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I. INTRODUCTI ON 

A previous paper [i] reported on an empirical 
comparison of two general finite population in- 
ference theories as they apply to the ratio esti- 
mator. That study showed how prediction theory, 
by conditioning on the chosen sample, can reveal 
relationships which are important for inference, 
but which are concealed in the analyses of random 
sampling theory. It confirmed prediction theory's 
warnings about biases in both the weighted least- 
squares and the conventional variance estimators. 
Performance of these two statistics was clearly 
inferior to that of two bias-robust variance es- 
timators generated by prediction models. 

The theory for these robust variance estima- 
tors has been extended to general linear regres- 
sion models with independent errors [2]. Appli- 
cation of this extended theory gives bias-robust 
variance estimators for the standard linear re- 
gression estimator. Here we compare these vari- 
ance estimators with the conventional and least- 
squares alternatives. Section 2 contains the 
theory, the populations are described in Section 
3 and the empirical results appear in Section 4. 

2. TWO THEORIES FOR THE LINEAR REGRESSION 
ESTIMATOR 

With each of the N population units we have 
two numbers. One is the variable of interest, y, 
and the other is an auxilliary variable, x, whose 
value is known. The values associated with unit 

i are (xi,Yi) ; s is the set of n units in the 

sample, and x and Ys denote the sample means. 
S 

Similarly, x r and Yr denote the averages over the 

set r of non-sample units, while x and y are the 
population averages. The linear regression esti- 
mator for the population total, T = Ny, is 

- .-)2 
T=N[Ys+b(x-x s)], where b= ~s(Xi-Xs-- )Yi' s/~' (xl-Xs 

2.1 Theory Using Prediction Models. If the 

numbers (yl,Y2,...,yN) are realized values of ran- 

dom variables (YI,Y2,...,YN) then after sample s 

has been observed, estimating T = ~sy i + ~ry i is 

equivalent to predicting the value, 7rYi, of the 

unobserved random variable 7 Y.. Under the model 
r l 

E(Y i) = 60 + 61xi, var(Y i) = q2, 

cov(Yi,Y j) = 0, i # j (2.1) 

the least-squares predictor of Xry i is Xr[Ys + b 

(xi-Xs)] and the sum of this predictor and the 

known sum Zsy i gives the regression estimator T. 

Under this model the estimator is unbiased, 
E(~-T) = 0, with error variance 

var(T-T) = (N/f)(l-f)~2[l + (~-~)2/(l-f)g(s)] 
S 

(2.2) 

where f = n/N and g(s) = Xs(Xi-X--s)2/n. The least- 

squares variance estimator, denoted by VL, is ob- 
2 

tained when ~ in (2.2) is replaced by ~2 = Z d.2/ 
S l 

(n-2), where d i = yi-Ys-b(xi-Xs ) " A simple var- 

iance estimator found in standard sampling text- 
books is 

v c = (N/f)(l-f)~ 2. 

The least-squares estimator v L is simply the pro- 

duct of v C and the factor i + h(s), where 

h(s) = (xs-x)2/(l-f)g(s). Since h(s) is non-nega- 

tive, v L is never less than v C. Note that if the 

sample is balanced on x (Xs=X) , then h(s) equals 

zero, the variance (2.2) is minimized, and v L 

equals v C . 

The least-squares variance estimator is un- 
biased under model (2.1); that is E(v L) = var(T-T). 

But under models in which the variance is not con- 
stant, this is no longer true. For instance, if 
the true model is 

2 cov(Yi,Yj)=0,i# j (2 3) E(Y i)=60+61x i,var(Y i)=q x i, 

then the actual error-variance is 
A 

var(T-T) = (N/f)(~ 2 {(2 _ f)~_ x + 
S 

3 - 2 --3 2 
(X-Xs)2[(~. x - 2 x ~ x + nx )/ng(s) ]} (2 4) 

si ssi s 
while 

~(v L) = (~/f)(l-f)~2[1 + h(s)] 

-- -- " -- 2 --3 
(X $(x -[(X x.3-2 x Z x. + nx )/ng(s)]}/(n-2)). 

S S S 1 S S i S 

(2.5) 
Of course E(v C) is given by (2.5) with the term 

h(s) replaced by zero. 

The biases in v~ and v L when the constant 

variance condition in model (2.1) fails can be 
serious. The f o l l o w i n g  r o u g h  a p p r o x i m a t i o n s  show 
the directions and magnitudes of these biases under 
model ( 2 . 3 ) .  When n i s  l a r g e  and  f i s  s m a l l  E (v  ) 

C 

is approximately (N/f)o 2 xL, while if g(s) is re- 

= 7 N p l a c e d  by g 2__.l(Xi - x)2/N, g ( v  L) i s  a p p r o x i -  

m a t e l y  (N/f)c~ Xs[1  + (x s - x ) 2 / g ] .  Making  s i m 2 -  

l a r  a p p r o x i m a t i o n s  i n  t h e  a c t u a l  v a r i a n c e  ( 2 . 4 )  

y i e l d s  (N/f)cr2[2x- x + ( x -  x ) 2 c ] ,  w h e r e  c i s  
S S 

N 3 - 2 x  ~ 2 t h e  p o s i t i v e  c o n s t a n t  c = (r, l x i r. 1 x i 

+ N x3)/Ng..__The a p p r o x i m a t e  v a r i a n c e  h a s  i t s  
minimum a t  x = x + ( 1 / 2 c ) ,  w h i l e  t h e  a p p r o x i m a -  

s 
t i o n s  f o r  b o t h  E (v  C) and  E(Vg) a r e  i n c r e a s i n g  

f u n c t i o n s  o f  x i n  an  i n t e r v a l  a b o u t  x .  S i n c e  a l l  
S 
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three, var(T-T), E(Vc) , and E(v L) are approximate- 
m 

ly the same when x = x, we see that when the sam- 
s 

ple is one where Xs < x, both v C and v L can have 

serious negative biases. Although we have explic- 
itly considered only the case of variance pro- 
portional to x here, similar results can easily 
be established when the variance is a more general 
increasing function of x. 

Royall and Cumberland [2] studied some bias- 
robust variance estimators for linear regression 
models. These are approximately unbiased estima- 
tors of the true error-variance even when the var- 
iances, var(Yi) , are not those specified by the 

model. For the linear regression estimator T, one 
of these variance estimators is 

m 

v D = [(l-f)/f]2[n/(n-l)]Z sdi2{[l+(xi-xs) 

(xL-x-- s)/g(s)]2+(l-f)/f}/{1-[(xi-7 )2/(n-l)g(s)]}. 
s 

Another variance estimator, which is asymptoti- 

cally equivalent to v D [2], is the jackknife 
statistic 

A A 

vj = (l-f)(n-l)Z (T - T )2/n 
s (j) (') ' 

A 

where T(j) is the regression estimate based on the 

sample of size n-i obtained by deleting unit j 
from the sample,^ and T( . ) is the average of these 

n estimates, Z T /n. 
s (j) 

Under model (2.1), E(v D) = var(T-T). When 

the variances are non-constant, as in (2.3), this 
relation continues to hold as an approximation 
whose accuracy improves as n and N/n increase. 

Although failure of the constant-variance 
condition in model (2.1) can introduce a serious 
bias ^ in the variance estimator VL, it does not 

bias T. On the other hand failure of the linear 
regression condition can introduce a bias in this 
statistic [3]. When the true regression function 
is a polynomial of degree k > i, the linear re- 
gression estimator is unbiased only if the sample 

is balanced on k moments of x Z x J/n 
N J 

• s i" = zlX i /N 

for j = 1,2,...,k. For example, if in fact 

+ B2xi2 E(Y i) = B0+BlXi , then the bias vanishes 
2 

in samples which are balanced on both x and x . 

Failure of the working model's condition that 

E(Y i) = B0+BlXi increases the expected value of 

each of the variance estimators as well as the 
mean-square error. If the sample is balanced on x 
and sufficiently well-balanced on other variables 
(or other powers of x) that the regression estima- 
tor is essentially unbiased, then the variance es- 

timators Vc, v L and v D are all conservative in 

that their expected values exceed the actual 
mean-square error. 

2_=.2 Theory Using the Random Samplin~ Distri- 

bution, A fundamental tenet of standard probabil- 
ity sampling theory is the Randomization Principle, 
which asserts that inferences should be based, not 
on prediction models, but on the probability dis- 
tribution created by the sampler when he uses a 
random device to choose which units will be ob- 
served. The use of a simple random sampling plan 
creates a distribution under which the regression 
estimator is biased, But in many populations this 
bias is negligible in large samples, and it is 
generally ignored. The variance is approximately 

V = ( N / f ) ( l - f ) Z ~ [ y  i ~  - y -  B (x  - 7 ) ]  2 N -- N -- 2 i /(N-2) where 

B =Zl(X i- x)Yi/Zl(X i - x) . The variance estima- 

tor v C is also biased, as an estimator of the 
A 

sampling variance of T, but its bias too is ig- 
nored in larges samples. It is sometimes sug- 
gested that v C be adjusted for bias in small sam- 

ples, and the adjusted estimator is very nearly v L. 

Analysis under the random sampling distribution 
entails averaging over all possible samples s. 
Thus while the prediction approach studies proper- 
ties of estimators for specific samples, the ran- 
domization theory looks at properties averaged 
over all possible samples. That i_s wh~the nega- 

tive bias of v C in samples where Xs < x, which is 

revealed by prediction theory, has been concealed 
by randomization analysis. This bias is dis- 
played clearly in the empirical results which 
follow. 

3. THE STUDY POPULATIONS 

The preceding theoretical results were stud- 
ied empirically in the six real populations des- 
cribed in Table i. These are the same popula- 
tions which we used in a previous study of the 
ratio estimator and these are described more fully 
in [i]. We do not claim that these populations 
are ones where the regression estimator and a 
simple random sampling plan would be anyone's 
strategy of choice. They are populations where a 
straight line through the origin regression model, 
with variance proportional to x, would be a rea- 
sonable first approximation. By studying them we 
can see how the variance estimators perform under 
conditions different from those described by the 
constant-variance model. This gives us a chance 
to study the robustness of the estimator appro- 
priate under the constant-variance model, VL, the 

new estimator VD, and the estimator v C whose 

"validity" is affirmed by randomization theory 
without reference to prediction models. 

4. EMPIRICAL RESULTS 

From each of the six populations we selected 
two sets of samples for study. These were chosen 
using (i) simple random sampling, and (ii) two 
purposive (non-random) samples, of which predic- 
tion theory identifies one as particularly bad for 
the linear regression estimator, and one as poten- 
tially useful. 
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Symbol 

Cancer 

Cities 

Counties 60 

Counties 70 

Hospitals 

Sales 

TABLE i: STUDY POPULATIONS 

Description 

301 Counties in 
N.C., S.C. and Ga. lation 1960 

125 U.S. cities 

304 Counties in 
N.C., S.C. and Ga. 

304 Counties in 
N.C., S.C. and Ga. 

x _z 

adult female popu- breast cancer 
mortality 1950-69 

population 1960 population 1970 

households 1960 population 1960 

households 1960 

National sample of number of beds 
393 hospitals 

331 U.S. Corpora- gross sales 1974 
tions 

population 1970 

number of patients 
discharged 

gross sales 1975 

T_T_ ~(X,Y) 
11994 0.967 

35.691 x 106 0.947 

i0.007 x 106 0.998 

11.243 x 106 0.982 

320159 0.910 

796. 986 x 109 0.997 

TABLE 2" RESULTS FOR i000 SIMPLE RANDOM SAMPLES OF n=32 (LINEAR REGRESSION ESTIMATOR) 

! 
(Aver,a.ge in i000 Samples)2 

Population Average Error ~Ts- T)2 Vc VD vj v L 

Cancer -41 696 600 656 757 612 

Cities (millions) ~O,02 1.35 1.27 1.33 1.40 1.30 

Counties 60 (thousands) 27 153 129 150 177 132 

Counties 70 (thousands) -6 487 417 453 554 426 

Hospitals 1.9 16.5 15.8 16.6 17.5 16.0 

Sales (billions) -3.1 21.6 16.4 19.1 24.0 17.1 

4.1 Simple Random Sampling. From each of the 
six study populations we drew i000 simple random 
samples of n = 32. These are in fact the same 
i000 random samples used in the previous study 
[i]. For each sample we calculated the regres- 
sion estimate T, and the actual error, T-T, as 
well as the four variance estimates Vc, VD, vj 

and v L. The average values are shown in Table 2. 

Note that v C and v L underestimate the mean-square 

error in all six populations. The estimate v D 

performs slightly better while still underesti- 
mating the actual mean-square error. The jack- 
knife statistic is the only one showing a 
tendency to overestimate. 

The prediction theory sketched in Section 
2.1 suggests that performance of the variance 
estimates will depend strongly on x . To ex- 

S 

amine performance as a function of x , we ar- 
e 

ranged the i000 samples from ea__ch population in 
order of increasing values of x .We then grouped 

s 
the samples in 20 sets of 50, so that the first 

group contains the 50 samples whose values of x 
S 

are the smallest, the next grou~ contains the ssm- 
ples with the next 50 smallest x values, etc. 

s 
For each of these 20 groups we calculated the 

- -  50-- 
average value of Xs, Z I Xs/50 , and the average 

error Z 0.T-T..50,(~/ as well as the mean-square 

error (mse) Z50(T-T)2/50 and the averages of each 
i w 

estimates, /5O of the four variance = Z ~0 
V C i VC 

etc. We then plotted the average errors, the 
__ i m i 

values of (mse) N, (Vc)2, (VD)~, etc., against the 

average values of x . 
S 

Figures A-F show the results. Each plotted 
point is obtained by averaging 50 samples, and 
each figure summarizes the results for the I000 
random samples of n = 32 from one population. 

For each population there are six trajec- 
tories. The trajectory showing average error 
plotted against average value of x is labelled 

s 
error. The one showing the root mean-square error 

is labelled m~e, and those showing (Vc)½ (VD)~ 

e_tc. are labelled C, D, etc. The population mean 
x is shown on the abscissa. 

The degree to which these empirical results 
agree with those of prediction theory is remark- 
able. The variance estimator v C increases 

rapidly with increasing ~ , while the actual mse 
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m 

decreases until x exceeds x, then begins to 
S m 

increase. In all of these populations v C tends to 

be smallest when the actual squared error is 

largest. It is clear that v C represents a gross 

under-estimate of the standard error in the i0- 
20~ of random]_y-selected samples whose ~ va lues  

S 

are smallest. The least-squares variance esti- 

mate v L is not much better. By contrast, the 

bias-robust estimates v and v_ show remarkable 
D U 

tenacity in "tracking" the actual mse as x varies. 
S 

4.2 Non-Random Sampling. From each of the 
six study populations we drew two non-random sam- 
ples. One of these came from the lower extreme 
of the x-distribution and one was obtained by 
fitting the sample's x-distribution to the popu- 
lation's as closely as possible. 

The extreme sample consisted of the thirty- 
two units whose x-values are smallest (the low 
sample). This sample is badly balanced on x and 
2 

x and is, according to prediction theory, one 
of the worst possible samples (large variance, 
no bias protection) for T under most reasonable 
models for these populations. 

The other purposive sample consists of those 
thirty two units for which the sample cumulative 
distribution function (c.d.f.) of x best approxi- 
mates the population c.d.f. That is, if F (x) is 

s O 

the proportion of units in sample s whose x-values 
are no greater than x , and F(x ) is the corres- 

O O 

ponding proportion in the whole population, the 
sample for which max IF (x) - F(x) I is minimized is 

S 

chosen. This we call the best-fit sample. It is 
"like the population" with respect to the distri- 
bution of the known variate x. It does not neces- 
sarily provide the best possible balance on x or 

2 
on x , but in many populations it does provide a 
sample which is reasonably well-balanced on these 
and other important parameters of the size vari- 
ate's distribution• Results for the two samples, 
low and best-fit, are shown in Table 3. 

While the entries in Table 2 represent 
averages over i000 samples and the points plotted 
in Figures A-F represent averages over 50 samples, 
the entries in Table 3 are subject to the vari- 
ability of individual samples. Although they 
must be interpreted cautiously, these results 
have some interesting features• 

As expected from the analysis in Section 2.1, 
the variance estimator v C gives a gross under- 
estimate in the low samples, i In fact, the 

2 standardized errors IT-TI/v C range from the 

minimum of 8.91 in Counties 70 to a maximum of 
126.58 in the Sales population. In every popu- 
lation the value of Vc2 in the low sample is 

much smaller than the root mean square of the 
estimate's values in the thousand simple random 
samples. 

The errors produced in the low samples were, 
as predicted 0 enormous~ compared with the errors 
in better~balanced samples. In these worst of all 
possible samples the variance estimators v D, vj, 

and v L provide surprisingly accurate measures of 

the uncertainty in T. 

In every population the best-fit sample pro- 
duced an estimation error smaller than the root 
mean square error under simple random sampling. 
These best-fit samples are sufficiently well- 
balanced on x that the four variance estimates are 
quite comparable, and all four give standard error 

i 

estimates, v ~ whose magnitudes appear appropriate 
The largest of the standardized errors in these 
samples was 1.08. 

5. DISCUSSION 

Simple random sampling gives all samples an 
equal chance of being chosen. It does not make 
them equally informative. Yet conventional theory 
associates with T a bias and variance which are 
defined by averaging over all samples, and which 
say nothing about the estimate's reliability in 
in any one particular sample. On the other hand, 
prediction theory identifies important differences 
between samples and shows how these differences 
should influence our inferences. Although aver- 
age performance over all possible samples might be 
of interest before we select a sample at random, 
after sampling we must make inferences from the 
unique sample we have observed. I~ we h_ave the 
bad fortune to draw a sample with x < x, our 

s 
inferences must be more cautious than if the sam- 
ple is well-balanced. We believe these empirical 
results illustrate once again the fallacy of the 
Randomization Principle. 
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Counties 60 
( t h o u s a n d s )  

low 

best-fit 

Counties 70 
( t housands )  

Hospitals 
( thousands ) 

Sales 
(billions ) 

800  

Sample 

low 
best-fit 

low 
best-fit 

low 
best-fit 

low 

best-fit 

1000 

TABLE 3" RESULTS FOR TWO SPECIAL SAMPLES OF n = 32 

x (~c)½ (~D) ~ (vj)~- s Error 

1314 1334 116 3006 2927 
11078 501 462 524 619 

0.ii0 -11.20 0.42 13.38 11.88 
0.268 - 0.38 1.00 1.09 1.25 

1.252 502 13 280 274 
8.808 116 128 130 134 

(%)½ 
2961 
462 

12.70 
1.00 

342 
128 

1.252 401 45 673 663 1146 
8.808 40 261 262 271 261 

0.0245 -75.0 2.2 56.1 55.3 
0.2741 10.5 12.9 13.0 13.3 

low 0.539 -746.8 5.9 515.6 502.9 
best-fit 2.188 1.7 15.4 16.7 22.1 

84.8 
12.9 

491.1 
15.4 

FIGURES A-F: RESULTS FROM i000 SIMPLE RANDOM SAMPLES 
OF 32 FROM EACH OF SIX POPULATIONS 

LINEAR REGRESSION ESTIMATOR 
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