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Abstract: The "additive constant" problem pro- 
posed by W. S. Torgerson (1958) in Multidimen- 
sional Scaling methods is generalized in this 
paper: The Dissimilarity data (d(.,.)) is trans- 
formed to ((d(.,.)q~)Y), where~and Tare two para- 
meters which are chosen so that the transformed 
data is 'nearly' Euclidean in a low dimensional 
space. The optimum solutions is the sense of max- 
imum variance for ~ and y are discussed and illus- 
trated. 
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research, psychology and archeology and so on, 
there remains several difficulties to overcome 
such as the cost of computation and some lack of 
mathematical analysis (Shepard, 1974) to cite but 
a few. 

From the user point of view, the most serious pro- 
blem may be the cost of computation entailed by 
the slowness of convergence due to: i) the grad- 
ient method on which the algorithm is based, 2) 
an eventual structure in clusters on I induced by 
the D.F. 

i. Introduction: Multidimensional Scaling 
In the framework of analysis of ordinal data, 
multidimensional scaling may be considered as in- 
troduced by Shepard (1962) under the original 
name of "analysis of proximities". In fact, prior 
to Shepard's method, multidimensional scaling of 
numerical data has been proposed by Torgerson 
(1965). To distinguish the two variants, many 
workers use the adjectives nonmetric for the for- 
mer one, and metric for the later one. We will 
drop these adjectives since the context always 
make it clear which variant is being considered. 

Given a finite metric set whose metric is only 
known up to a monotonic transformation, we attempt 
to find in some Euclidean space a configuration of 
points whose distances are in the prescribed order. 
Intuitively, this is always possible when the 
Euclidean space is of dimension high enough; but 
if the demension is specified, in general this can 
only be achieved in some approximate sense. To 
formalize this idea, Kruskal (1964) introduced a 
goodness-of-fit measure which he called stress; 
he also worked out a method to compute the config- 
uration of points optimizing the stress. The She- 
pard-Kruskal method will be described briefly in 
a manner that it be easily viewed: 

A dissimilarity function (D.F. for short) 6 on a 
finite set I is a quasimetric~(6(i,i') = 6(i',i) 
> 0 and 6(i,i) = 0). Denote 6 the set of all 
D.F.'s inducing the same order on Ixl, i.e., 
iff (6'(i,j)> 6'(k,l) <===> 6(i,j) > 6(k,l) or 
6'(i,j) = G'(k,l) ~==~ 6(i,j) = 6(k,l) ), for all 
i, j, k, 1 s I. Let ~E~be the collection of all 
D.F. which ar~representable in the Euclidean 
plane. Define a function S on the cartesian pro- 
duct~×~" by S(d,6') = [~i~:(d(i,j) - ~'(i,j) 
)2 ]~/[~(i,j)] for all d~E2 and 61 ~6 . The 
Shepard-~ruskal method is an iterative method 
which computes ~d for each given d e~Ez so that 
S(d,~) ~ S(d,~'), for all ~and then minimizes 

"S(d~) for d e~E~. The procedure repeats with 
~, ~E~ ...and ends for S(d0,~0 ) close enough 
to 0, e.g., S(d0,~)<0.05. ~This is in fact an 
isotonic regression of d on ~ as rediscovered by 
Barlow et al., after a remark from Kendall. The 
solution ~0 needs not be unique. If the number 
of objects to be scaled is sufficiently larger 
than the dimension of the embedding space, e.g., 
15 objects in 2 dimensions, Monte Carlo studies 
have shown that the solution is essentially unique. 
Although this method is used in as many fields as 
biological sciences, political sciences, marketing 

In case 2), complementary methods known as hier- 
archical clusterings are available to represent 
the set of objects I not by a configuration of 
points in Euclidean space but by a tree. (Cf. 
Benzecri (1973,b), Hartigan (1975), Jardin and 
Sibson (1971), Johnson (1967), Sokal and Sneath 
(1973). 

Another alternative to mutidimensional scaling 
To avoid the problems caused by using the Shepard- 
Kruskal method as mentioned above, some authors 
(Benzecri, (1973,b)), Cooper (1972), Gower (1966) 

) propose the analysis of the metric data in- 
stead of their ranking. If the data are not 
metric, methods have been proposed which trans- 
form them to be metric by special linear trans- 
formations (Torgerson(1965), Cooper (1972) ). 
Although other monotone transformations such as 
exponential, logarithmic and power transformations 
are frequently used in biology, taxonomy (Stephen- 
son, 1974), it seems that no theoritical investi- 
gation has been done. 

2. Transformation of D.F. 
According to some authors, including Williams and 
Dale (1965), Johnson (1968), Sokal and Sneath 
(1975), it is desirable that a D.F. be metric even 
when the assumption of the Euclidean structure of 
the embedding space is omitted. 

Some computed D.F. and almost all dissimilarity 
data collected directly fail to satisfy the axioms 
of a metric. In these cases, transformations may 
help in "aiding in the analysis of data by bending 
the data nearer to the Procrustean bed of the as- 
sumptions underlying conventional analysis". 
(Tukey, 1962) 

Using simple isotonic transformations we showed 
that the given D.F. may be made metric and even 
more Euclidean metric. The four families of iso- 
tonic transformations are: 

t+~, if t>0 
f~(t) = 

0 , if t=0 

f~(t) = t', for t20, 

where ~>0, ~>0 and ~>0. 
It is shown that (cf. Thu Hoang (1978)) 

log ~t , if t) 0 
f~(t) - 

0 , if t=0 

~t 

l 
e , if t>0, 

f~ (t) - 
0 , if t=0. 

the set of parameters ~ (resp. ~,~, and ~) so 
that f~o ~ (resp. @~o~, ~ and ~o~) be a metric 

[~ ,~), (0,4 ] is an interval [~mi~n ,~ (resp. ~min max 
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and (0,% x ]) provided that is congruent to at least for~=9.4 the sum of the first two eigenvalues of 
one nonme~ric D.F. Otherwise the above intervals are K gives the largest percentage of the trace. 
(0,~). 
For all isotonic function f satisfying certain pro- 
perties, f(6+~) (reap. f (~) and f(~¥) ) is 
metric or Euclidean metric for all ~ (reap. ~ ,~) 
in some interval. The end point of this interval 
could be used as a good starting point to search 
for an optimal p~r~neter ~(resp.~, ~ ) in the sense 
that f(~q~X) (reap. f(~), f(~)) is nearly Eucli- 
dean in some low dimensional space. This result 
is illustrated empirically by investigating the 
transformed distance (~+~)~ on a real set of data. 

The set of 14 colors together with the D.F. (~+~ 
is analyzed with =9.4. In Exhibit 2, the 

eigenvalues of K and the coordinates of the points 
representing I are tabulated for ~ dimensions. 

The following Exhibit 3 shows the projection of 
the configuration of I onto th~lanes (dim i, dim 
2), (dim2, dim 3) and (dim 2, dim 4). 

Exhibit 1 inserted here. 

With these results, it becomes feasible to propose 
the alternative method 
transform the dissimilarity data by ~ (~+~)~ so 
that the new distances are nearly Euclidean in 
some low dimensional space. In an example taken 
from Ekman, we exhibit the optimal solution (~opt, 
~opt) where ~opt<~min and ~opt ~ ~max and with the 
distance ~+~opt)~opt, the gra~ian matrix has the 
two largest eigenvalues which cover 71.69% of the 
trace. 

The transformation t ~ (t+~0 ~ 
Using either the additive constant transformation 
t-+ t+~ or the power transformation t-~ t ~ to make 

nearly Euclidean is not satisfactory when 
turns out to be too large and ~ too small. Since, 
in these cases, the configurations associated with 
~+~ mud ~are almost equilateral and the dimen- 

sionality of the embedding spaces large. 

In the following, we overcome such difficulty by 
combining these two transformations to have the 
transformation t-~(t+o~ ~ where =K and ~ may be cho- 
sen so that (~q~)~ is Euclidean or nearly Eucli- 
dean. 

Remarks: 
a) By adding a constan% ~ , we preserve the order 
of the ~(i,j)'s but decrease the ratio max~(i,j)/ 
min$(i,j). Therefore roughly speaking, emphasis 
is put rather on the main body of the data than 
on the tails. 
b) By powering with ~<i, we preserve the order of 
the ~(i,j)'s but force a greater stretch on the 
small distances than on the large ones, i.e., the 
data is compressed hopefully to a space of lower 
dimension. 
c) The transformation t ~ (~+~ is not as good 
as the transformation t-~ (t+~) ~ at least in the 
case where the existence of very small distances 
makes ~ very small and the configuration of ~0 
almost equilateral. 

An example: The Ekman data 
By simple transformations, the Ekman data (Ekman, 
1954) are made symmetric and reflexive. It is 
clear that the dissimilarities ~i] so obtained do 
not satisfy the triangle inequality axiom (cf. 
Exhibit i). 

The D.F. ~ is transformed intQ~(~+ol) u • For each_ 
o<>O, we can find the v a~ue ~ so that (~+~)~ 
is metric for all > ~ n a x .  The graph |(.(,-max: 

! 

~>0~ is shown in Exhibi t  i .  

andC°nsider~, the~fa~ri% i~) with k i .= (~. + ~.~ _$~._~Zj~ 
= b/n% ;j ) ..= , ~;~. We r~cognize that 

Exhibit 2 inserted here. 

Exhibit 3 inserted here. 

Exhibit 4 inserted here. 

Transformations of metrics into Euclidean metrics 
Blu~en'th~/l~(1953, p. 3i3) ~ showed that if (I,~-) is 
a finite metric space of cardinality 4, then the 
metric transform (I,~ ~) of (I,~) by power trans- 
formation is^embeddable in the 3-dimensional Eucli- 
dean space E 3 if ~6 [0,1/2] and 1/2 is a sharp 
bound. 

Using Frechet's lemma to define the dimension of 
a finite metric space (I,~) as the smallest inte- 
ger k. so that (I,~) is isometrically embeddable 
in (~k,~('llmax), Schoenberg (1938, p. 536) genera- 
lized Blumenthal's result to any finite metric 
space of dimension not exceeding 2. 

In this section, we show that any metric on a fi- 
nite space can be transformed to Euclidean metric 
by ~, f~, f~, and f~ for a suitable ~, ~, ~ , and 

respectively. But first few further notations 
are introduced. 

For any subset J = {J1' J2 ..... jk } of I, the 
Cayley-Menger determinant of the metric transform 
(J,fo$) is denoted 
by Df(J) : 0 1 1 ~.... 1 

1 0 ~o~(j l,j 2) .... fo6 (j I, jk'~ 

Df(J) = 1 fo$(j2,Jl ) 0 .... F (j2,j k 

. ~ . . . . .  . 

1 f0b(jk,j.) fo6(jk,J2 ) .... 0 

Let D_(J) be the determinant of order k+l filled 
with ~ on the main diagonal and 1 elsewhere, and 
A0(J) be the determinant obtained from DN(J) by 
replacing 0 by 1 in the first entry of tNe first 
row. DN(J) and AN(J) are also denoted D0(k) and 
A 0 (k) r~spectivel~. 

0 1 1 ... 1 1 1 1 . . i0 
D0(J) = i 0 A0(J) = i 0 

. o • . 

i i I I 

Also denote the Cayley-Menger determinant of (J,) 
by D l(J), and the signum function by sgn(.) 

Lemma D0(k) = (-l)k.k and A0(k) = (-1) k. 
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Proof. Expanding the two determinants D0(k) and 
Ao(kY by the first row, we have 

D0(k ) = -k.A0(k-i ) 
and 

A 0(k) = D 0(k-I) - k.A 0(k-l) 
Hence 

D0(k ) = -k[D0(k-2)-(k-I)A 0(k-2)]. 

Direct computations yield Dn(1)=-i , D~(2)=2, D0(3) 
=-3 and A^(1)=-I, A~(2)=l,~and A~(3)~-I. By in- 

' U 
duction, t~e proof is completed. ~] 

To embed a finite metric space in Euclidean space, 
we may use the following theorem from Blumenthal 
(1953, p. 99). 

Theorem 1 (Blumenthal). *A metric space I of n 
points is embeddable in the (n-l) dimensional 
Euclidean space iff sgn(Dl(J))=(-l~l or =0, for 
all subset JcI of cardinality IJl- 
**The dimension of the smallest embedding space is 
precisely n-i iff in addition DI(J)#0 , for all 
J=I. This dimension is less thgn or equal to 
(n-2) if D 1 vanishes for some subset J=I. 

Corollary The smallest Euclidean embedding space 
equipped with the constant metric d , with d (i, 
j)=c for all i#j and d.(i,i)=0, forCall i, i c of 
dimension (n-l). c 

Proof. If c=l, the corollary follows obviously 
from Lemma and Theorem 

I" 

If 0fc#l, take in E n-I the equilateral configura- 
tion whose points are at unit distance from each 
other an perform on it a similarity transforma- 
tion of ratio c. Hence we obtain an Euclid~an 
representation of d . It is clear that E n- is 
the smallest embedding space. 

Theorem 2 Any metric g can be transformed to a 
Euclidean metric by one of the functions f~, f~, 
f~, and f~, for all 

and 
~ (0~i), wi+~ ~L>O respectively. 

Proof. (a) Consider the metric (~+~)/o<=l+~/~on I, 
and for each JcI, denote D (J) the Cayley-Menger 
determinant of (J, i+6/c~). The limit of D (J) as 
~is D0(J). Hence by Lemma, there is an inter- 
val (~) with ~0 so that for all ~6(~j,~), 

j ,  - j 

the two determinants D (J) and DO(J) are of the 
same sign, i.e., 
(i) D~(J) >0, if IJI even, 

<0, if IJi odd. 

The power set of the finite set I being finite, 
it suffices to take the intersection of all such 
intervals (~j,~). This intersection is again an 
interval, say (~I,~). Therefore, the inequalities 
in (i) hold for all ~(~,~). Theorem l-theg 
gives the embeddability o~ (J,(~/~)+l) in E n-l, 
hence of (~,g+oO by change of scale as in the 
proof of Corollary (b) Same method of proof, 
using the continuity (in parameters ~e ~ and ~ ) 
of the Cayley-Menger determinant, may applied 
to f@, fg, and f~ respectively. 
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Exhibit i: (a) The original dissimilarity data I $ ; i,j=l,...,14 I ,  
ij +~)~ ; 

l 

(b) The table of transformed distances I~ i,j-i .... ,14 i 
• • 

where ~= 0.8662720 andS.=9.4 lj 

(a) The original dissimilarity data 

A 0.00 
B 0.50 00.00 
C 44.50 36.00 00.00 
D ~44.50 42.00 5.00 00.00 
E 68.50 64.00 39.00 32.00 00.00 
F 80.50 77.00 69.00 61.00 55.00 00.00 
G 79.50 79.00 76.00 76.00 55.00 24.00 00.00 
H 82.50 79.00 78.00 77.00 60.00 41.00 13.00 00.00 
I 84.50 84.00 84.00 84.00 79.00 72.00 64.00 53.00 00.00 
J 79.50 82.00 85.00 85.00 84.00 78.00 72.00 67.00 28.00 00.00 
K 77.50 79.00 84.00 86.00 84.00 84.00 81.00 82.00 49.00 12.00 00.00 
L 74.50 75.00 85.00 85.00 85.00 84.00 84.00 83.00 59.00 36.00 i0.00 00.00 
M 73.50 73.00 81.00 84.00 84.00 84.00 84.00 84.00 66.00 45.00 24.00 01.00 00.00 
N 70.50 72.00 83.00 82.00 86.00 85.00 86.00 84.00 63.00 58.00 ii.00 18.00 I0.00 00.00 

GAMMA= 0.8662720E+00 

A B C D E F G H I J K L M N 

A 00.00 
B 07.29 00.00 
C 31.62 27.26 00.00 
D 31.62 30.35 15.00 00.00 
E 43.51 41.32 28.81 25.16 00.00 
F 49.26 47.59 43.75 39.86 21.43 00.00 
G 48.78 48.55 47.12 47.12 36.90 20.89 00.00 
H 50.21 48.55 48.47 47.59 39.37 29.84 14.78 00.00 
I 51.15 52.92 50.92 50.92 48.55 45.20 41.32 35.90 00.00 
J 48.78 49.97 51.39 51.39 50.92 48.07 45.20 42.78 23.04 00.00 
K 47.83 48.55 50.92 51.86 50.92 50.92 49.50 49.97 33.90 14.21 00.00 

L 46.40 46.64 51.39 51.39 51.39 50.92 50.92 50.44 38.87 27.26 13.05 00.00 

M 45.92 45.88 49.50 50.92 50.92 52.92 50.92 50.92 42.30 31.88 20.89 07.60 00.00 
N 44.48 45.20 50.44 49.97 51.86 51.39 51.86 50.92 40.84 38.38 24.64 17.60 13.05 00.00 
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Exhibit 2: The table of eigenvalues and the table of coordinates 

(a) Table of, eigenvalues : 
# Inter Eigenvalues %age Histogram of the eigenvalues 

i 0 375. 36865 43. 123 ************************************************************ 
2 1 248. 27443 28. 522 **************************************** 
3 1 90.62272 i0.499 ************* 
4 2 77.81252 8.939 *********** 
5 1 33.99341 3.905 **** 
6 2 23. 96532 2. 753 *** 
7 1 8. 99486 1.033 * 
8 2 6. 46948 0.743 * 
9 4 4.70712 0.541 * 

i0 2 1.31832 0.151 * 
ii 4 0.05826 O. ii0 * 
12 2 0.00010 0.000 * 
13 2 1.00000 0. 115 * 
14 2 -1.00002 -0. 115 * 

(b) Table of coordinates: 

Lable Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 
A ii. 352717 21. 774704 12.668971 -i0.066490 5. 075 399 -4.031044 
B 13.398633 -21.275391 11.009748 -9. 172412 2.599362 -2.459863 
C 21. 195480 15. 994116 0.965671 9. 899796 4. 796741 7. 995027 
D 22.432190 -14.115020 -3.938821 10.764769 -3.854238 2.029480 
E 22.317719 4.020763 -14.522429 8.280353 2.559093 -4.642523 
F 17. 156891 19.449567 -11.895028 -3.003985 6.066266 -6.901677 
G 12. 483197 24. 864761 I. 707663 -i0.954304 2. 266757 5. 159155 
H 9.750073 25.228607 7.7119870 -7.880297 -6.547161 5.849097 
I -12. 107060 14.972086 14.964095 11.817791 -8.789591 -8.448952 
J -20.556229 7.662084 i0. 158557 11.710624 8.472367 2.543828 
K 25. 772949 i. 474460 i. 100596 5. 887628 7. 203251 2. 283828 
L -25.711975 -5.402475 -6.881705 -2.540895 1.938488 1.545890 
M -23. 781158 7.528996 10.022672 -6.002810 -1.903905 3.431932 
N -22. 157593 -8. 621627 -8. 853886 -8. 739642 -I0.289339 -4. 314269 

H 

G F 

M N 

A ~ B  

. . . . . . . . .  

B J 

C 

Exhibit 3: The configurations of I on diml, dim2; dim2,dim3; 
dim2, dim4. 

(~) 
Exhibit 4: (a) the graph of y 

max 
(b) the percentage of the trace for c=0,2, or 9. 
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