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Abstract. Various randomized response 
schemes are considered as purposive misclassi- 
fication models with known misclassification 
matrices. These matrices are the transition 
matrices from the true variables to the ran- 
dominzed response (misclassified or false) 
variables and are determined by the researcher 
through randomization devices. The observed 
data consist of randomized response variables, 
rather than their true variables. This paper 
develops a method of investigating association 
among the true variables by fitting log-linear 
models upon them and by using the observed 
data. The approach can be viewed from two 
perspectives: one uses the recursive system 
of log-linear models, the other explores the 
log-linear models based on flats. 
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i. Introduction. A misclassification 
problem happens when we use an inaccurate 
instrument (which may be a physical apparatus. 
a survey questionnaire, or an interviewer) to 
measure a categorical variable. The observed 
value does not necessarily represent the 
individual's true value, and the structure 
of misclassification is unknown. 

Suppose we are interested in only one 
variable j which has J possible categories; 
due to misclassification, we observe a false 
variable i with I possible categories. (We 
will use i, j, etc. to denote both the 
categorical variables and the indexes of their 
categories.) We can use a two-dimensional 
I x J contingency table to represent the 
situation: the first dimension is the mis- 
classified or false variable and the second 
dimension is the true variable. Let the 
probability of any observation having (i,j) 
as its false and true classification be 

/(~i ~j~ij = / ~}" The elements {ai,j} of a ~ij 
\- 

misclassification matrix A is defined as 

a.l,j = ~ij/~+j,/ which is the conditional 

probability of any observation having i as 
the false classification given that it 
has j as the true classification. Chen (1979) 
discussed the unknown misclassification 
situation where the matrix A is unknown. 

In human surveys, individuals possessing 
a stigmatizing trait may answer the sensi- 
tive question relating to this trait evasively. 
The data obtained are misclassified again with 
an unknown structure of misclassification. 
In order to overcome this problem, randomized 
response techniques are proposed to let the 
individuals apply a prespecified misclassi- 
fication structure to their true status; 

this protects the privacy of individuals 
and we can still make inferences about the 
population as a whole. Dalenins (1977) 
called the randomized response techniques 
as privacy transformations. In this case, 
the matrix A is prespecified with known 
numerical values. 

For example, Warner (1965) proposes a 
RR scheme for I,J = 2 (yes or no). If a 
person is in "yes" category (j=l), he will 
answer "yes" (i=l) with a probability p and 
"no" (i=2) with a probability l-p. If a 
person is in "no" category, he will answer 
"yes" with a probability l-p and "no" with a 
probability p. Thus the observed value i 
is a misclassified value, and the matrix A 
is 

j=l j=2 

i=2 ._p , (I.i) 

where p is determined by the researcher. 

Greenberg et al. (1969) also propose a 
scheme for I,J = 2 which involves an unre- 
lated question with binary response (yes 
or no). A person selects the original 
sensitive question to answer with a pro- 
bability p and the unrelated question to 
answer with a probability l-p. If the 
population proportion of "yes" to the 
unrelated question is known, say ~y, then 

the matrix A is 

j =i j=2 

i=l ,[P + (l-p)~y (l-p)~y ~1.2)I 

i=2 k(1-P) (l-~y) p + (l-p) (i-~ . 

In a given applied problem, we will 
usually investigate many categorical var- 
iables simultaneously. If some of the 
variables are subject to an unknown mis- 
classificaton structure, then a double 
sampling scheme can be used and Chen 
(1979) proposes first fitting an overall 
log-linear model to find out the misclas- 
sification structure and then fitting 
another log-linear model upon the distri- 
bution of the true variables. In the 
randomized response, we can apply a pre- 
specified misclassification structure 
to some of the variables; hence, the 
overall log-linear model is known. We 
can then fit log-linear models upon the 
distribution of the true variables using 
only the randomized response data. This 
paper will explain a three-dimensional 
example in detail, and the extension 
to higher-dimension should be very 
straightforward. For details about the 
log-linear models, please see Haberman 
(1974a), Bishop, Fienberg, and Holland 
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(1975), and Fienberg (1977). For 
explanations about the randomized res- 
ponse techniques, please see Cochran 
(1977). 

2. Independent Misclassification. We 
will begin with an independent misclassifi- 
cation model in a three-dimensional (X, Y, Z) 
contingency table. Suppose both questions 
pertaining to variables Y and Z are sensitive, 
and we decide to use separate RR scheme for 
each variable, thus we have an independent 
misclassification model. Let the false 
variables (observations from RR's) for Y and 
Z be the first and second dimensions, variable 
X be the third dimension, and true variables 
for Y and Z be the fourth and fifth dimensions 
of an overall five-dimensional contingency 
table. Our overall log-linear model for the 
misclassification structure is 

~ij klm=~++klm <~ i++l~ z+q-+l~] <z+j ++m/nq-+4-Mn~ " 

(2.1) 

where i=l..., I, j=l,..., J, k=l,..., K, 
i=I,..., L, and m=l,..., M. The last two 
terms are conditional probabilities which 
correspond to misclassification matrices of 
two RR schemes. These matrices have known 
numerical values. The equation (2.1) means 

we have a log-linear model H(14, 25, 345 ~ . .  for 

the cell probabilities {Wijklm }. The terms 

inside the parenthesis under a H notation 
denotes the highest u-terms in a hierarch- 
ical log-linear model (see Chen and Feinberg, 
1976, and Chen, 1979). 

From our design we cannot observe 1 and 
m of the true Y and Z, instead we observe 
i and j of the false Y and Z plus k of the 
variable X for each individual. Consequently, 
we have cij k observed counts in the cell 

(i,j,k) of an observed three-dimensional 
table with the cell probability Wijk++" 

(LetN be the total sample size, N = ZZZCijk). 

Now we want to make the inference about the 
original cell probabilities {Z++klm } based 

on the observed counts {Cijk}. More 

specifically, we like to build log-linear 

models on {Tr.+.+klm}. 

The models we build on {~++klm } will 

be denoted by H*. For example, if we want 
to fit no second-order interaction model, 

then we denote it as H*(34,35,45~ . . . .  The 

model H(14,24,345 ) p lus  H*(34,35,45)  is  
called a recursive system of log-linear 
models in Fienberg (1977). It was first 
explored by Goodman (1973) in a modified 
path analysis context to analyze multi- 
dimensional contingency tables with some 
variables posterior to others. 

From the other perspective, if we 
take logarithms of both sides of equation 
(2.1), then we have 

log ~ijklm = log Z++klm + log 

i+++l I +j q-~m (2.2) 

for all i, j, k, i, m. 

Since the last term is fixed, our log-mean 
vector is in a flat, rather than a linear 
manifold. Thus, wehave log-linear models 
based on flats as first discussed in 
Chapter 9 of Haberman (1974a). The ob- 
served data we have is called frequency 
tables derived by indirect observation 
in Haberman (1974b). Thus, this paper 
explores log-linear models based on flats 
for indirectly observed tables. 

3. Log-linear Models. Continuing 
the discussion of the previous section, 
we will first try to estimate {~++klm } 

by the maximum likelihood under the over- 
all model H and H* 

(14,25,345) (345)" 
In order to eliminate the identifiability 
problem, we require the two misclassifi- 
cation matrices being of ranks L and M. 
The maximum likelihood equations are 

^ ZZ " ^ 

~-~klm - ij ijk ijk ~ijklm' 

for all k, i, m, (3.1) 
^ 

and {~ijklm } should satisfy the 

equation (2.1), i.e., 
A 

~ijklm - 

$++klm ~i4-Fl+/ ~+++i~ ~/''~ " +3+-Hn/Zl ; I lm~ ' 

for all i, j, k, i, m. (3.2) 

The equation (3.1) is similar to the 
equation (2.3) in Haberman (1974b) except 
that the log-mean vector is in a flat, 
rather than a linear manifold. The right- 
hand sides of the equation (3.1) are the 
proportional allocation of Cijk/N^to the 

(i ,j ,k,l,m) cell according to {~ijklm } 

and then sum over i and j. The maximum 
likelihood equations correspond to highest 
u-terms in the H* model. 

The solution of these maximum likelihood 
equations can be obtained by an iterative 
procedure as follows: Take 

(0) = I/KLM, for all k 1 m then 
~++klm ' ' ' 
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(v) _ 
Wijklm - 

(v) (3 3) 
~++k im <~i++l+ / ~+++i+~ ~~+j ' • 
and ," 

v+ [/ v 
~++klm = ~.E ij (NWijkq-+~ ijklm (3.4) 

lj 

This kind of iterative scaling procedure is 
used very extensively in the contingency table 
literature, see Haberman (1975) and Chen and 

^ 

Fienberg (1976). After obtaining {Wijklm }, 

we^can test goodness-of-fit between {cij k} and 

{NWijk+ +} by a likelihood ratio or Pearson chi- 

square test with degrees of freedom (IJ-LM)K. 
If the randomization devices are doing well, 
most likely the fit should be good also. 

Sometimes, if the sample size is small, 
^ 

then {~ijklm } could be at the boundry of 

the parameter space and the log-likelihood 
is not well defined at this point. In this 
case, we will say the maximum likelihood 
estimates^ of {Wijklm } do not exist, and the 

{Wijklm } obtained through the iteration 

cannot be used in the goodness-of-fit tests. 

If we want to fit the no second-order 
interaction log-linear model H* 

(34,35,45) 
for {~++klm } , the maximum likelihood 

equations are 

~++kl+ = EEX j (Nfijk ~ijklm' (3.5) 
• . 

13m 

= ZEZ N~ij k ~ijklm ' (3.6) ++k+m ij 1 

and 

^ L ^ ^ 

= EXX N~ij k ~ijklm ' ~+q-+im ijk 

for all k, i, and m. (3.7) 
^ 

Here {~ijklm } should again satisfy the 

equation (3.2). The solution can be obtained 
by starting with the same initial values. At 

the beginning of the v-th stage, we determine 
(v) (v+l) 

{ ijklm } by (3.3). Then we determine {~++kl+~, 

_ (v+l) ~ . r (v+l) ~ 
~++k+m I, ana iw+++Im 7 by (3.5), (3.6), and 

{__k 

(3.7), and adjust {~++~lJm } according to the 

_(v+l) ~ which satisfy model H*(34,35,45) to {~_t_+klm J 

three two-dimensional marginal constraints. 
This adjustment will be carried out by a 
separate iterative scaling procedure. This 

entire procedure is similar to the one given 
in Chen (1979), except here we do not need 
an iteration for the overall model H 

(14,25,345) ^ 

After obtaining {~ijklm }, we test the goodness- 

of-fit with degrees of freedom (IJ-LM)K+(K-I) 
(L-I) (M-l). For other simpler H* models, we 
can similarly fit and test. Thus, we can 
choose a best model to describe the original 
cell probabilities {~-_H_klm }. 

In our example, since the value k is not 
misclassified, the result we obtained is also 
valid for the product multinomial sampling 
with the multinomial in each k category. 

The similarity between our problem and 
the latent structure problem discussed in 
Goodman (1974a, b) and Haberman (1975) is 
that both have indirectly observed tables: 
the difference between the two is that our 
log-linear models are based on flats and 
the latent structure models are based on 
manifolds. 

4. Equivalent Models Under Indepen- 
dent Misclassification. In early litera- 
ture, Bross (1954), Rubin, Rosenbaum, and 
Cobb (1956), and Mote and Anderson (1962) 
investigated a special case of our example 
with J=M=I and I=L, and Assakul and 
Proctor (1967) and Drane (1976) investiga- 
ted another special case with K=I, J=M, 
and I=L. When J, M, or K equals i, we 
will ignore that dimension. Under the 
independent misclassification model 
H(14,34 ].. and the rank of the misclas- 

sification matrix being L, the first 
group of authors have shown that the 
marginal independence hypothesis 
H*(3,4 )__ is equivalent to the marginal 

independence hypothesis H*(I,3 ] .. There- 

fore, the test of the model H*(3,4 ].. is 

the test of H*(I,3 ].. on the observed data. 

Under the independent misclassification 

model H~14,25,45].. and the ranks of the 

transformation matrices being L and M, the 
second group of authors have shown that 
the marginal independence model H* is 

(4,5) 

equivalent to the marginal independence model 
H*(I,2 ].__ Again, the test of the model H*(4,5 ].. 

is the test of H* on the observed data 
(1,2) 

In our example, if J=M and I=L, under 

the model H(14 25 34.5).and the ranks of 
misclassirlca~ion'macrlces being L and M, 

the models H*(34,35), H*(34,5) , H*(4,35) , 

H* and H* are equivalent to 
(3,45) (3,4,5) 

the models H*(13,23),  H*(13,2) , H*(1,23) , 
H*(3,12), and H*(1,2,3), respectively. The 

general rule is the following: when we 
have a case of independent misclassification 
and the ranks of the misclassification 
matrices are the number of categories of the 
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original variables, for those models of the 
original table with the true variables 
appearing at most once in the parenthesis, 
we can substitute these variables by their 
false variables and get the equivalent 
models. Therefore, for these equivalent 
models, we can test them without knowing the 
misclassification matrices. 

Thus, knowing the values in the misclas- 
sification matrices does not help us in 
discriminating among these models. However, 
it enables us to estimate measures of 
association and the original cell probabi- 
lities. 

In a three-dimensional JxKxL table, if 
the variable j is randomly misclassified 
into a variable i, then we have an overall 
model HC12,234~... From the rule given above, 

we know that H*(23,24)is.. not equivalent to 

H* This is the categorical analog 
(13,14)" 

of a statement given in the section 32 of 
Fisher (1970): an apparent partial corre- 
lation between the two variates will, 
therefore, be produced by random errors in 
the third variable. 

5. Various Randomized Response Schemes. 
In this section, we want to consider some 
other randomized response schemes and their 
associated misclassification matrices. 

For the unrelated question RR scheme 
mentioned in the Introduction section, if 
the population prdportion of "yes" to the 
unrelated question (~) is unknown, then we 
have to separate the ~ample randomly into 
two groups (K=2) and the first (or second) 
group will select the original sensitive 
question to answer with a probability Pl 

(or p2 ) and the unrelated question to answer 
with a probability l-Pl (or l-P2). Let 

the true answer of the unrelated question 
be I(L=2), then the misclassification 
matrix from (j, k, i) to i is 

j =i j =2 

k=l k=2 k=l  k=2 

i=i 1=2 I=i 1=2 i=i 1=2 i=i 1=2 

i1[l pll p2 i p101p2 
i=2 0 l-Pl 0 l-P2 Pl I P2 

Assuming there is not other variable of 
interest, the overall model will be 

~ijkl = ~+jkl ~~ijk~/!~+jki~ (5.2) 

The observed data {Cik} is again a multinomial 

with cell probabilities {~i+k+}. In this case, 

in order to estimate {~+jkl } uniquely, we have 

to begin with the model H* which means 
(2,3,4) 

the answer to the sensitive question, the ran- 
dom subgrouping, and the answer to the 
unrelated question are mutually independent. 
From this RR scheme, we are not able to differ- 
entiate between models H* and H*(2 

(3,24) ,3,4)" 

Folsom et al. (1973) propose using two 
alternate unrelated questions in addition to 
the sensitive question and setting up a ran- 
domized scheme as follows. For a dichotomous 
stigmatizing trait (k), we will take two 
samples of the population and use two other 
dichotomous unrelated questions (i, m) with 
unknown distributions. For the first sample, 
the subject will answer the question m truth- 
fully and, in addition, answer the sensitive 
question k with a probability p and answer 
the question i with a probability l-p. Let 
us call the observed randomized response 
as i. For the second sample, the subject will 
answer in the same way except with questions i 
and m interchanged. Let us call the observed 
randomized response as j. Let us use the super 
script within parenthesis to indicate two 
samples, then the overall model will be 

(i) _ f~i+ik+ /~++kl+~ (5 3) ~i+klm- ~++klm ~ / / ' " 

(2)= k+m/~++k+m) , rr+j klm ~r++kl m ( ~r+j 

for all i, j, k, I, m. (5.4) 

The misclassification matrix for the 
first sample is 

k=l k=2 

i=l 

i=2 

i=i 1=2 i=I 1=2 

I i p  l-p 01] 

0 l-p p 

(5.5) 

and the misclassification matrix for the 
second sample will be the same except that 
1 will be replaced by m. Let the observed 

counts be {c (I)} and {c (2)} respectively and 
im jl ' 

the overall total for two samples be N. The 
ML equations under the model H*(345 ) are 

^ [ (1) z.^ (1)~] ^ (I) 
~-t-+klm = 2. C i m / ~ T r i + ~ J ~ r i + k l m  

1 

+ J l c ~+j+l+JJ ~+jklm ' 

for all k, i, m, (5.6) 

and {$ (i)} and {^ (2)} should satisfy 
i+klm ~+j klm 
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equations (5.3) and (5.4), i.e., 

^ (i) ^ ~ i+kl+l ~++kl+) (5 7) ~i+klm = ~++klm ' " 

and 

^ (2) ^ 
~+jklm = ~++klm ~+jk+ml ~++k+mJ , (5.8) 

A solution can be obtained iteratively. How- 
ever, we will have identifiability problem 
unless we consider some other simpler models 
than H* 

(345)" 

Lin and Chow (1976b) consider the 
multiple trials RR scheme. They apply the 
same RR scheme to a variable k twice to ob- 
tain two false variables i and j. The 
overall model is 

~ijk = ~++k C~i+kl ~++k) C~+j ~ ~++k)" (5"9) 

The observed data {c..} is a multinomial lj 

with cell probabilities {~ij+}. The last 

two terms in equation (5.9) correspond to 
an identical misclassification matrix. 

For other schemes (Abul-ela, et al., 
1967; Warner, 1971; Hochberg, 1975; Lin, 
Chow, and Mosley, 1975; Lin and Chow, 
1976a), the misclassification matrix can 

be obtained accordingly. If we limit the 
discussion to one true variable, then our 
iterative procedure will produce the maxi- 
mum likelihood estimates of proportions. 
For some rare data, the estimates given in 
various papers will produce inadmissable 
value as Singh (1976) has pointed it out. 
Our iterative values will converge to the 
boundary of the parameter space with the 
estimates of some cell probabilities approach 
to 0. 

Another approach to fit log-linear 
models for the randomized response data, 
by viewing the data geometrically as a 
mixed-up table and not considering the 
misclassification matrix explicitly, is 
given in Chen (1978). 

6. Conclusion. This paper develops 
a flexible and usable methodology for the 
analysis of contingency tables derived from 
randomized response. The critical point 
is that we have misclassification matrices 
with known numerical values. This 
methodology will have applications also 
in epidemiological studies of disease 
etiology where the classification of 
disease has known sensitivity and speci- 
ficity. It can also be applied to missing 
data problem with known missing proba- 
bilities. 

The problems which deserve future 
research are the estimation of variances 
of the estimates of the various parameters 

and probabilities and the investigation of 
optimal designs for discrimination among 
models. Lee (1977) has investigated the 
first problem in the ordinary contingency 
table without involving misclassification. 
Leysieffer and Warner (1976) and Loynes 
(1976) have investigated the second problem 
about optimal design for the estimation 
of proportions. 
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