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I.  INTRODUCTION 
Let Y be the charac te r i s t i c  under study and 

consider the problem of estimating the f i n i t e  
population mean uy based on a random sample of 
size n drawn from the population. I f  data on an 
aux i l i a r y  var iate X correlated with Y are ava i l -  
able or can be obtained for  a l l  the units in the 
population and the f i n i t e  population mean ux of 
the var iate X is known, i t  is general ly possible 
to estimate the population mean ~y ~vith greater 
precision than by using the sample mean y. I f  
the re la t ionsh ip  between Y and X is l i near ,  
regression-type estimators are general ly used to 
estimate ~y. 

A f requent ly  used est imator (see, e .g . ,  
Cochran [ I ] )  is the l inear  regression est imator 

Y;~ : Y + ~ (~x-  x) ( l . l )  
where ~ and R are the sample means and ~ is the 
estimated regression coefficient of Y and X 
gi yen by 

2 (l .2) = Sxy/S x 
wi th 

n 
Sxy = z.(xi - x)(Yi - ~ ) / ( n - l )  (1.3) 

1 

n 
and s2 = z.(x i - R )2 / (n - l ) .  (1.4) 

1 

As an example, consider the problem of es t i -  
mating the to ta l  area of the leaves on a plant.  
Since the area of a leaf  and i t s  weight are cor- 
re la ted,  Watson [ I 0 ]  used weight of the leaf  as 
an aux i l i a r y  var iate to estimate to ta l  area of 
the leaves of a plant.  Yates [ I I ]  gives another 
appl icat ion where cu l t i va ted  area of a farm is 
used as an aux i l i a r y  var iate to estimate acreage 
under wheat. 

The regression est imator yL is general ly a 
biased est imator of the population mean ~y, the 
bias vanishing when the re la t ionsh ip  between Y 
and X is l inear .  Further, assuming x and y are 
b ivar ia te  normal, i t s  variance to terms of order 
n-2 is given by 

~2(I - p2) 

V(y~) = y n [ l  + l ]  (1.5) 

where ~2 and o 2 are the variances of Y and X and 
p is th~ correlation coefficient between Y and 
X, (see e.g., Sukhatme and Sukhatme [9]). 

Another regression-type estimator used fre- 
quently in the type of situation considered here 
is the so called difference estimator suggested 
by Hansen, Hurwitz and Madow [5], defined as 

Yd : Y + 80(Ux - x) (1.6) 

where 80 is a preassigned constant assumed to be 
known. I t  can be shown that  yd is an unbiased 
est imator of uy and i t s  variance is given by 

where 

V()d) - ( I  _p2 
n [I  +a2] (1.7) 

B 0 
= P}½(l - --#). (1.8) 

{I _p2 

For f ixed p / 0 i t  is c lear that  V(Yd) is 
minimum when ~ = O, i . e . ,  when 80 is equal to 8. 
In pract ice 8 is ra re ly  known. I f  the p r io r  d is-  
t r i b u t i o n  of 8 is ava i lab le ,  then Bayesian techni-  
ques can be used to estimate_uy. For th is  the 
reader is referred to Han L4] and Mehta and Swamy 
[8 ] .  Usually only par t ia l  information concerning 
the nature of the p r io r  d i s t r i b u t i o n  is avai lab le.  

Based on past experience, i t  may be possible 
to make a guess 80 of the true value 8. When th is  
is the case Yd would be preferred as an est imator 
of uy. Otherwise, we would prefer  yL as an es t i -  
mator of ~y. In other words, based upon the re la -  
t i ve  closeness of 80 to 8, we would prefer to 
consider a pooled est imator of the type 

Yw = ~( t )yd + [ l  - ~ ( t ) ] y~  (1.9) 

where ~( t )  is a funct ion of s t a t i s t i c  t used to 
tes t  the hypothesis 8 = 80 against the a l te rna t i ve  
8 P 80. Such estimators were f i r s t  proposed by 
Huntsberger [6]  and l a te r  by Mehta and Gurland [7]  
who discuss problems concerning the choice of the 
weighting funct ion m(t) .  

In th is  paper, we shall r e s t r i c t  our choice 
of re(t) to a funct ion of the type 

re(t) : l i f  I t }  < to (l .lO) 

= 0 otherwise. 

For the above choice of the funct ion m(t ) ,  the 
est imator Yw reduces to what is known as an es t i -  
mator based upon a prel iminary tes t  of s ign i f icance.  
We shall cal l  th is  est imator the sometimes regres- 
sion est imator and denote i t  by Ys- 
2. Propert ies of Sometimes Regression Estimator 

In th is  section the sometimes regression es t i -  
mator is defined and i t s  pre l iminary tes t  is 
discussed. 

The est imator Ys may now be defined as 

where 

Ys : Y + 80(ux - x) i f  I t l  <_ to 

: Y + ;(ux - x) i f  Itl > to 
(2.1) 

t : {n-2)½ (~ - BO)Sx , (2.2) 
sy{ l  -r2}½ 

n 

s 2 = s.(y i - y ) 2 / ( n - l )  , (2.3) 
1 

and r = Sxy/SxSy . (2.4) 

tO being a f ixed pos i t ive  constant. 
This est imator is based on a prel iminary tes t  

using the tes t  s t a t i s t i c  of 2.2. I t  is possible 
to define in an analogous manner a sometimes es t i -  
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mator of  the regression c o e f f i c i e n t  as 

~ : ~ o  i f l t l  <_to 
(2.5) 

= & i f  It] > to. 
I t  can be noted that  6s is a biased est imator of 
6 since 

E(6s) = 60 + E[(~ - 60)IA c] P(AC). 

3. Power Function of Test S t a t i s t i c  
In th is  section the power funct ion for  the 

tes t  s t a t i s t i c  is derived. Usual ly,  the power 
funct ion of  the test  of a hypothesis is used to 
compare i t  to other tests.  In th is  case the 
power funct ion can be used to determine the 
appropr iate level of the tes t .  

Theorem 3.1. The power funct ion for  the 
test  s t a t i s t i c  of (2.2) is given by 

co (2 i+ I )  n+2i-I  (2e)2i I~' 2 r( 2 ) 
P ( l t l  > to) = K~- r(2i+l) i=O 

im ° (n22, 2i+12 ) 

(3.1) 

where 
m 0 = ( n - 2 ) / ( t  2 + n-2) 

D_~ n-I 
K = {T[} ½ ?( ) ( I -62  ) 2 

c) = a/( I+62) ½ 

and I.  ( . , . )  is the incomplete beta funct ion.  
Proof" Taking the j o i n t  density funct ion 

for  Sx, Sy and r ,  Cramer [2 ] ,  and making the 
transformation 

u = (n-l)s /2~2(I-p ) 
X 

2), v = (n-l)rSxSy/2qx~y(l-p 

and 
t '  = t / { n - 2 }  ½ = (~ - 60)Sx/Sy{l-r2}½ 

i t  can be seen that  the j o i n t  density of u, v and 
t '  is 

c o  

f ( u , v , t ' )  = h ( u ' v ' t ' ) z  (26)i(I-p2)-~-i/2 
t 'n-I i=O r(~i÷~l) 

(v 
60u~ x n+i-2 
C~y ) 

c o  

= h ( u , v , t ' )  _SO(-26)i(]~p2)i/2 

I t '  I "-1 i -  r ( i+ l  

in R 1 

Iv - 60UC~x I 

C~y 

n+i-2 
in R 2 

= 0  otherwise 

where 

n-I 
2 2 h(u,v,t ')  = 2n-2(l-p.) exp[-u(l-p 

IIr(n-2)u 

l+t'2 60u~ x 2 ,. 
~ , ( v  .) ] ,  
ut '2  ~y 

2)(1+~2) - 

R I = {0 <_ u < co, 0 < t '  < co, v > 60U~x}, 
_ _ oy  

and R 2 = {0 <_ u < co, -co < t '  < O, v < 60U°x}. 
- ~ y  

Hence 

where 

P( I t ' l  > t 6) : I1 + I 2  

l j  = f f ( u , v , t ' )  dv du d t ' ,  j = 1,2 
RjO 

and 

60uo x 
RIO = {0 <_ u < co, -co < t '  < - t~ ,  v < ~ } '  

Y 

R20 ~ ~°U~x}. = { 0  _< u < co, t < t '  < co, v >_ ~Y 

Evaluating the two in tegra ls  in the order ind ica-  
ted and using the fac t  that  

n-I 
co n+1 • 

f_colxl n exp( ) dx 2 ? ( T )  

and r( ) r( ) 2 j - 3  r ( j - 2 )  {]I} "2 

we obtain the desired resu l t .  
4. Estimation of  6 

We have noted three methods for  est imat ing 
the regression c o e f f i c i e n t  

~d = BO, 
~ =  

and 6s = BO i f  I t l  < t O 

= ~  i f  It1 > t o  
I f  condi t ions are such that  the estimate of the 
regression c o e f f i c i e n t  is desired, the question 
ar ises as to when the sometimes est imator of  the 
regression c o e f f i c i e n t  would be most appropr i -  
ate. Ac tua l ly  the sometimes estimato~r of the 
regression c o e f f i c i e n t  includes both 6d and 6~ 
as special cases. Hence, the sometimes estima- 
tor  of  the regression c o e f f i c i e n t  may be used 
whenever i t  is appropriate to estimate the 
regression coe f f i c i en t .  

There are essen t ia l l y  four s i tua t ions  that  
can exi st" 

a. We have no guessed value of 60. In 
th is  case i t  would be^appropriate to choose 
t O = 0 and thus 6s = 6~. 

b. We have a guessed value 60 and are 
h igh ly  conf ident  that  our guessed value is 
close to the true value 6. 

(4.]) 
(4.2) 

(4.3) 
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c. We have a guessed value BO and are 
highly confident that our guessed value is not 
l i k e l y  to be close to the true value ~. 

d. We have a guessed value BO and are 
not sure of the re la t ionsh ip  of the value of 
~0 to the true value of B. 
The s i tua t ion  of case (a) requires no fur ther  
discussion. Cases (b), (c),  and (d) require 
fu r ther  examination of how to determine an 
appropriate value of t O . A valuable tool in 
making th is  determinatlon is the power func- 
t ion (3.1) along with the level of the type 
I er ror .  Plots of the power funct ion for  
various sample sizes are given in the f igures.  

Consider f i r s t  the case of (b) where we 
are confident of the guessed value of BO and 
hence are pr imar i l y  concerned about the level 
of the type I error  (~). Suppose that the 
sample size is n = 35; that ~ = .05; and that 
16] < I / {n -3 }~  = .213 which implies that 
c) < .194. From f igure C we have that the 
power of the test  is no bet ter  than .24. 

Next consider the case of (c) where we 
are highly confident that BO is not close to 
the true value of B. In th is  case we are 
more concerned about the power of the test .  
Suppose that we have taken a sample of size 
n = 35; that the power is to be at  least .9; 
and that [6[ > I / {n -3 }  ½ = .213 which implies 
that  c) > .194. From f igure C we have that 
the value of to is approximately 1.17. The 
level of ~ would be approximately .25. 
Hence, the t rade-o f f  was not too bad. 

For case (d) with a sample of size 
n = 35, and intermediate value for  tc) bet- 
ween those used for  cases (b) and (c) should 
be used. 

In a s imi la r  manner to the procedure 
indicated above, choices of t O can be made 
when the sample size is d i f f e ren t  from 
n = 35. 

In conclusion, i f  a guessed value, BO, 
for  B is avai lab le,  i t  is best to use the 
sometimes estimator (2.5) of the regression 
coe f f i c ien t .  The value of tO should be 
chosen in the manner indicated above taking 
into account the confidence in the value of 
BO and other factors such as the cost of 
making an incorrect  decision in the test .  
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B. POWER FUNCTION FOR N = 15 C. POWER FUNCTION FOR N = 35 
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