empirical Bayes

estimates of Vx’ i.e.,

2 2
(18) Vx (Bayes) = ij (1—f‘j) Uj , Bayes /nj
Minimizing this, subject to § nj = n, we have to solve

an equation using iteration, in order that nj < Nj’ the
universe size for the jth stratum. Assuming an infinite
size universe, we have nj o wj ch. .

This shows that the value of nj is a weighted sum of

the usual Neyman allocation, say nj (Z) and the

allocation using a, i.e. proportional allocation say
That is, we can write:

Fj ngy (z) + Gj n; )

nj(p).

n, =
J

3N

where Fj and Qj are numbers, which, however, do not
add to 1 for a given j.

We can express V as a sum, VX = ):CJ. V; where Cjis a
constant, a function of nJ, and Vj = 0y We shall
assume that V “are J.ndependent., and distributed with
posterior dlstm.butlon p (o /z) In the case we are
concerned with, VJ. is dlstributed as an inverted
gam ma, with parameters, (aj+b Zj) = dj’ and (bj+v) = gj,

i.e.

19 p(V) @ () "85 exp (- vy

Sufficiently mgh moments of '\IJ do not exit i.e.

rth moment about zero of VJ. is:

the

d .2/(g. -2) (g - e
o (8 Y1)

valid forr <gJ—1 . The vamance of VJ is:

(20) M =

21) My =
Hence the ratio,

- Py 2 —
dJ/(gj 2) (gj 3.

2
2

1/2

(22) p;‘/u = O(gj )y r< gj—1

If gjis large enough, so that fourth moments exist, and
are measured with a certain degree of reliability, then

by computing the first four moments, one can

estimate the p.d.f., by determining which of the
"Pearson" type of p.d.f. best fits the p.d.f. of Vx' We
note that Vj is a type V as classified E)Sy) Kendall VOL. 1
"The Advanced Theory of Statistics".

It is not suggested the estimates of variances be based
on Bayesian methods, but that only these methods be
used for the purposes of allocating a sample and for
predicting the unknown variances, (the result of the
next period survey). However, when smoothing, or

generating variances, the
estimation should be considered, because of the
properties associated with them (i.e. the
admissibility or the decrease in the MSE, under
certain conditions.) The form of the estimator
need not be exactly like (14) but in many cases
will end up to be a weighted average between the
prior and "unbiased" estimates, where the weights
are inversely proportional to the variance of the
estimates.

empirical Bayes

If one approaches the problem from the sampling
theory point of view then by minimizing the MSE,
one derives a similar kind of result, with a
slight shrinkage toward  the unbiased estimator,
due to the correlation that exists betW(%e’-n the
estimates of the prior and unbiased estimates.



II. An Empirical Study

Data for a one month period (March, 1978) from
the Labor Turnover Survey conducted by the Buresu
of Labor Statistics was available. This survey
measures the rate of new hires and separations,
on a monthly basis, for establishnments classified
in the manufacturing standard industrial
classification  (SIC) - scheme. Approximately
36,000 establishments are sampled each month, at
the national level. The statistic of interest is
the number of turnovers.

For our study, we considered the allocation of
the sample for each of seven two digit SIC
classes, for which a sufficient sample size for
our purpose was available. The strata that are
commonly used by the Bureau for both internal

analysis, and publication are "size classes",
where size is the number of employees in the
establishment; and ranges from 1-3; 4-9; 10-19;
20-49; 50-99; 100-249; 250-499; 500-999; 1000 +;
9 strata in all. The estimate under

consider‘atior% can be written:

1 r= ;E.(X/y.

m J J ( J yJ)
"benchmark"

where Ej is the employment for the

jth size class,
hires, and yj is

employees in the jth

Xj is the estimated number of new
the

size class.

estimated number of

By linearizing
the estimate, we can express the variance by

(2) var{r) = ZE?Var‘ (XJ/yj)

NN

2

S ES 2
1-£) o7n,
3¢ J)GJHJ

where nj is the number of establishments in the

sample in the 3 size class, OJ? iS the "unit"
variance of the '"linearized value" for the
th

establishments in the j size class, and f‘j is
the finite correction factor (we are assuming a
simple random sample without replacement). An

estimate of c?was made by computing

n,
J .
~ 1 : 2
(3) o% = = e m Tay.. -
=5 _gl (Ryy = ryyg) /(a5 - 1)
vi

where xij’ yi]. are the new hires and number of

employees for the ith establishment, rj = xJ/yj
and y_J the average number of employees per

establishment.

On examining the data, we noticed that 323
correlated with J. In fact,
over the SIC's,

was
. ~ 2
when averaging o'j

for a given Jj, and then taking

this average and regressing against j, a simple
linear regression resulted, with a correlation of

-0.95. In view of this, we assumed apriori that
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of equation (8) of section II,

"aJ." was linearly

related with j, i.e.

@) Cay)

=
The sample was randomly divided 1into five
subsamples, by SIC and size class. Each
subsample was used to derive an allocation by the
"empirical Bayes" method of allocation, outlined
in Sectien I, for the Neyman allocation, and for
an allocation using the regressed value as the
estimate of the variance described below. Thus,
for each SIC we have five comparisons; and with
seven SICs, this gave us 35 comparisons.

=a+bj

The values of o, B and V (equation 8 of Section

I) were computed by regressing log (Zj), on j
(M

using a non-parametric method. We determined
all possible all the

and used the median of these to be the

slopes between pairs of

points,

slope and we had the regression line pass through

the medians. Then an estimate of V was computed

from equation (15) of Section I.

IV. RESULTS

We computed variances for the optimal allocations
for a 20 percent, 10 percent and 5 percent sample
using the three different methods of estimating
variances. We found that the Bayes method of
estimating variances was the best of the three
methods. Though, it did not give the allocation
with the minimum variance in 60 percent of the
cases, it was at least the second best of the
three methods in all cases. For the Neyman
optimal allocation, and the optimal allocation
using the regressed values of variances, the
regression method was slightly better, but both
exhibited a tendency for wide - variation, even
within the same SIC.

For each sample size, and for each case (35 in

all), we ranked the variances the lowest getting
a rank of one, the highest a rank of three. The
results can be sum marized in the chart below:

20% Sample Neyman Regression Bayes
Number of 3's 24 11 0
Number of 2's 6 8 21
Number of 1's 5 16 14
Sum of Ranks 89 65 56

10% Sample Neyman Regression Bayes
Number of 3's 20 15 0
Number of 2's 8 6 21
Number of 1's 5 16 14
Sum of Ranks 81 73 56



5% Sample Neyman Regression Bayes
Number of 3's 19 16 0
Number of 2's 8 5 22
Number of 1's 8 14 13
Sum of Ranks 81 72 57
With regards to the probability distribtuion
based on the empirically Bayes estimation, we
computed the first four moments of V_, using
equation (20), and using the fact that the
sum mands V. are independent. From this we
classified tnd  curve according to one of the

The Pearson type that seemed to
type
More

Pearson types.
described the distribtuion was the Pea(gion
IV as classified by Kendall and Stuart.
research is needed in this area.

As suggested during the meetings we are providing
the following table. The entries are the average
differences between the variance computed for a
given type of allocation and the optimal variance
divided by the optimal variance for the different
sample sizes. That is, we computed the average
over the 35 cases of the quantity.

(Variance(type)—Optimal)/Optimal

where type = Bayes, Regression or Neyman.

Bayes Regression Neyman

20% .05341 .048o4 .11887
10% .0499 .05487 .09955
5% .04376 .04752 .08636

It 1is apparent that Bayes and Regression are
clearly superior to Neyman and that Bayes is
slightly superior to Regression except in the 20%
case.

V. CONCLUSION

Other methods and distributional
be considered, and we hope that more research is
done concerning the gquestions that we have
addressed. The important thing in the allocation
problem is really the ratio of variances, so an
approach estimating these ratios, with some prior
estimates might be fruitful. Further, the above
concepts can be extended to more complex designs.

assumptions can

It seems to us that the empirical Bayes method of
estimation has Dbuilt into it certain ‘'safety"
features, which allows one to calculate the
degree in which an estimate yields information.
Thus, we believe such methods, even if they do
not yield the optimal, are more sturdy and
consistent on repeated uses. This may be, since
we are using more information from the available

data.
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